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Abstract
Extreme value theory addresses the stochastic behavior of the extreme values in a

process. There are two important methods used in modeling extreme value analysis and they
are threshold selection and block maxima techniques. The threshold selection is important
in many aspects of statistical inference of extreme or rare events because they use data
more effectively than block maxima techniques. The inference derived from the threshold
method mainly depends on the selection of the optimum threshold and it can be determined
approximately using the parameter stability plot and mean residual life plot. Since the
extreme value theory considers only extreme values in the given set of data. So there is an
unresolved issue in determining the optimal threshold while using the peaks over threshold
technique. Further exceedances above a high threshold have been shown to asymptotically
follow the generalized Pareto distribution under the usual circumstances. In this paper, a
new development in threshold selection technique is discussed in detail for modeling extreme
values along with real-life applications.
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1. Introduction

Extreme Value Theory (EVT) is a specialized field of statistics that provides
methodologies and tools for the study and estimation of probabilities of events that have
not been previously observed or rare events. Because these extreme events are sparse,
extrapolation beyond the observed levels is required for estimation. EVT is designed
explicitly for such extrapolation and utilizes asymptotic analyses as the foundation of
extreme value models. This theory indicates that extreme value estimation is only related
to the tail of the probabilistic distribution. The objective of extreme value analysis is to
determine how likely it is that certain events will occur that are the least likely to have
previously been observed. The techniques and models have been developed to describe the
tails of the data and estimate the probabilities of extreme events.
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In the literature on extreme value theory, several researchers have applied these special
techniques in different real scenarios of the countries to come up with several estimates about
extreme events. EVT has two commonly used approaches block maxima and peaks over
threshold approaches. In block maxima (BM), the peak value of each block is considered
an extreme value, and block sizes are usually taken on year. But in some cases, the block
size may vary depending on the nature of the study areas. Such extreme values from block
maxima also known as annual or cluster maxima, these values can be modeled using the
generalized extreme value (GEV) distribution which came from the first theorem of EVT
that is Fisher Tippett Gendenko theorem (1928). The peaks over a threshold (PoT) method
is popular in the extreme value analysis because it prefixes the threshold for the whole
observations, the values above the threshold are considered as the extreme values of the
specific cases. The generalized Pareto (GP) distribution can be used to model the extreme
value sequence from the PoT method. This GP distribution originated from the second
theorem of EVT called the Pickands-Balkema-De Haan theorem (1975). However, some
other methods can also be available, r-largest order statistic with GEV and point process
(PP) with GP approaches.

So, according to Coles (2001), EVT can simulate the stochastic nature of processes
involving events of unusually high or low intensity. Pickands (1975) proposed a method for
making decisions about the upper tail of the distribution. It can be used to predict the
likelihood that future extremely large observations. And GP distribution can be introduced
to model extreme values. Smith (1989) proposed specific modifications based on the point-
process view of high-level exceedances via a clustering approach with ozone data analysis.
Davison and Smith (1990) talked about modeling the sizes and occurrences of exceedances
in order to analyze data extremes. Katz et al. (2002) explained the evolution of extremes,
which includes the development of a point process framework that incorporates block maxima
and PoT techniques. Sanders (2005) shows the modeling of extreme events is becoming of
increased importance to actuaries. Cooley (2011) investigated the definitions of return period
and return level given by Olsen et al (1998) the m-year return level was the level for which the
expected waiting time until the exceedances in m-years and Parey et al. (2007) was the m-
year return level as the level for which the expected number of events in an m-year period is
one can be considered under the nonstationary setting. Deidda (2010) introduced a multiple
threshold method (MTM) to infer the parametes by using excess over the threshold applying
againt the concepts of parameters threshold invariance, and also discussed the supremacy of
the MTM fit against the single threshod fit. Scarrot and Mac-Donald (2012) developed the
parameter stability plot, with an emphasis on estimating the shape and scale parameters
in order to determine an appropriate threshold. De Zea et al. (2012) employed the PoT
method to model the sample of excesses above a sufficiently high value of total cholesterol
level of patients. Bader et al. (2018) developed the automated sequential threshold via
ordered goodness of fit tests with adjustment for false discovery rate. Roux et al. (2020)
studied the trends in 50 years’ return levels of the ground snow loads using non-stationary
extreme value models for the French Alps with its building standards. Hesarkazzazi et
al. (2021) investigated the process of non-stationary annual maxima of river peak flow in
northwest England and a regression model for the location parameter of the generalized
logistic distribution (GLO) was also constructed. Tanprayoon et al. (2023) proposed a new
Gompertz-generalized extreme value distribution for extreme value analysis and return-level
estimation of the extreme rainfall.
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In some sectors of science and technology, the extreme values of significant variables
have special meanings and importance. The extreme value theory has recently been applied
in terrestrial and solar climatology. The sunspot number series, which was recorded from
1818 to 2022, is used to study extreme values of solar activity. The observations of daily
sunspot numbers have been collected from the database of Solar Influences Data Analysis
Center (SIDC) - the solar physics research department of the Royal Observatory of Belgium.
Sunspots are dark, planet-sized areas that appear on the surface of the sun. Sunspots are
magnetic regions on the sun with magnetic field strengths thousands of times greater than
the Earth’s magnetic field. Sunspots appear in active regions, usually in opposite magnetic
polarity pairs. Their number varies with the roughly 11-year solar cycle. Sunspot magnetic
fields are extremely strong, keeping heat away from these regions of the sun’s surface. The
active region is a temporary region with a strong and complex magnetic field in the sun.
They are often associated with sunspots and can be a source of eruptions like solar flares and
coronal mass ejections (CMEs). Solar flares are a burst of energy caused by the tangling,
crossing, or reorganization of magnetic field lines near sunspots. The variation in the number
of sunspots and solar activity are closely related. Because solar activity can have an impact
on Earth, scientists closely monitor it every day.

When sunspot counts are high, the sun is very active, and the peak in the sunspot
count is referred to as a solar maximum, whereas a period when fewer or no sunspots appear
is referred to as a solar minimum. Sunspots can cause geomagnetic storms in the Earth’s
magnetosphere. When sunspot numbers are at their peak during the solar maximum period,
the sun emits more radiation than usual. A solar flare emits a large amount of radiation into
the universe. Intense solar flares can interfere with radio waves, telecommunications, the
electric power grid, and satellite navigation by releasing radiation that interferes with these
systems. Therefore, due to the high number of sunspots in the sun’s photosphere, there is a
chance that solar flares and coronal mass ejections will appear. In this case, extreme value
analysis is essential to find out the extreme occurrences of the sunspot number during the
solar maximum period of this current solar cycle. The extreme values of previous events
of sunspots decide the behavior of the future event of the study. Acero et al. (2017) used
the block maxima method with the GEV distribution for modeling the maximum values of
the sunspot numbers at yearly, monthly, and daily scales for each solar cycle and the PoT
approach only for daily scales, which takes into account all sunspot numbers that exceed a
predefined upper threshold and can be modeled using the GP distribution. The return levels
were predicted for 10 (110 years), 50 (550 years), and 100 (1100 years) solar cycles. Elvidge
et al. (2018) used EVT to investigate the likelihood of extreme solar flares with both GOES
X-ray flux data and Kepler mission data.

In this paper, we are interested to develop a new threshold selection methodology
that is superior to the existing PoT method. The sunspot numbers data set is used for this
theory to estimate the return levels associated with the return periods, as well as to
calculate the probability of exceedances. It is therefore essential to study and model these
extremes to make accurate prognostications of return levels. As a result, new approaches
for predicting extreme occurrences can be developed and they can be modeled with GP
distribution in application to sunspot number series. This paper has been divided into five
sections. Following this introduction, Section 2 presents research materials and
methodologies, Section 3 performs preliminary data analysis, Section 4 describes the
interpretation of the results, and Section 5 shows a summary and conclusion.
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2. Methodology

In this section, we will discuss the procedures for both the traditional and proposed
threshold selection methodologies for segregating extreme values from a series of observations.
Those extreme values can be modeled with appropriate distribution to predict future events
by the return period concept for this case.

2.1. Peaks over threshold

The PoT method were created by Pickands (1975) and it concentrates on observations
that seem to go above a high threshold. The PoT with GP distribution can be used to avoid
the problem of data waste, which is a common problem with the block maxima method.
However, determining an appropriate threshold is an inherent problem specifically. If the
threshold has been too low, the tail will satisfy the less convergence criterion, causing a large
bias and an incorrect result. If the threshold is too high, however, very few values above the
threshold will result in high variance and imprecise results. Thus, selecting an appropriate
threshold necessitates balancing the bias and the variance.

The GP distribution has a continuous range of possible shapes, including special cases
of the exponential and Pareto distributions. We can use either of these to model a specific
set of exceedances. The two-parameter GP distribution with shape parameter ξ and scale
parameter σ has the following representation.

The cumulative distribution function of the two-parameter GP distribution with a
shape parameter ξ, the scale parameter σ is given by

F (x|σ, ξ) =

 1 − [1 + ξ(x
σ
)]−

1
ξ ; for ξ ̸= 0

1 − exp{−[ x
σ
]}; for ξ = 0

(1)

where, x > 0 when ξ > 0 and 0 ≤ x ≤ −σ/ξ when ξ ≤ 0. and corresponding probability
density function is

f(x|σ, ξ) =


1
σ
[1 + ξ(x

σ
)]−

ξ−1
ξ ; for ξ ̸= 0

1
σ

exp{−[ x
σ
]}; for ξ = 0

(2)

If ξ > 0, the above equation reduces to Pareto distribution, which is a heavy-tailed
distribution. If ξ = 0 it is reduced to the exponential distribution. If ξ < 0 it is simply to
obtain light-tailed distribution with finite endpoints such as short-tailed Pareto or uniform
distribution. The mean and variance of a distribution is given by

E(x|σ, ξ) = σ

1 + ξ
and

V (x|σ, ξ) = σ2

(1 + ξ)2(2ξ + 1) exists if ξ > −1, ξ > −1
2 respectively.

2.2. Reduced threshold - a new approach

The newly developed reduced threshold (RT) method divides the entire set of
observations into equal-sized non-overlapping periods and focuses on the extreme values in
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these periods. These extreme values are taken into account when determining the threshold
point. When compared to the traditional BM and PoT method, the extreme values above
this particular threshold point are considered special extreme values. There are ’m’
numbers of observations in each of the ’n’ periods. Therefore there is m × n number of
total observations.

Let us consider the blocks Bij for j = 1, 2, ..., k; i = 1, 2, ..., n, where i represent the
position of each block consisting of j is the number of independent and identically distributed
observations. The maximum values of every block are considered extreme values which are
represented as the following sequence,

Zi = {z1, z2, ..., zk}; for every i = 1, 2, ..., n

Let Zi be the sequence of iid random variables with CDF F (z) and let ξp denoted by
pth quantile of F , so that ξp = inf{z|F (z) ≥ p}. The pth quantile is defined as F (ξp) = p.
Let Qp = Z(i)⌊np⌋:n denote a sample pth quantile. Here ⌊np⌋ denotes the greater integer ≤ np.
The weighted average of the distribution’s median and quantiles Qp and Q1−p for p ∈ (0, 1/2)
is known as the ”Trimean estimator”, such that

τ̂ = α

2 Qp + (1 − α)Q1/2 + α

2 Q1−p (3)

The weights for the two quantiles are the same for Qp and Q1−p, and the weight
α ∈ [0, 1]. The Tukey’s Trimean estimator is obtained by taking α = 1

2 and p = 1
4 in the

above equation and it is a special case of the Trimean estimators. It can be defined as

τ̂T M = 1
4Q1/4 + 1

2Q1/2 + 1
4Q3/4 (4)

The threshohd u∗ can be obtained by τ̂T M and first quartile of the extreme value
sequence of iid’s.

u∗ = 1
2[τ̂T M + Q1/4] (5)

when the values exceed the threshold u then as the special extreme values denote Z∗
s for

s = 1, 2, ..., k.
Z∗

s = {z∗
1 , z∗

2 , ..., z∗
k}, forZ∗

s ≥ u, Z∗
s ̸= Zi. (6)

These special extreme values from the RT method can be modeled with generalized
Pareto distribution.

2.3. Tail dependence and declustering

In stationary sequences, extreme values can occur in clusters. The first step in making
inferences is to identify clusters in the data, which is accomplished through the declustering
process. Declustering could be effective at screening the dependent observation to a set of
threshold exceedances. The empirical rule can be used to define the cluster of exceedances,
and the maximum excess in each cluster can be determined. Runs and interval methods can
be used in such cases to separate the clusters and estimate the extremal index. The extremal
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index θ is a measure of the degree of local dependence in the extremes of a stationary process
it ranges from 0 to 1, that is θ ∈ [0, 1], where to imply some dependence. When θ the value
decreases there is evidence for greater dependence. In Runs declustering, a run length (the
minimum gap between clusters) ’r’ can be fixed to choose the cluster, and the extremes are
separated by fewer than ’r’-non extremes belonging to the same cluster. The choice of ’r’
is critical because too small a value causes the problem of independence being unrealistic
for nearby clusters, while too large a value causes the concatenation of clusters that could
reasonably be considered independent, potentially resulting in the loss of valuable data.

2.4. Return periods and return levels

The return levels and return periods, which are crucial for the prediction of extreme
events, can be discovered when the distribution is fitted. The return level predicts that the
event will occur at least once over the following ’t’ years. For the GP model, the return level
is given xq which defines the extreme level that exceeds at least once every ’q’ observations.
The return period of the GP model is

P (X > x|X > u) = [1 + ξ(x−u
σ

)]−
1
ξ

Let ξu = P (X > u) = r/n, where r is the number of upper order values exceeding the
threshold u, and n is the number of years of records then the return period can be simplified
as follows

P (X > x) =
[
1 + ξ(x−u

σ
)
]− 1

ξ

This implies that the data points exceed once in every ’m’ series of observations on average
can be determined as

ξu

[
1 + ξ(x−u

σ
)
]− 1

ξ = 1
m

Finally, the m-year return level for GPD is given by

xm =
{

u − σ
ξ
[(mξu)ξ − 1]; ξ ̸= 0

u − σ log[mξu]; ξ = 0 (7)

where xm is the return level associated with the return period q = 1/m.

The return level is the interesting final product of the extreme value analysis in the
prediction of tail probabilities. Therefore, when ’m’ should be large enough, the return level
xm exceeds the threshold ’u’.

3. Application

3.1. Data source

The daily sunspot numbers dataset spans 205 years which is more than two centuries,
beginning in January 1818 and ending in December 2022. The sunspot number daily of
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observations have been collected from the database of Solar Influences Data Analysis Center
(SIDC) - the solar physics research department of the Royal Observatory of Belgium. It
is publicly available on SIDC’s Sunspot Index and Long-term Solar Observations (SILSO)
website.

3.2. Data modeling and analysis

The excess over the threshold technique can be used to separate the extreme sunspot
number from the non-extremes by selecting the appropriate threshold. The two approaches
discussed above can be used to identify extreme sunspots, and the exceedances can be
modeled with an appropriate distribution, which can then be used to estimate the return
levels. The PoT approach takes into consideration only those sample sunspot number values
that are significantly larger than a predetermined threshold u. The scale parameter of the
distribution can be modified that is σ∗= σ − ξu against the threshold u which has been
shown in the modified scale parameter threshold stability plot in Figure 1. In this figure,

(a) Modified scale parameter (b) Shape parameter

Figure 1: Threshold stability plot

the dark black line represents the estimated parameter value and the shaded area describes
its confidence level for u = 190, the vertical line represents the threshold value, and the
horizontal line shows the estimated parameter value, the threshold stability plot can be
used to determine an appropriate threshold. The mean residual life (MRL) plot is another
alternative way of choosing an appropriate value of the threshold which is shown in Figure 2.
It plots an average value over a given threshold for a series of thresholds. A mean excess plot
with a downward-sloping line indicates thin-tailed behavior. The MRL plot shows the mean
number of excesses over the threshold u, in between a confidence interval (approx 95%). We
look for approximate linearity (from the lowest possible threshold) whilst keeping in between
the confidence bounds.

The RT is a new technique for determining an adaptive threshold u, particularly for
dependence sequences. In this series of sunspot numbers, the RT approach uses trimean τ̂T M
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and Q1/4 finds the threshold u∗ from the yearly maximum extreme value series, sometimes
also known as annual maxima. Since maximum values of sunspot numbers are grouped into
clusters, one should expect that there may be several consecutive days with the maximum
exceeding the threshold. To avoid short-term dependencies in the time series, these expected
clusters of exceedances would necessitate the use of a declustering procedure to identify
approximately independent clusters of extreme observations within the sample.

Figure 2: Mean residual life plot

The runs declustering process involves grouping exceedances into the same cluster if
their distance from one another is less than the predetermined run length r. The extremal
index for sunspot number from PoT threshold 190 is 0.01399, demonstrating the sequence’s
strong dependence. When 103 clusters are above the threshold and the appropriate run
length is r=69, the maximum values of each cluster are regarded as extreme values. The weak
dependence in the sequence is indicated by the associated extremal index, which is 0.8844
respectively. Figure 3 depicts the declustered sunspot numbers data using the runs method
of declustering. The horizontal line in the figure represents the u=190 line over the years, and
the values above the threshold are considered extreme values. These values are declustered
to form 103 clusters, from which the higher order values for this study are taken. The new
declustering series data can be modeled using the GP distribution. Maximum likelihood
estimation is used to estimate the parameters. The value of the parameter estimates with its
standard error for scale σ = 74.0544(11.7214) and shape ξ = 0.0215(0.1238). The variance-
covariance matrix of the parameters for the peaks over threshold associated with GP is given
as follows

CV =
[

137.3902 −1.12069
−1.12069 0.01534

]

The diagonals of the matrix are the variance for the fitted model. The 95% CI for
the parameters scale has (51.0811, 97.0279) and shape has (-0.22132, 0.2642) respectively.

Figure 4 depicts the declustered sunspot numbers data using the runs method of
declustering. The horizontal line in the figure represents the u∗=162 line over the years and
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Figure 3: Declustering series plot for PoT

highlighted values above the threshold are considered extreme values of each cluster. The
extremal index for RT is 0.01108 for the obtained threshold, demonstrating the severe
dependence in sequence. In this case, the appropriate run length is r=55, with 126 clusters
above the threshold, and the maximum values of each cluster are considered to be the
extreme values. The associated extremal index is 0.9023 which describes the weak
dependence in the sequence. The GP distribution can be used to model the new

Figure 4: Declustering series plot for RT

declustering series data. The parameters are estimated using the maximum likelihood
estimation. The value of the parameter estimates with its standard error for scale
σ = 62.70(9.3351) and shape ξ = 0.1427(0.1202) respectively. The variance-covariance
matrix of the parameters for the reduced threshold associated with GP is given by

CV =
[

90.0442 −0.81475
−0.81475 0.01367

]
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The diagonals of the matrix are the variance of the parameters for the fitted model. The
estimate ξ > 0 indicates that its domain of attraction is the Pareto (heavy-tailed)
distribution. The 95% CI for the parameters scale has (44.2846, 80.8806) and the shape
has (-0.09223, 0.38014) respectively.

4. Model diagnostics and return levels

In this section, we examine the results of two models: peaks over the threshold with
GP distribution and reduced threshold with GP distribution. The model is chosen using the
goodness of fit tests such as Anderson-Darling, Cramer-von Mises, and Kolmogorov-Smirnov,
and the results are shown in Table 1. The models are ranked based on their performance,
and return levels for various return periods are computed. Table 1 presents the goodness of
fit test statistic as well as the p-value for the models under consideration in this study. The
model with the least statistic is ranked with the lowest value in the range for each measure;
among these, the reduced threshold-GP distribution shows a reasonable fit for this dataset.

Table 1: Results of goodness of fit tests

Models A2
n (p-value) W 2

n (p-value) Dn (p-value)
PoT-GP 0.5664 (0.6800) 0.0603 (0.8133) 0.0587 (0.8695)
RT-GP 0.4961 (0.7504) 0.0392 (0.9381) 0.0469 (0.9444)

Table 2: Estimated return levels with 95% confidence interval

RP(yr) PoT-GP RT-GP
2023 139 (115, 163) 133 (117, 148)
2024 190 (176, 205) 175 (164, 186)
2025 221 (204, 237) 202 (188, 216)
2026 242 (223, 261) 222 (205, 239)

Table 2, above shows the estimated return level of the sunspot numbers for the
maximum period of the current 25th solar cycle, from 2023 to 2026. The solar maximum is
expected to occur between 2024 and 2026. According to a NASA report, scientists anticipate
a rise in solar activity leading up to the next maximum, which could occur in 2025. Usually,
the maximum period is unknown because no one can predict it precisely. No one knows
when the sun’s polarities change precisely; it cannot happen at a precise time, but it does
happen over an approximate period. We predicted the sunspot number for 2023 to 2026 as
well, because the exact maximum period has not been exactly predicted by scientists, if the
maximum period of the current cycle will extend to 2026, this prediction may be useful.
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Figure 5: Return Level Plot for PoT and RT

Figure 6: Profile likelihood plot for PoT and RT

The return level can be estimated by the delta method, for PoT is 242 with a 95%
confidence interval is (223, 262), for RT is 223 with a 95% confidence interval is (206, 240)
respectively. The return levels are graphically represented in Figure 5; it shows the
estimated values associated with its confidence interval. When the time increases the
estimated values of the sunspot numbers of the solar maximum period also increase with
its confidence limits. The return levels can also be obtained using the profile likelihood
method, we get the estimated value of the 4-year return level for the PoT method is 242
and its approximate 95% confidence interval is (223, 262), the estimated value of the 4-year
return level for RT method is 223 and its approximate 95% confidence interval is (211,
238). Figure 6 displays the profile likelihood for the 4-year return level. Because the profile
likelihood crosses both the blue vertical dashed and horizontal solid lines, the resulting
intervals are believable. We select the RT method because it provides a better fit for the
extreme values than the PoT method. The estimated return levels of sunspot numbers
based on the RT method are thus taken into account.
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5. Summary and conclusions

This study developed a new reduced threshold method for selecting a suitable
threshold, and the generalized Pareto distribution can be used to model the extreme
values. In the context of extreme value analysis, we applied the peaks over threshold and
reduced threshold techniques to the sunspot number series from 1818 to 2022 years to
establish the decision threshold. A generalized Pareto with shape and scale parameters can
be used to model exceedances above the threshold. The behavior of the extreme value
series is described by the estimated extreme value index. The shape parameter of the
aforementioned two methods are positive in this situation, indicating that the distribution
is heavily tailed according to the series. This study focuses on the maximum period of
sunspots in the solar cycle because there is a possibility of solar flares and CMEs occurring
during that period. The m-year return levels were estimated for the 25th solar cycle’s
maximum periods, such as 2023-2026. This prediction could be helping to determine the
next maximal event. We will discuss only the rare event rather than all occurrences
because it will be more useful to observe the tail behavior with less probability. In this
study, we explore how the peaks over threshold and the reduced threshold can be used to
estimate the model’s tail parameters. Among these, our suggested model has the narrowest
return level confidence interval. The goodness of fit test can be used in conjunction with
this study to evaluate the models and precision.
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