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Abstract
Confounded factorial designs are shown to provide a rich class of constant block-sum

designs. The approach also provides a direct and straightforward proof of the necessary
condition for existence of constant block-sum designs given recently by Khattree (2022).
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1. Introduction

Constant block-sum designs for quantitative treatment levels have been recently intro-
duced by Khattree (2019a,b). In these designs, the sum of the treatment levels in each block
is constant. Several methods of their construction have been presented by Khattree (2020).
A general approach to determine whether or not a given design can be transformed into a
constant block-sum design and its construction if it exists has been developed in Khattree
(2022). He also discussed several individual examples, including two-associate class group di-
visible (GD) designs. Non-existence of constant block-sum balanced incomplete designs was
established by Khattree (2019a, 2022). Bansal and Garg (2022) and Khattree (2022) derived
some conditions for existence of partially balanced constant block-sum designs and gave fur-
ther combinatorial methods of their construction. Gupta (2021) gave general results for GD
designs with respect to the property of constant block-sum. He established non-existence of
semi-regular and regular GD constant block-sum designs. He also discussed construction of
singular GD constant block-sum designs and gave several illustrative examples.

Motivated by the results presented by Khattree (2022), the purpose of this paper is to
study construction of constant block-sum designs using factorial designs. It is shown that the
method of confounding provides a rich class of constant block-sum designs. The approach
also provides a direct and straightforward proof of the necessary condition for existence of
constant block-sum designs given by Khattree (2022).

2. Method of Construction

Consider an equireplicate confounded block design with parameters v, b, r, k, and let
τ = (τ1, τ2, · · · , τv)′ and β = (β1, β2, · · · , βb)′ respectively denote the v×1 and b×1 vectors
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of treatment and block parameters. Let h′τ denote a treatment contrast that is partially
or completely confounded in the design, h′1v = 0, where 1a denotes a a × 1 vector of 1’s.
Further, s′τ denotes a treatment contrast that is estimated with full efficiency in the design,
i.e. it is not confounded in any of the replications of the design, s′1v = 0. We will refer to
factorial effects that are estimated with full efficiency as completely unconfounded effects.

To motivate the method of construction, we replace the ith treatment in the confounded
design by the ith element of h and s. In other words, the treatments in the design are
replaced by the corresponding coefficients of the confounded and unconfounded contrasts.
This is illustrated with the help of the following example.

Example 1: Consider the 23 partially confounded design of Table 1 having parameters v = 8,
b = 4,, r = 2, k = 4. The designed is obtained by confounding the three-factor interaction
F1F2F3 in one replication and the two-factor interaction F2F3 in the other replication.

Table 1

F1F2F3 confounded F2F3 confounded
Block 1 Block 2 Block 3 Block 4

000 001 000 001
101 010 011 010
110 100 100 101
011 111 111 110

Let u1, u2, u3, u12, u13, u23, and u123 be the contrast coefficient vectors for the F1, F2, F3
main effects and F1F2, F1F3, F2F3, F1F2F3 interactions respectively,



u′
1

u′
2

u′
3

u′
12

u′
13

u′
23

u′
123


=



−1 −1 −1 −1 +1 +1 +1 +1
−1 −1 +1 +1 −1 −1 +1 +1
−1 +1 −1 +1 −1 +1 −1 +1
+1 +1 −1 −1 −1 −1 +1 +1
+1 −1 +1 −1 −1 +1 −1 +1
+1 −1 −1 +1 +1 −1 −1 +1
−1 +1 +1 −1 +1 −1 −1 +1


.

Also, the vector of treatment parameters can be written as,

τ ′ = (τ000 τ001 τ010 τ011 τ100 τ101 τ110 τ111) ,

with τx denoting the effect of the treatment combination x. Now we replace the treatment
combinations in each block by the corresponding F1F2F3 contrast coefficients and obtain the
design displayed in Table 2. The block sums are given in the last row of the table.
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Table 2
Replace treatment combinations by the

corresponding F1F2F3 contrast coefficients
Block 1 Block 2 Block 3 Block 4

−1 +1 −1 +1
−1 +1 −1 +1
−1 +1 +1 −1
−1 +1 +1 −1

Block sums −4 +4 0 0

Similarly, Tables 3 and 4 give the designs obtained by replacing the treatment combinations
in each block of the design by respectively the F2F3 and F1F2 contrast coefficients. Note
that F1F2F3 and F2F3 are partially confounded whereas F1F2 is not confounded and it is
estimated without any loss of information.

Table 3
Replace treatment combinations by the
corresponding F2F3 contrast coefficients
Block 1 Block 2 Block 3 Block 4

+1 −1 +1 −1
−1 −1 +1 −1
−1 +1 +1 −1
+1 +1 +1 −1

Block sums 0 0 +4 −4

Table 4
Replace treatment combinations by the
corresponding F1F2 contrast coefficients
Block 1 Block 2 Block 3 Block 4

+1 +1 +1 +1
−1 −1 −1 −1
+1 −1 −1 −1
−1 +1 +1 +1

Block sums 0 0 0 0

Block sums are constant, being equal to zero, for the design of Table 4 corresponding to
the F1F2 interaction estimated with full efficiency in the design. It can be verified that
the block sums are also constant, being equal to zero, for the designs constructed similarly
corresponding to the other four unconfounded effects F1, F2, F3, and F1F3 respectively.
However, block sums are not constant for the designs of Tables 2 and 3 corresponding to the
partially confounded interactions F1F2F3 and F2F3 respectively.
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The pattern in block sums with respect to confounded and unconfounded contrasts
observed in the above example holds true in general. A completely unconfounded contrast s′τ
is estimated from within block comparisons, i.e. it is estimated orthogonal to blocks. Clearly,
its contrast coefficients falling in any block must sum to zero in order for the corresponding
block effect to be canceled out from within block comparisons. Thus, as observed in the
above example, block sum for a completely unconfounded contrast must be zero for each
and every block. Conversely, a partially or completely confounded contrast h′τ is mixed up
with some block contrast implying non-constancy of block sums.

Lemma: Let block contents of a partially confounded design be replaced by corresponding
coefficients of a treatment contrast. Then the property of constant block sum being equal to
zero holds for all contrasts that are estimated with full efficiency. Furthermore, this property
does not hold for the treatment contrasts that are partially or completely confounded in the
design.

Although, neither the block contents of +1 and −1 nor the block sum of zero are helpful
from a practical point of view, as will be seen later, useful constant block sum designs can
be easily derived through this approach.

The above lemma is closely related to the main result of Khattree (2022). He proved
that a necessary condition for existence of a constant block-sum design is that w ̸= 1v is an
eigenvector of A corresponding to a zero eigenvalue, where

A = NN ′ − rk

v
1v1′

v ,

and N is the incidence matrix of the design. Gupta (2021) showed that the term (rk/v)1v1′
v

in the expression of A is in fact redundant. Thus equivalently, a necessary condition for ex-
istence of constant block-sum design is that w ̸= 1v is an eigenvector of NN ′ corresponding
to a zero eigenvalue. Note that a treatment contrast is estimated with full efficiency if and
only if its contrast coefficient vector is an eigenvector of NN ′ with zero eigenvalue. Thus,
estimation of a treatment contrast orthogonal to blocks provides a direct and straightforward
proof of the necessary condition for existence of a constant block-sum design.

We now discuss constructions of constant block-sum designs. Let q denote the number
of treatment contrasts that are estimated with full efficiency in a factorial design, and let
these contrasts be denoted by

U ′τ =


u′

1
u′

2...
u′

q

 τ ,

where u′
i = (ui1 ui2 · · · uiv), with u′

i1v = 0, i = 1, 2, · · · , q. Consider θu, a linear function
of the q contrasts given by

θu = C ′U ′τ =
q∑

i=1
(ciu

′
i) τ = t′

uτ ,
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where
C ′ = ( c1 c2 · · · cq ) ,

t′
u =

( q∑
i=1

ciui1

q∑
i=1

ciui2 · · ·
q∑

i=1
ciuiv

)
= (tu1 tu2 · · · tuv) ,

and ci’s are some constants chosen such that all the elements of tu are different from each
other. Being a linear function of treatment contrasts that are estimated with full efficiency,
the treatment contrast θu is also estimated with full efficiency in the design. Thus, using
the Lemma, the property of constant block-sum holds when block contents of the design are
replaced by corresponding coefficients of the treatment effects in the linear function θu, i.e.
by the corresponding elements of tu. The tu being a contrast coefficient vector, ∑v

i=1 tui = 0,
which means that not all the tui ’s are greater than zero. However, it is easily seen, cf.
Khattree (2022), that the property of constant block-sum still holds if we add a constant
value, say c0, to all the elements of tu. Let t∗

u = (tu1 + c0 tu2 + c0 · · · tuv + c0), where
c0 is chosen such that all the elements of t∗

u are greater than zero. Finally, the treatment
combinations in the design are then replaced by the corresponding elements of t∗

u to arrive at
a constant block-sum design. For illustration, we again consider the 23 partially confounded
design of Example 1.

Example 1 contd.: Here we have five completely unconfouned contrasts, i.e. q = 5, given
by

U = ( u1 u2 u3 u12 u13 ) ,

and let T denote the vector of treatment combinations arranged in the lexicographic order,
i.e. in increasing numerical order,

T ′ = (000 001 010 011 100 101 110 111).

Taking C ′ = ( 0.44 − 0.10 − 0.08 0.18 − 0.20 ) and c0 = 1.2 gives,

t∗′
u = ( 0.92 1.16 0.36 0.60 1.84 1.28 2.00 1.44 ) .

Replacing the ith element of T in Table 1 by the ith element of t∗′
u , i = 1, 2, · · · , v, yields

a design with a constant block-sum of 4c0 = 4.8. A very large number of distinct constant
block-sum designs can be constructed in this fashion by choosing different values of C and
the constant c0. Tables 5 and 6 list five more solutions for the vector of treatment levels t∗′

u

obtained by trial and error. Many more solutions can be easily constructed in this way.

Table 5: Further solutions for Example 1
t∗′

u No. t∗′
u

1 0.56 1.12 0.40 0.96 1.48 1.24 2.04 1.80
2 1.09 0.89 0.99 0.79 0.55 1.07 1.85 2.37
3 0.21 0.71 1.17 1.67 0.39 2.29 0.63 2.53
4 1.07 1.57 0.83 1.33 1.13 3.03 0.17 2.07
5 0.72 1.92 0.48 1.68 1.08 2.28 0.12 1.32



98 SUDHIR GUPTA [Vol. 20, No. 2

Table 6: The C ′ and c0 corresponding to t∗′
u listed in Table 5

t∗′
u No. c1 c2 c3 c4 c5 c0

1 0.44 0.10 0.08 0.18 -0.20 1.2
2 0.26 0.30 0.08 0.35 0.18 1.2
3 0.26 0.30 0.60 -0.18 0.35 1.2
4 0.20 -0.30 0.60 -0.18 0.35 1.4
5 0.00 -0.30 0.60 -0.18 0.00 1.2

The next two examples further illustrate the richness of confounded factorials as con-
stant block-sum designs.

Example 2: We now consider a 24 partially confounded design presented in Table 7, having
parameters v = 16, b = 8, r = 2, k = 4, obtained by confounding F1F2F3 and F2F3F4 in
one replication and F1F2F4 and F1F3F4 in the other replication. Note that the generalized
interactions F1F4 and F2F3 are also partially confounded in the design.

Table 7
F1F2F3, F2F3F4, F1F4 confounded F1F2F4, F1F3F4 F2F3 confounded

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8
0000 0001 1001 1000 0000 0010 0011 0001
0110 0111 1111 1110 0111 0101 0100 0110
1011 1010 0010 0011 1001 1011 1010 1000
1101 1100 0100 0101 1110 1100 1101 1111

As before, let T be the vector of treatment combinations arranged in the lexicographic order.
Further, let

J0 =
(

−1
+1

)
, and J2 =

(
+1
+1

)
.

The contrast coefficient vectors ui, ui1i2 , ui1i2i3 , and u1234 for the main effects and interac-
tions, i, i1 < i2 < i3 = 1, 2, 3, 4, are given by f 1 ⊗ f 2 ⊗ f 3 ⊗ f 4 as below:

f 1⊗f 2⊗f 3⊗f 4 =


ui

ui1i2

ui1i2i3

u1234

where f j = J0


for j = i
for j = i1, i2
for j = i1, i2, i3
for j = 1, 2, 3, 4


, and fj = J2 otherwise

j = 1, 2, 3, 4


The completely unconfounded q = 9 contrast coefficient vectors are given by,

U = ( u1 u2 u3 u4 u12 u13 u24 u34 u1234 ) .

For instance, taking C ′ = (−0.22, 0.30 −0.25 0 0 0 0 −0.30 −0.25) and c0 = 1.2 gives,

t∗′
u = (0.79 1.95 1.45 0.29 1.89 2.05 1.55 1.39 0.85 1.01 0.51 0.35 0.95 2.11 1.61 0.45) ,
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which yields a design given in Table 8 with a constant block-sum of 4c0 = 4.8.

Table 8
Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8

0.79 1.95 1.01 0.85 0.79 1.45 0.29 1.95
1.55 1.39 0.45 1.61 1.39 2.05 1.89 1.55
0.35 0.51 1.45 0.29 1.01 0.35 0.51 0.85
2.11 0.95 1.89 2.05 1.61 0.95 2.11 0.45

Five more solutions are given in Tables 9 and 10.

Table 9: Further solutions for Example 2

t∗′
u No. t∗′

u

1 0.64 2.30 1.80 0.14 2.24 1.90 1.40 1.74 1.20 0.86 0.36 0.70 0.80 2.46 1.96 0.30
2 1.99 1.91 3.41 1.49 3.51 1.59 3.09 3.01 2.41 0.49 0.99 0.91 2.09 2.01 2.51 0.59
3 1.02 1.88 2.28 1.42 2.92 3.38 3.78 3.32 1.92 2.38 0.78 0.32 4.02 4.88 3.28 2.42
4 1.02 1.88 2.28 1.42 0.92 1.38 1.78 1.32 1.92 2.38 0.78 0.32 2.02 2.88 1.28 0.42
5 1.27 0.19 0.43 1.03 0.47 2.07 1.83 0.71 1.17 2.29 2.53 0.93 2.57 1.97 1.73 2.81

Table 10: The C ′ and c0 corresponding to t∗′
u listed in Table 9

t∗′
u No. c1 c2 c3 c4 c5 c6 c7 c8 c9 c0

1 -0.22 0.30 -0.25 0 0 0 0 -0.33 -0.50 1.3
2 -0.50 0.30 0 -0.50 0 -0.25 0 0 -0.46 2.0
3 0 1.00 -0.30 0 0.15 -0.50 0 -0.33 -0.10 2.5
4 0 0 -0.30 0 0.15 -0.50 0 -0.33 -0.10 1.5
5 0.50 0.27 0 0 0 0 0.12 -0.13 0.55 1.5

Example 3: 32 partially confounded factorial design with parameters v = 9, b = 6, r =
2, k = 3. Here the two main effects F1 and F2 have 2 d.f. each, and the two-factor interaction
F1F2 has 4 d.f. The treatment combinations vector is given by,

T ′ = (00 01 02 10 11 12 20 21 22) .

The 4 d.f. F1F2 interaction has two components: the 2 d.f. F1F2 component and the 2
d.f. F1F

2
2 component. The design of Table 11 below is obtained by confounding the 2

d.f. F1F2 component in one replication and the 2 d.f. F1F
2
2 component in the other replica-

tion.
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Table 11

2 d.f. F1F2 confounded 2 d.f. F1F
2
2 confounded

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6
00 10 02 00 21 01
12 01 20 11 10 12
21 22 11 22 02 20

The four contrasts corresponding to the two main effects that are completely unconfounded
in the design are given by,

U =


u′

1ℓ

u′
1q

u′
2ℓ

u′
2q

 =


−1 −1 −1 0 0 0 +1 +1 +1
+1 +1 +1 −2 −2 −2 +1 +1 +1
−1 0 +1 −1 0 +1 −1 0 +1
+1 −2 +1 +1 −2 +1 +1 −2 +1

 ,

where ℓ and q respectively denote the linear and quadratic components. Taking C ′ =
(0.50 0 −0.20 −0.19) and c0 = 1.6 yields a design with constant block-sum of 3c0 = 4.8.
The treatment levels vector t∗′

u , arranged in the order of treatment combinations in T is given
by,

t∗′
u = (1.09 0.90 0.71 2.19 2.00 1.81 2.09 1.90 1.71) .

Five more solutions for this example are listed in Table 12.

Table 12: Further solutions for Example 3

t∗′
u c1 c2 c3 c4 c0

1 1.09 1.50 0.71 1.59 2.00 1.21 2.09 2.50 1.71 0.50 0.00 -0.19 -0.20 1.6
2 1.12 1.62 1.52 1.30 1.80 1.70 1.48 1.98 1.88 0.18 0.00 0.20 -0.10 1.6
3 0.30 0.80 0.70 1.30 1.80 1.70 2.30 2.80 2.70 1.00 0.00 0.20 -0.10 1.6
4 0.47 2.92 0.87 0.65 3.10 1.05 0.83 3.28 1.23 0.18 0.00 0.20 -0.75 1.6
5 2.17 0.12 2.57 2.35 0.30 2.75 2.53 0.48 2.93 0.18 0.00 0.20 0.75 1.8

The constant block-sum designs of this paper are derived by searching for a treat-
ment levels vector t∗

u through trial and error. Also, in practice treatment levels would be
determined by subject matter specialists based on their study objectives. Therefore, a syst-
matic method of finding t∗

u with treatment levels in line with the study objectives is highly
important from a practical point of view and deserves further research.
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