
Statistics and Applications {ISSN 2454-7395 (online)}
Volume 21, No. 1, 2023 (New Series), pp 63–79

Discrete Harris Extended Weibull Distribution and
Applications

Sophia P. Thomas1, Lishamol Tomy2 and K. K. Jose 3
1Department of Statistics, St.Thomas College, Pala, Kerala, India

2Department of Statistics, Deva Matha College, Kuravilangad, Kerala, India
3School of Mathematics, Statistics and Data Analytics
Mahatma Gandhi University, Kottayam, Kerala, India

Received: 03 October 2021; Revised: 24 December 2021; Accepted: 19 March 2022

Abstract

In this paper, we introduce a new family called Discrete Harris Extended (DHE) family
of distributions and study its properties. It is shown that the new family is a generalization
of discrete Marshall-Olkin family of distributions. In particular, we study the discrete version
of Harris Extended Weibull distribution in detail. We give some selected special distributions
from DHE family. We derive some basic distributional properties such as probability gener-
ating function, moments, hazard rate and quantiles of the DHEW distribution. Estimation
of the parameters is done using maximum likelihood method and a simulation study is con-
ducted to verify the performance. By using the method of maximum likelihood estimation we
obtain the estimates of the proposed model parameters with respect to two discrete data sets.

Key words: Discrete Harris Extended Weibull distribution; Infinite divisibility; Marshall-
Olkin family of distributions; Maximum likelihood.
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1. Introduction

In the literature, there are several methods to obtain a discrete distribution from a
continuous distribution: the discretization method based on the survival function (Naka-
gawa and Osaki, 1975), the discretization method based on an infinite series (Good, 1953;
Kulasekera and Tonkyn, 1992; Kemp, 1997), the discretization method based on the hazard
function (Stein, 1984), the compound two-phase method (Chakraborty, 2015), the discretiza-
tion method based on reverse hazard function (Ghosh et al., 2013), among many others.

The traditional discrete distributions (geometric, Poisson, etc.) have limited appli-
cability as models for reliability, failure times, counts, etc. This has led to the develop-
ment of new discrete distributions based on popular continuous models for reliability, failure
times, etc. Of these, the most popular is the discrete Weibull distribution which was in-
troduced by Nakagawa and Osaki (1975) and studied by Stein and Dattero (1984), and
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Khan et al.(1989). Gómez-Déniz (2010) developed a new generalization of the geometric
distribution using Marshall-Olkin scheme. Discrete modified Weibull distribution proposed
by Nooghabi et al. (2011) is the discrete analogue of the modified Weibull distribution in
Lai et al. (2003). Nekoukhou and Bidram (2015) proposed exponentiated discrete Weibull
distribution as a discrete analog of the exponentiated Weibull distribution of Mudholkar and
Srivastava (1993). Sandhya and Prasanth (2012, 2013) have considered generalisations of
geometric and discrete uniform distributions invoking the approach of Marshal and Olkin
(1997), while Sandhya and Prasanth (2016) has developed another generalisation of the dis-
crete uniform distribution by adding two parameters to it, generalizing the Marshal-Olkin
scheme itself. Recently, Jayakumar and Sankaran (2018) have introduced a new discrete
family of distributions using truncated discrete Mittag-Leffler distribution and studied its
properties.

In this paper, we identify some members of the DHE family of distributions using
the discretization method of Nakagawa and Osaki (1975). Our work mainly focuses on
the DHEW distribution. This distribution is generated by discretizing the Harris extended
Weibull (HEW) distribution of Batsidis and Lemonte (2014) with survival function (sf)

Ḡ(x) =
(

λe−k(ηx)β

1 − λ̄e−k(ηx)β

)1/k

(1)

The HEW probabiity density function (pdf) is given by

g(x) = λ1/kβηβ(x)β−1e−(ηx)β

[1 − λ̄e−k(ηx)β ]1+ 1
k

; x > 0, (λ, η, k, β) > 0, λ̄ = 1 − λ. (2)

Here, λ > 0, k > 0, and β > 0 are shape parameters, η > 0 is the scale parameter.

The HEW distribution has many applications specially in quality control and reliability;
see Jose et al. (2018). This distribution is a suitable competitor for gamma and Weibull
distributions. But, sometimes, it is impossible or inconvenient to measure the life length
of a device on a continuous scale. In practice, we come across situations where lifetimes
are recorded on a discrete scale. For example, on/off switching devices, bulb of photocopier
machine, to and fro motion of spring devices, etc., are some obvious such situations. In the
last two decades, standard discrete distributions like geometric and negative binomial have
been employed to model lifetime data. However, there is a need to find more flexible discrete
distributions to fit various types of data.

The rest of the paper is organized as follows. Discretization of continuous family
of distributions is discussed in Section 2. In Section 3, we introduce the DHE family of
distributions and study its properties. In Section 4, it is shown that the DHE family of
distributions is a rich class and identify some members of this family. Section 5 is devoted
to the study of various properties of the DHEW distribution. In Section 6, we discuss the
method of maximum likelihood estimation of parameters of the distribution and a simulation
study is conducted to verify the performance. Two real data sets are analyzed to illustrate
the suitability of the proposed model and the results are presented in Section 7. Concluding
remarks are given in the last section.



2023] DHEW DISTRIBUTION AND APPLICATIONS 65

2. Discretization of continuous family of distributions

The general approach of discretizing a continuous variable is to introduce the greatest
integer function of X namely, [X] (the greatest integer less than or equal to X till it reaches
the integer), in order to introduce grouping on a time axis.

Let the continuous failure time X has the sf, Q̄(x) = P (X > x) and Y = [X]; be the
discrete random variable obtained by grouping the continuous failure time into unit intervals,
then by Roy (2003) the probability mass function (pmf) of Y can be written as

P (Y = y) = P (y ≤ X < y + 1) = P (X > y) − P (X > y + 1)
= Q̄x(y) − Q̄x(y + 1), y = 0, 1, 2, ... (3)

where Q̄x(y) = P (X > y).

Using (3) many researchers have developed discrete distributions corresponding to ex-
isting continuous distributions. For more details refer Nakagawa and Osaki (1975), Kr-
ishna and Pundir (2009), Chakraborty and Chakravarty (2012), Seethalekshmi et al. (2016),
Gillariose et al. (2021).

3. Discrete Harris extended family of distributions

Let F (x) be the baseline cumulative distribution function (cdf) of a random variable
X and let F (x) be the survival function (sf) of a distribution. Then the Harris family has
the survival probabilities

Q̄(x) =
 λF̄ (x)k

1 − λ̄F̄ (x)k

1/k

(4)

Now the probability mass function (pmf) of the new family is

pY (x) = Q̄(x) − Q̄(x + 1)

= λ1/k

 F̄ (x)
[1 − λ̄F̄ (x)k]1/k

− F̄ (x + 1)
[1 − λ̄F̄ (x + 1)k]1/k

 , x = 0, 1, 2, ... (5)

where, λ, k > 0, λ̄ = 1 − λ. We denote this family of distribution by DHE(λ, k) family.
Note that , when k = 1, the distribution with pmf (5) reduces to discrete Marshall-Olkin
distribution discussed in Supanekar and Shirke (2015). Let R(x) be the hazard rate function
(hrf) of DHE family of the discrete random variable X, then

R(x) = pY (x)
Q̄(x)

= 1 − F̄ (x)[1 − λ̄F̄ (x + 1)k]1/k

F̄ (x)[1 − λ̄F̄ (x + 1)k]1/k
(6)
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3.1. Probability generating function, moments and quantiles

The probability generating function (pgf) of (5) is given by

PY (s) = 1 + λ1/k(s − 1)
∞∑

x=1
sx−1 F̄ (x)[

1 − λ̄F̄ (x)k
]1/k

(7)

Mean and Variance of the random variable X is given by

E(X) = λ1/k
∞∑

x=1

F̄ (x)[
1 − λ̄F̄ (x)k

]1/k
(8)

V (X) = λ1/k
∞∑

x=1
(2x − 1) F̄ (x)[

1 − λ̄F̄ (x)k
]1/k

−

λ1/k
∞∑

x=1

F̄ (x)[
1 − λ̄F̄ (x)k

]1/k


2

(9)

Quantiles qm and Median of DHE family are

qm =
[
F −1

(
1 − (1 − m)

(
λ + λ̄(1 − m)k

)−1/k
)

− 1
]

(10)

Median is given by
Median =

[
F −1

(
1 −

(
2kλ + λ̄

)−1/k
)

− 1
]

(11)

where[.] denote the integer part.

4. Some members of DHE family of distributions

In this section, we give some selected special distributions from DHE family. The
selected models are DHE exponential, DHE Uniform, DHE Fréchet, DHE Burr type XII,
DHE Lomax and DHE Lindley.

4.1. DHE exponential(DHEE) distribution

Consider the sf of exponential distribution with parameter θ is given by F̄ (x) = e−θx.
Let p = e−θ, 0 < p < 1. Then the probability mass function (pmf), survival function (sf),
hazard rate function (hrf) of the DHEE distribution using equation (5) are respectively given
by

px = λ1/kpx[
1 − λ̄pkx

]1/k
− λ1/kpx+1[

1 − λ̄px+1
]1/k

, x = 0, 1, 2, ...

Q̄(x) = λ1/kpx

[1 − λ̄pkx]1/k

R(x) = 1 − [1 − λ̄pkx]1/k

[1 − λ̄pk(x+1)]1/k
p

For k = 1, the distribution reduces to generalized geometric distribution obtained by dis-
cretizing the generalized exponential distribution of Marshall-Olkin (1997).
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4.2. DHE Uniform (DHEU) distribution

Let X ∼ U(0, a) follows Uniform distribution with parameter a. Then the sf of X
is given by F̄ (x) = 1 − x

a
. Then the pmf, sf, hrf of the DHEU distribution using (5) are

respectively given by

px = λ1/k(a − x)[
ak − λ̄(a − x)k

]1/k
− λ1/k(a − x − 1)[

ak − λ̄(a − x − 1)k
]1/k

, x = 1, 2, ..., a

Q̄(x) = λ1/k(a − x)[
ak − λ̄(a − x)k

]1/k

R(x) = 1 −
(a − x − 1)

[
ak − λ̄(a − x)k

]1/k

(a − x)
[
ak − λ̄(a − x − 1)k

]1/k

This distribution is obtained and studied by Prasanth and Sandhya (2016).

4.3. DHE Fréchet (DHEF) distribution

Consider the survival function of Fréchet distribution with parameter α and β is given
by F̄ (x) = 1 − e−( α

x
)β . Let p = e−αβ , 0 < p < 1. Then the pmf, sf, hrf of the DHEF

distribution using equation (5) are respectively given by

px = λ1/k(1 − p−( 1
x

)β )[
1 − λ̄1 − p−( 1

x
)β
]1/k

− λ1/k(1 − p−( 1
x+1 )β )[

1 − λ̄(1 − p−( 1
x+1 )β )

]1/k
, x = 0, 1, 2, ...

Q̄(x) = λ1/k(1 − p−( 1
x

)β )[
1 − λ̄1 − p−( 1

x
)β
]1/k

, x = 0, 1, 2, ...

R(x) = 1 −
(1 − p−( 1

x+1 )β )
[
1 − λ̄(1 − p−( 1

x
)β )
]1/k

(1 − p−( 1
x

)β )
[
1 − λ̄(1 − p−( 1

x+1 )β )
]1/k

4.4. DHE Burr type XII(DHEBXII) and Lomax (DHELX) distributions

Consider the survival function of Burr type III distribution with parameter c and b is
given by F̄ (x) = (1 + xc)−b. Let p = e−b, 0 < p < 1. Then the pmf, sf, hrf of the DHEBXII
distribution using equation (5) are respectively given by

px = λ1/kplog(1+xc)[
1 − λ̄pklog(1+xc)

]1/k
− λ1/kplog(1+(x+1)c)[

1 − λ̄pklog(1+(x+1)c)
]1/k

, x = 0, 1, 2, ...

Q̄(x) = λ1/kplog(1+xc)[
1 − λ̄pklog(1+xc)

]1/k
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Figure 1: pmf of discrete HE family of distributions
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R(x) =
plog(1+(x+1)c)

[
1 − λ̄pklog(1+xc)

]1/k

plog(1+xc)
[
1 − λ̄pklog(1+(x+1)c)

]1/k

When c = 1, the DHEBXII distribution becomes DHELX distribution.

4.5. DHE Lindley (DHEL) distribution

Consider the survival function of Lindley distribution with parameter θ is given by
F̄ (x) = 1+θ+θx

1+θ
e−θx. Then the pmf, sf, hrf of the DHEL distribution using equation (5) are

respectively given by

px = λ1/k(1 + θ + θx)e−θx

[(1 + θ)k − λ̄(1 + θ + θx)ke−kθx]1/k

− λ1/k(1 + θ + θ(x + 1))e−θ(x+1)

[(1 + θ)k − λ̄(1 + θ + θ(x + 1))ke−θk(x+1)]1/k
, x = 0, 1, 2, ...

where, (λ, k, θ) > 0

Q̄(x) = λ1/k(1 + θ + θx)e−θx

[(1 + θ)k − λ̄(1 + θ + θx)ke−kθx]1/k

R(x) = 1 − [(1 + θ)k − λ̄(1 + θ + θx)kekθx]1/k[1 + θ + θ(x + 1)]
[(1 + θ)k − λ̄(1 + θ + θ(x + 1))ke−kθ(x+1)]1/k[1 + θ + θx]

e−θ (12)

We can obtain discrete half-logistic, discrete half-normal and discrete Rayleigh distri-
bution as members of new family of distributions, defined in (5), by substituting respective
distribution function. In the next section, we study discrete HEW distribution in detail.
Figure 1 displays possible shapes of the selected discrete Harris extended models.

5. Discrete Harris extended Weibull(DHEW) distribution

The sf of Weibull distribution with scale parameter η and shape parameter β is given
by

F̄ (x) = e−(ηx)β ; x > 0, η > 0, β > 0

Let e−ηβ = p; 0 < p < 1. Hence the sf of the resulting discrete distribution is given by

Q̄(x) = λ1/kpxβ

[1 − λ̄pkxβ ]1/k
; x = 0, 1, 2, ... (13)

px = λ1/kpxβ[
1 − λ̄pkxβ

]1/k
− λ1/kp(x+1)β[

1 − λ̄p(x+1)β
]1/k

, x = 0, 1, 2, ...

We call the random variable X, with sf (13), as DHEW distribution with parameters
λ > 0,k > 0,0 < p < 1, β > 0 and denote it by DHEW (λ, k, p, β). Many properties of the
continuous HEW distribution also hold for DHEW (λ, k, p, β). Figure 2 displays possible
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Figure 2: pmf of DHEW distribution for various values of parameters
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shapes of the pmf of the DHEW distribution. The pmf can be increasing, decreasing and
upside-down bathtub shaped. The hazard rate is given by

R(x) = 1 − p(x+1)β [1 − λ̄pkxβ ]1/k

pxβ [1 − λ̄pk(x+1)β ]1/k
(14)

Figure 3 displays possible shapes of the hrf of DHEW distribution for selected values
of the parameters λ,k > 0,p and β > 0 respectively. Obviously, from figure it is clear that
the hrf can be increasing, decreasing, bathtub and upside-down bathtub shaped.

5.1. Special sub-models

Some discrete distributions that are special cases of DHEW distribution are:

(1) When k = 1, we obtain

px = λ[pxβ − p(x+1)β ]
[λ + (1 − λ)(1 − pxβ )][λ + (1 − λ)(1 − p(x+1)β )]

which is considered as the discrete version of Marshall-Olkin Weibull distribution.

(2) When λ = 1,k = 1, we obtain discrete Weibull distribution of Nakagawa and Os-
aki(1975).In addition β = 1 geometric distribution is achieved.

(3) If β = 2, then the pmf reduce to

P (X = x) = px = λ1/kpx2[
1 − λ̄pkx2

]1/k
− λ1/kp(x+1)2[

1 − λ̄p(x+1)2
]1/k

, x = 0, 1, 2, ...

which defines discrete version of Harris Extended Rayleigh distribution.

(4) If β = 2 and λ = 1,

px = λ[px2 − p(x+1)2 ]
[λ + (1 − λ)(1 − px2)][λ + (1 − λ)(1 − p(x+1)2)]

which is the discrete version of Marshall-Olkin Rayleigh distribution. Moreover with
k = 1, we get discrete Rayleigh distribution of Roy (2014).

5.2. Probability generating function, quantiles, mean and variance

The pgf of DHEW(λ, k, p, β) is given by

PX(s) = 1 + λ1/k(s − 1)
∞∑

x=1
sx−1 pxβ[

1 − λ̄pkxβ
]1/k
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Figure 3: hrf of DHEW distribution for various values parameters
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The mth quantile of DHEW distribution is denoted by qm and is given by

qm =
{

log p log[λ̄ + λ(1 − m)−k]
k

}1/β

− 1

In particular, the Median is

Median =
[

log p log(λ̄ + 2kλ)
k

]1/β

− 1

The expression for mean and variance of DHEW(λ, k, p, β) is given by

E(X) = λ1/k
∞∑

x=1

pxβ[
1 − λ̄pkxβ

]1/k
(15)

and

V (X) = λ1/k
∞∑

x=1
(2x − 1) pxβ[

1 − λ̄pkxβ
]1/k

−

λ1/k
∞∑

x=1

pxβ[
1 − λ̄pkxβ

]1/k


2

(16)

The mean and variance of a DHEW(λ, k, p, β) distribution for different values of pa-
rameters are calculated numerically in Table 1 using the expression (15) and (16). From the
Table 1, we can see that depending on the values of parameters, the mean of the distribution
can be equal, smaller or greater than the variance. Hence DHEW models are appropriate
for modelling both over and under dispersed data.

5.3. Infinite divisibility

According to Steutel and van Harn (2004, pp. 56) if px, x ∈ N0 is infinitely divisible,
then px < e−1 for all x ∈ N . However, e.g., in a DHEW(0.25, 0.15, 0.9, 2) distribution, we see
that p1 = 0.4493 > e−1 = 0.367. Therefore, in general, DHEW(λ, k, p, β) distribution is not
infinitely divisible. In addition, since the class of self decomposable and stable distributions,
in their discrete concept, are subclass of infinitely divisible distributions, we can conclude
that DHEW distribution can be neither self decomposable nor stable, in general.

6. Estimation

To apply the method of maximum likelihood for estimating λ, k, p and β assume that
X1, X2, ..., Xn is a random sample of size n from DHEW distribution. The log-likelihood
function is

L = n

k
logλ +

n∑
i=1

log

 pxβ
i

[1 − λ̄pkxβ
i ]

1/k
− p(xi+1)β

[1 − λ̄pk(xi+1)β ]1/k

 (17)

Hence, the likelihood equations are,

∂L

∂λ
= n

kλ
+

n∑
i=1

[Vλ,k,β(xi) − Vλ,k,β(xi + 1)]
kmλ,k,β(xi)

(18)
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Table 1: The mean(standard deviation) of DHEW for different parameters

p −→ 0.25 0.5 0.75
β ↓

k = 0.5 0.50 1.2787(1.2759) 2.555(5.3605) 11.3245(31.4465)
λ = 0.5 0.75 1.16958(0.5932) 1.70562(1.6561) 3.9703(5.5288)

3.50 1.1111(0.3141) 1.2992(0.4580) 1.5951(0.5143)
k = 0.5 0.50 2.2751(3.0416) 7.0255(12.4002) 37.9023(72.2195)
λ = 1.5 0.75 1.36(1.2370) 3.2516(3.2333) 9.2204(10.542)

3.50 1.1644(0.48) 1.61491(0.4883) 1.8937(0.4887)
k = 1 0.50 1.4074(1.6471) 3.1233(6.8603) 14.6716(40.145)

λ = 0.5 0.75 1.2357(0.7304) 1.8981(2.0028) 4.6081(6.6489)
3.50 1.1428(0.3498) 1.3335(0.4762) 1.6196(0.5244)

k = 1 0.50 2.0718(2.6700) 6.1911(10.918) 33.0475(6.3592)
λ = 1.5 0.75 1.5943(1.1210) 3.0204(2.9410) 8.4713(9.5965)

3.50 1.333(0.4713) 1.6005(0.4909) 1.8749(0.4721)
k = 3 1.00 1.3808 (0.7000) 2.1324(1.4620) 4.3543(3.5536)

λ = 1.5 2.00 1.2899(0.4634) 1.6347(0.6195) 2.2640(0.8981)
3.50 1.2854(0.4515) 1.5613(0.4970) 1.8496(0.4648)

∂L

∂k
= −n

k2λ
+

n∑
i=1

λ̄[Wλ,k,β(xi + 1) − Wλ,k,β(xi)]
mλ,k,β(xi)

(19)

∂L

∂β
=

n∑
i=1

λ̄logp[Uλ,k,β(xi + 1) − Uλ,k,β(xi)]
mλ,k,β(xi)

(20)

∂L

∂p
=

n∑
i=1

λ̄[(xi + 1)βVλ,k,β(xi + 1) − (xi)βVλ,k,β(xi)]
mλ,k,β(xi)

(21)

where,

mλ,k,β(x) = pxβ

[1 − λ̄pkxβ ]1/k
− p(x+1)β

[1 − λ̄pk(x+1)β ]1/k

Vλ,k,β(x) = pxβ

(
1

1 − λ̄pkxβ

) 1
k

−1

pkxβ

Wλ,k,β(x) = pxβ

(
1

1 − λ̄pkxβ

) 1
β

log

(
1

1 − λ̄pkxβ

)
pkxβ

log(pxβ )

Uλ,k,β(x) = pxβ

(
1

1 − λ̄pkxβ

) 1
k

−1

pkxβ

xβlogx +
(

1
1 − λ̄pkxβ

) 1
k

pxβ

xβlogx

The solutions of likelihood equations (18)-(21) provide the maximum likelihood estima-
tors (MLEs) of θ = (λ, k, p, β)T , say θ̂ = (λ̂, k̂, p̂, β̂)T , which can be obtained by a numerical
method such as the four variable Newton -Raphson type procedure.
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6.1. Simulation study

Here we study the performance of the MLEs of the model parameters of DHEW dis-
tribution using Monte Carlo simulation for various sample sizes and for selected parameter
values. We have taken the parameter values as λ= 1,β= 0.5, k= 0.2and p= 0.8 and gener-
ated random samples of size n = 30, 50 and 60 respectively. The MLEs of λ,β k and p are
determined by maximizing the log-likelihood function using the nlm package of R software
based on each generated samples. This simulation is repeated 1000 times and the average
estimates of bias and MSE are computed and presented in Table 2. It can be seen that, as
the sample size increases, the bias tends to zero and MSE decreases.

Table 2: Simulation results related to the paramters of the DHEW distribution

Sample size Estimates Average bias MSE
0.6079 -0.3920 0.9131
0.2916 -0.2083 0.1060

30 0.1193 -0.0806 0.0238
0.4630 -0.3369 0.2700
0.9081 -0.0918 0.0917
0.4548 -0.0451 0.0228

50 0.1828 -0.0171 0.0048
0.7273 -0.0726 0.0582
0.9990 -0.0009 0.0009
0.5004 0.0005 0.0002

60 0.2021 0.0021 0. 0043
0.8002 0.0002 3.8699e-05

7. Application

In this section, we illustrate the flexibility of the proposed distribution using two real
data sets. Maximum likelihood estimation is used to obtain the parameter estimates of the
models(using R software). We compare the fit of the DHEW distribution with the following
discrete life time distributions.

(a) Exponentiated discrete Weibull (EDW) distribution (Nekoukhou and Bidram 2015)
having pmf

P (X = x) = (1 − p(x+1)α

)β − (1 − pxα)β; 0 < p < 1, α > 0, β > 0, x = 0, 1, 2, ...

(b) The pmf of the discrete Gamma (DG) distribution, which has been used first by Yang
(1994) and recently considered by Chakraborty and Chakravarty (2012), is given by

P (X = x) = γ(α, β(x + 1)) − γ(α, βx)
Γ(α) , α > 0, β > 0

where,γ(α, x) =
� x

0 tα−1e−tdt denotes the incomplete gamma function.
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Table 3: Aarset data

Time of failure 0 1 2 3 6 7 11 12 18 21 32 36 40 45 46
No. of failures 2 5 1 1 1 1 1 1 5 1 1 1 1 1 1
Time of failure 47 50 55 60 63 67 72 75 79 82 83 84 85 86
No. of failures 1 1 1 1 2 4 1 1 1 2 1 3 5 2

Table 4: Fitted estimates for Aarset data

Distribution MLEs AIC K-S
DHEW (λ̂, k̂, β̂, p̂) = (2.9, 0.30, 0.1248, 0.0403) 484.777 0.1739
EDW (α̂, β̂, p̂) = (13.0059, 0.2517, 0.2675) 509.864 0.2194
DW (β̂, p̂) = (1.0228, 0.9805) 487.2202 0.1867

(c) A generalization of discrete Rayleigh (GDR) distribution of Roy (2004) having pmf

P (X = x) = (1 − p(x+1)2
)γ − (1 − px2)γ; 0 < p < 1, α > 0, x = 0, 1, 2, ...

(d) Discrete Weibull(DW) distribution (Nakagawa and Osaki 1975) having pmf

P (X = x) = pxα − p(x+1)α

; 0 < p < 1, α > 0, x = 0, 1, 2, ...

The values of the K-S (Kolmogrov- Smirnov) statistic and AIC (Akaike Information
Criterion with correction) are calculated for the four distributions in order to verify which
distribution fits better to the data. The better distribution corresponds to smaller values of
-log L, K-S statistic and AIC as well as larger p-value. Here, AIC = −2LogL + 2k, where,
L is the likelihood function evaluated at the maximum likelihood estimates, k is the number
of parameters and n is the sample size.

7.1. Discrete Aarset data

Aarset (1987) data consist of the failure times (in weeks) of 50 devices put on a life
test. The TTT (Total Time on Test) plot for this data shows that the hazard rate has a
bathtub-shape. The data set is given in Table 3.

The MLE of parameters of the models and the measures AIC and K-S statistic are
given in Table 4. From Table4, we can see that AIC, K-S statistic are smallest for DHEW
with AIC=484.77 and K-S statistic value=0.1739. Hence DHEW model gives a better fit to
the data.

7.2. Discrete Karlis and Xekalaki data

In this section, the DHEW model will be examined for a real data set which is given by
Karlis and Xekalaki (2001) on the numbers of fires in Greece for the period from 1 July 1998
to 31 August of the same year. This data set consists of 123 observations and are presented
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Table 5: Numbers of fires in Greece

Numbers 0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 20 43
Frequency 16 13 14 9 11 13 8 4 9 6 3 4 6 4 1 1 1

Table 6: Fitted estimates for discrete Karlis and Xekalaki data

Distribution Estimated Parameters AIC K-S
DHEW (λ̂, k̂, β̂, p̂) = (8.5913, 0.9718, 0.6705, 0.4393) 693.5843 0.128
EDW (α̂, β̂, p̂) = (1.1573, 1.0511, 0.8449) 694.1897 0.1285
GDR (α̂, p̂) = (0.3934, 0.9924) 694.6178 0.1467
DG (α̂, β̂) = (0.7525, 0.1543) 749.7162 0.2683

in Table 5. Only fires in forest districts are considered. Bakouch et al. (2014) considered
these data to indicate the potentiality of discrete Lindley (DL) distribution in data modeling
and compared it with Poisson, geometric and discrete gamma (DG) distributions.

The MLEs of parameters of the models and the measures AIC and K-S statistic are
given in Table 6. The MLEs and K-S test statistic values of the DG distribution, given in
this table, are directly reported from Table 7 of Bakouch et al. (2014). From Table 6, we
can see that AIC, K-S statistic are smallest for DHEW with AIC=693.5843 and K-S statistic
value=0.128. Hence DHEW model gives a better fit to this data.

8. Conclusion

In this paper, we have introduced a new family of discrete Harris extended distributions.
This family is a generalization of discrete Marshall-Olkin family of distributions. We obtained
generalizations of discrete exponential, discrete uniform, discrete Weibull and many other
discrete distributions using this family. As an illustration, we have studied discrete Harris
extended Weibull distribution in detail. From the results presented here, it can be seen
that the generalized discrete Harris extended Weibull distribution introduced in this paper
appears to be more suitable for modeling many real data sets and is a better alternative to
some existing distributions.
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