Special Proceedings: ISBN #: 978-81-950383-5-0
26th Annual Conference, 26-28 February 2024; pp 127

APPLICATIONS

Text Representation: A Journey from Traditional Vector
Space Model to LLM

Sharad Verma!, Pragati Bhatnagar? and Aditi Sharan?
L Department of Information Technology
Rajkiya Engineering College Ambedkar Nagar,224122
2 Jain Vishwabharti University, ladnun, Rajasthan
3SCESS, Jawaharlal Nehru University, New Delhi, 110067

Received: 01 July 2024; Revised: 15 July 2024; Accepted: 17 July 2024

Abstract

In the era of language processing and artificial intelligence, people are amazed by
the capabilities of ChatGPT. However, ChatGPT is not the end but the beginning of an
era where much more is yet to happen. The backbone of ChatGPT is generative Al or
large language models (LLMs). One of the most difficult challenges has been dealing with
the semantics or meaning of language. This is what LLMs have been able to achieve to a
certain extent: enabling computers to understand the semantics of text. However, LLMs are
not the effort or product of a single person or community. They are the result of ongoing
community efforts involving numerous scientists, researchers, and professionals who have
worked for decades across the globe in various interdisciplinary fields, including statistics,
computer science, and linguistics. Therefore, it is particularly important for the computer
science and statistics communities to systematically understand the evolution of language
models. This is the main objective of our paper. Our paper addresses the fundamental
issue of incorporating the semantics of natural language text into its representation, which
is the core of language models, including LLMs, and has revolutionized the field of natural
language processing (NLP).

Key words: Attention based neural network; BERT; Deep learning based language embed-
dings; Large Language model; LSTM.

1. Introduction

Since the start of the digital processing of natural language text, text representation
has been the most primitive requirement but, at the same time, the most complicated task.
Some of the parameters are well known in the context of the difficulty in text representation
viz: unstructured nature, ambiguity, how to represent meaning of text, high dimensionality,
etc. However, another major issue evolved with the use of machine learning techniques for
processing natural language text. As all the Machine learning algorithms work naturally

Corresponding Author: Dr. Aditi Sharan
Email: aditisharan@mail.jnu.ac.in

128 S. VERMA, P. BHATNAGAR AND A. SHARAN [SPL. PROC.

with the vector data, the vector representation of the text is the first step in dealing with
the text data. Not only is it the first step, but it also impacts the text mining process and
their outcomes from the machine learning algorithm, accuracy and the biases in the results.
Though natural language processing has been an important research area for more than a
decade, today, it has encroached on our day-to-day life, intentionally or unintentionally, in
the form of web searches, recommendation systems, chatbots, etc. People are amazed by the
potential of ChatGPT. However, along with the utility of ChatGPT in NLP, many issues
are emerging regarding the accuracy, reliability, authenticity, and biases of the results. To
be aware of these intricacies, one must know what is happening at the backend of ChatGPT
as a specific case. Another term associated with the emergence of ChatGPT that became
popular in the scientific and general community is Large Language Models(LLMs), more
popularly termed generative Al models. These models form the core essence of the working
of ChatGPT. Thus, it becomes important for the statistical and computer science commu-
nity to understand the notion of LLMs. The core of LLM’s efficiency is the efficient text
representation and text generation. Here, we will focus on text representation. In fact, text
generation can be considered as an outcome of text representation. The representation of
text in the form we see today is not a sudden discovery, but actually, it is a success story
of a long, tough but consistent effort of the NLP community, including computer scientists,
mathematicians, statisticians and a lot of contributions from linguists. The objective of this
paper is to present the evolution of transformer-based generative LLMs starting from one
of the earliest tf-idf based traditional vector space models. The paper provides a systematic
review of the important models focusing on the emergence of transformer-based models. It
will address the basic issue of incorporating semantics of a natural language text in the
representation itself, which is the core of deep learning algorithms, including LLMs and has
revolutionized the field of NLP. Additionally, we discuss the unresolved issues and challenges
in this field. We also present some of our efforts to address these challenges.

The paper is organized as follows: Section 2 introduces the traditional TF-IDF-based
Vector Space Model. Section 3 delves into the Distributional Hypothesis, laying the ground-
work for the subsequent discussion on machine learning techniques for text representation in
Section 4. Section 5 presents deep learning-based language modeling, and Section 6 concludes
the paper.

2. Traditional TF-IDF based Vector Space Model (VSM)

One of the earliest attempts to represent a text document by a vector emerged in
the form of the Classical Vector Space Model (VSM)Salton et al.| (1975). Though not very
efficient for representing the text, it is one of the simplest and computationally efficient
models. Also one should keep in mind that it presents one of the earliest attempts to
represent a text by a vector. The model is based on the bag of words (BOW) approach.
To understand the BOW-based VSM model, let us consider that we have a corpus of text
documents and the objective is to represent each text document by a vector. The initial
step involves preprocessing of the text, mainly involving stop word removal and stemming to
remove irrelevant /nonessential words. After preprocessing, the outcome results in a collection
of words that form the vocabulary of the text corpus. A text document matrix (TDM) can
then be constructed with M % N size, where rows represent documents, M being number
of documents and columns represent terms, N being the size of the vocabulary. Further,

2024] TEXT REPRESENTATION JOURNEY 129

each element w;; of TDM represents the weight of ji, term in 4y, document. Thus each row
of the matrix represents the vector corresponding to the document, the size of the vector
being the vocabulary size. Ideally, the weight should represent the importance of a term
in the document. But importance itself is a subjective term and may depend on the task
to be performed. However, some objective criteria is required. Various Now weights can
be assigned in different ways, however, tf-idf (term frequency-inverse document frequency)
based weighting emerged as the most popular technique for traditional VSM based model.

2.1. Weighting using TF-IDF (Term Frequency-Inverse Document Frequency)

The words in VSM need to be given weight so as to reflect their importance in the
document. Documents with higher weights are more important. The most obvious way of
giving weights can be related to the frequency of words in the document. The weight may
correspond to frequency count of words in the document. Table 2 represents the matrix using
term frequency count for the same example as presented for binary vector. The raw frequency
may not be a statistically stable value, so a normalized measure might be used.However, it
can easily be observed that frequency of the word, though important, may not be the only
measure for assigning the weight to a word. The simplest example to understand this is that
stopwords are most frequent but are least important. This leads to the notion of TF-IDF
based measure in VSM. It is a statistical measure that reflects how important a word is
to a document in a collection or corpus. TF-IDF consists of two main components: Term
frequency (TF) and Inverse document frequency (IDF). Term frequency (TF) measures the
number of times a term (word) is present in a document. Instead of raw value , the value
may be normalized. Inverse document frequency (IDF) measures how rare a term is across
the corpus. Some variants of IDF exist, as far as it is inversely proportional to the no. of
documents in which it is appearing, thus giving higher weightage to rare terms. One way of
calculating IDF is as follows: For each term ¢ in the corpus:

IDF(t) = log(N/(df (1)) (1)

where N: Total number of documents in the corpus. df(t): Number of documents in the
corpus that contain the term ¢.

TF is a local measure (calculated for each document), whereas IDF is a global measure
(calculated for the entire corpus). TF-IDF is then calculated as the product of TF and IDF.
The resulting value represents the importance of the term in the document and the corpus
as a whole. High TF-IDF values indicate that a term is important to a document and
the corpus, while low values indicate that the term is less important or common. Also
frequently stated as frequent and rare terms are more important. TF-IDF is often used for
text classification, information retrieval, and content-based recommendation systems. It is a
popular technique because it is simple, efficient, and effective in identifying important terms
in a document or corpus. The TF-IDF score can be calculated by the formula:

TF — IDF(t,d) = TF(t,d) IDF(t) (2)

where T'F(t, d) represents the frequency of term ¢ in document d.

Let us take an example of three Documents for a better understanding:-

130 S. VERMA, P. BHATNAGAR AND A. SHARAN

Table 1: Sentences from medical domain

Document Sentence

Document 1 Chemotherapy is used to treat cancer.
Document 2 Cancer cells can grow uncontrollably.
Document 3 Radiation therapy damages cancer cell

[SPL. PROC.

After some preprocessing (stopword removal and case conversion), the vocabulary of
the corpus in this case may be represented as [cancer, therapy, cells, chemotherapy, radiation,

grow, uncontrollably, damages]

Table 2] contains TF-IDF Scores of each term in the document.

Table 2: TF-IDF Scores

Term Document 1 Document 2 Document 3
cancer 0 0 0

therapy 0.4055 0 0.4055

cells 0 0.4055 0.4055
chemotherapy 1.0986 0 0

radiation 0 0 1.0986

grow 0 1.0986 0
uncontrollably 0 1.0986 0

damages 0 0 1.0986

It can be observed that medical domain terms present in the document are important.

Traditional VSM is a sort of one-hot encoding where each word has its own space and
index. One hot representation has a lot of limitations and problems. Some of the important

problems with one hot encoding are as follows :

» Viewing all the words as discrete units is not ideal.

o High dimensionality problem, since there can be hundreds of thousands of words in a
given language, representing and storing words as one-hots can be extremely expensive.

e Sparsity Problem.

o All sequencing information is lost.

o Lack of an inherent similarity notion. a simple way of measuring the similarity between
two vectors is using the cosine similarity. But since the one-hot vectors of any two
different words are necessarily orthogonal, taking the dot product of even two synonyms

would yield a similarity score of 0.

o Can not deal with contextual similarity between sentences.

The Distributional Hypothesis addresses some of these limitations by positing that
words with similar distributions in a large corpus are likely to have similar meanings. By

2024] TEXT REPRESENTATION JOURNEY 131

leveraging statistical patterns in language usage, the Distributional Hypothesis allows VSM
to capture semantic similarities more effectively across varied contexts and improve the
representation of word meanings beyond mere co-occurrence.

3. Distributional hypothesis

Now there has been much talk about incorporating semantics in text representation.
This tends to consider meaning of words and the notion of synonyms in the text represen-
tation. It brings into the picture the notion of dictionary, thesaurus, ontology, etc . All
these resources are beneficial for understanding the meaning of the text but fail to provide
a computational model for representing the meaning of the text. Thus came the idea of the
Distributional hypothesis, the same idea repeated in different ways by various researchers
Harris| (1954). A very old and popular idea in the Linguistic domain — You shall know a word
by the company it keeps |Firth| (1957). In particular in the modern NLP context — A word
is defined by its environment (the context words around it). But this is again based on the
sound foundation of linguists |Harris (1954): If A and B have almost identical environments
we say that they are synonyms. For a long time, computational linguists have been focusing
on the representation of the context of a word that can assist in incorporating the semantics
of the word in the representation itself. The base of this again lies in the hypothesis that
words with high similarity (such as synonyms) occur in the same context.

3.1. Representing words using co-occurrence statistics

In the previous section, we saw an example of representing text as a vector but in
many applications, we are interested in finding an appropriate representation of a word
as a vector. One of the most primitive ways is to consider each column of the TF-IDF
matrix as a word vector. Thus words can be represented as vectors in document dimension.
Here two word vectors are similar if they share common documents. This word vector
captures the information of words based on their presence in documents that are not very
meaningful. There are no word-to-word associations. Based on the distributional hypothesis
it was thought to represent word vectors in a way that might capture this association. One of
the earliest attempt is reflected in the form of mutual information-based association. Mutual
information (MI) is a measure of how often two events x and y occur, compared with what
we would expect if they were independent. The standard formula is

(3)

I(z,y) = log, Pla, y()

P(x)P(y)

Based on MI an important measure in NLP is Pointwize MI (PMI). PMI measures
the the chances of co-occurrence of two words PMI between two words (we we may call them
word w and context word ¢) w and ¢ can be given by

P(w,c)

PMI(w,c) = loggm

(4)

However, PMI value may range from positive to negative infinity. Negative informa-

132 S. VERMA, P. BHATNAGAR AND A. SHARAN [SPL. PROC.

tion may create misinformation in many cases. Thus a refined measure is called as Positive
PMI(PPMI)

P(w,c)
PPMI(w,c) mam(loggp(w) o 0) (5)

Let us try to understand its practical application. Let us consider some words and se-
lective context words. The words considered are computer, data, result, pie, and sugar. The
context words are cherry, strawberry, digital, and information. We can see the co-occurrence
of the context words in a large corpus of the order of say Wikipedia. For determining the
co-occurrence of context words, we need to fix the window size say 4, then observe the count
of context words in the neighborhood of all occurrences of a word considering 4 neighbors
on the left and 4 on the right. Assume that it results in the following matrix between word
and context.

Table 3: Co-occurence statistics

computer data result pie sugar count(w)

cherry 2 8 9 442 25 486
strawberry 0 0 1 60 19 80
digital 1670 1683 85 5 4 344

information 3325 3982 378 5 13 7703
count(context) 4997 5673 473 512 61 11716

The resultant PPMI comes out to be :

Table 4: PPMI scores

computer data result pie sugar count(w)

cherry 0 0 0 4.38 3.30
strawberry 0 0 0 4.10 5.51

digital 0.18 0.01 0 0 0
information 0.02 0.09 0.28 0 0

Now a word is represented as a vector in word dimension. This was a small example.
If all words in the vocabulary are included. We can have a n*n matrix where n is size of the
vocabulary. Thus each word is a vector in the dimension of vocabulary. One can make out
an interesting observation. One can find the cosine similarity between the words and you can
observe from the table that cherry and strawberry are more similar and similarly digital and
information. For other pairs, the similarity is zero. The obvious observation is that digital
and information share computer and data, while cherry and strawberry share pie and sugar.
Thus PPMI based captures the co-occurrence information in the word vector representation
that is quite meaningful. However, this matrix is again sparse as in the case of TF-IDF
based measure. Also, it does not involve any learning. With the advancement in machine
learning approaches for NLP, now machine learning is being used for text representation,

2024] TEXT REPRESENTATION JOURNEY 133

text processing, text mining, and finally text generation. In the next part, our focus is on
machine learning based vector representation of text, frequently called word embedding and
text embedding.

4. Machine Learning for text representation

The previous section presented Count based context vector creation. Count based
context representation does not involve any learning so has a limited usage in era of machine
learning , where everything can be learnt and thus can be predicted. Prediction based
Context word model can predict the co-occurrence probabilities , thus they can predict the
context words corresponding to a given word. While we are learning to predict context
words, the sole objective is not only context word prediction. In fact such a trained model
leads to the notion of representational learning, where the vectors representing the words
can be learnt through neural network based models.

4.1. Word2Vec

Word2Vec is a groundbreaking model introduced by Tomas Mikolov |Mikolov et al.
(2013ayb)) and his team at Google in 2013. It revolutionized the field of natural language
processing by enabling the creation of dense vector representations of words in a continuous
vector space. This model uses a shallow, two-layer neural network to process vast amounts
of text data and learn the relationships between words based on their context. There are
two main architectures used in Word2Vec: Continuous Bag of Words (CBOW) and Skip-
gram. CBOW predicts a target word from its surrounding context words, while Skip-gram
does the reverse, predicting the context words given a target word. These approaches allow
Word2Vec to capture semantic relationships between words effectively, such that words with
similar meanings are positioned close to each other in the vector space.

One of the most compelling features of Word2Vec is its ability to capture linear
relationships between words. For example, the model can understand analogies like “King”
is to “queen” as “man” is to “woman” by performing vector arithmetic: vector(“king”) -
vector(“man”) + vector(“woman”) & vector(“queen”). This ability stems from the model’s
training process, which uses a technique called negative sampling to efficiently differentiate
relevant context words from irrelevant ones. The learned vectors from Word2Vec have been
widely used in various applications, including machine translation, text classification, and
sentiment analysis, due to their effectiveness in encoding semantic meanings and relationships
in a computationally efficient manner.

4.2. GloVe

Global Vectors for Word Representation(GloVe) Pennington et al.| (2014) is a pow-
erful word embedding technique developed by researchers at Stanford University. Unlike
traditional methods that solely rely on local context (like Word2Vec), GloVe combines the
benefits of both global matrix factorization and local context window methods. It constructs
word vectors by aggregating global word-word co-occurrence statistics from a large corpus.
Specifically, it utilizes a co-occurrence matrix where the entries represent the frequency of
word pairs appearing together within a certain window. By factorizing this matrix, GloVe
generates dense vector representations where the semantic relationships between words are

134 S. VERMA, P. BHATNAGAR AND A. SHARAN [SPL. PROC.

captured. For instance, the difference between the vectors for “king” and “queen” is similar
to the difference between “man” and “woman”, reflecting meaningful linear substructures.
These pre-trained embeddings have been extensively used in various natural language pro-
cessing tasks due to their ability to capture both syntactic and semantic word relationships
effectively.

Since this method captures the global statistics in the corpus, it is named Global
Vectors (in short GloVe). These methods have a very good performance on various tasks
like word analogy, word-similarity, and named entity recognition.

5. Deep Learning based Language modeling

In addition to many problems associated with the computational processing of natural
language, another major issue is the temporal nature of language that is reflected in language
flow, continuity, etc. Thus a language is sometimes considered as a sequence that unfolds
in time. Most of the deep learning models perform the task of language modeling. At the
most primitive level, language modelling involves the prediction of the next word in the
sequence. How accurately the model predicts the word forms the base for the performance
of the language model. It seems a well-defined task, but it is too complicated, as the correct
prediction of words can only be done if the text is understood properly. However, there is no
model for the representation of meaning. This actually leads to modeling the distributional
hypothesis, the well-known hypothesis given by linguists. These models try to capture/learn
the context vectors of the words. Based on the context vector, the model tries to predict
the next word in sequence. But the question may come to mind: What would be so great
if we were able to predict the next word? The answer lies in the statement that correct
prediction is not possible without an understanding of the text(for which there is no explicit
mechanism). Thus, correct prediction involves some understanding of the text. In other
words, deep learning models are able to capture the semantics of text using the notion of
statistics and probabilities. With time, various deep learning models have evolved, but in
terms of architecture, we have three categories: Sequential model, encoder decoder-based
architecture, and transformer-based model.

5.1. Sequential Models: The Era of RNN and LSTM

The era of sequential models in artificial intelligence has been significantly shaped by
recurrent neural networks (RNNs) [Elman| (1990 and their refined variant, Long Short-Term
Memory networks (LSTMs). These models excel in processing sequential data, such as time
series, text, and speech, by maintaining an internal state that evolves as new inputs are
processed. RNNs were among the first neural architectures capable of capturing temporal
dependencies, making them pivotal in tasks like speech recognition, language modeling, and
machine translation. However, traditional RNNs are prone to the vanishing and exploding
gradient problems, hindering their ability to learn long-term dependencies effectively. The
introduction of LSTMs by Hochreiter and Schmidhuber in 1997 addressed these challenges
by incorporating memory cells and gating mechanisms that regulate information flow, al-
lowing them to remember information over long sequences and selectively forget irrelevant
details. This innovation marked a breakthrough in sequential modeling, enabling more ro-
bust learning and improved performance in tasks requiring nuanced understanding of context
and continuity over time. Despite their successes, both RNNs and LSTMs have limitations

2024] TEXT REPRESENTATION JOURNEY 135

in handling very long sequences due to computational constraints and struggles with captur-
ing hierarchical dependencies. As the field advances, newer architectures like transformers,
which rely on attention mechanisms, have emerged to address these shortcomings and push
the boundaries of sequential modeling in modern AI applications.

5.2. Limitation and constraints of LSTM

Long Short-Term Memory (LSTM) Hochreiter and Schmidhuber (1997)networks are
a type of recurrent neural network (RNN) specifically designed to overcome the limitations
of traditional RNNs, such as the vanishing gradient problem, by introducing a more sophis-
ticated memory architecture. The LSTM unit consists of a cell state C; and three gates that
regulate the flow of information: the input gate i;, the forget gate f;, and the output gate
0;. The equations governing these gates are as follows:

fe=oWilhe1, 2] + by)
iy = o(Wilhi—1,) + b;)
o = o(Wolhi—1, 4] + bs)
Cl = tanh(Welhi—1, 2] + be) (6)
Cy :ft*Ct—1+it*Cth
hy = o4 * tanh(Cy)

Here, x; represents the input at time step t, h; is the hidden state, W and b denote
the weights and biases for the respective gates, o is the sigmoid activation function, and
x indicates element-wise multiplication. The forget gate f; determines which information
from the previous cell state C;_; should be discarded, the input gate i; decides which new
information should be added to the cell state, and the output gate o, controls what part of the
cell state is output as the hidden state h;. The combination of these gates allows LSTMs to
maintain and update the cell state over long sequences, making them highly effective for tasks
that require learning from temporal patterns, such as natural language processing, speech
recognition, and time-series prediction. Long Short-term Memory (LSTM) networks, despite
their advancements in handling sequential data, have several limitations. Firstly, they require
substantial computational resources and time for training due to their complex architecture
and numerous parameters, which can be a bottleneck for large datasets. Additionally, LSTMs
can struggle with very long sequences, where even their memory cells might not effectively
capture dependencies over extremely long periods, potentially leading to gradient vanishing
or explosion issues. Moreover, fine-tuning LSTM models requires considerable expertise,
as the process involves balancing many hyperparameters, such as learning rates and the
number of layers. They also tend to overfit if not regularized properly. Lastly, LSTMs are
less interpretable compared to simpler models, making it challenging to understand and trust
their decision-making processes, which is crucial in applications where model transparency
is essential.

Vanishing and exploding gradients [Bengio et al. (1994) pose significant challenges in
training RNNs, particularly due to their deep sequential nature. In standard RNNs, the
vanishing gradient problem arises because gradients can diminish exponentially over time
steps, especially in long sequences, making it difficult for the model to learn dependencies

136 S. VERMA, P. BHATNAGAR AND A. SHARAN [SPL. PROC.

over distant time steps. Conversely, exploding gradients can occur due to unstable weight
updates, leading to numerical instability during training. Both problems can severely impact
the ability of neural networks to learn and generalize from data effectively. Addressing
these issues often involves careful initialization of parameters, using activation functions
that mitigate gradient saturation, and employing techniques like gradient clipping to stabilize
training dynamics.

While LSTM networks have been instrumental in addressing the vanishing gradient
problem in RNNs, they are not without their shortcomings. One notable limitation is their
computational complexity, which arises from the multiple gates and memory cells that need
to be managed per unit. This complexity can lead to slower training times and increased
memory requirements, making LSTMs less scalable for very large datasets or when deploying
models in resource-constrained environments. Additionally, LSTMs may struggle with cap-
turing fine-grained dependencies within sequences, as their gating mechanisms are designed
to capture long-term dependencies rather than focusing on specific, short-term relationships.

The emergence of attention mechanisms represents a significant advancement in ad-
dressing these shortcomings. Attention networks, such as the Transformer model, allow neu-
ral networks to dynamically focus on different parts of the input sequence. Unlike LSTMs,
attention mechanisms do not impose a fixed-length context window and can adaptively at-
tend to relevant parts of the input sequence. This flexibility enables attention networks to
capture both short-term and long-term dependencies more effectively without the computa-
tional overhead of managing complex gating mechanisms. Moreover, attention mechanisms
have shown superior performance in tasks like machine translation, where aligning and trans-
lating words or phrases across languages require capturing nuanced relationships within and
between sentences.

5.3. Attention

An attention network, often referred to simply as an attention mechanism is a com-
ponent of neural networks designed to dynamically focus on specific parts of the input data
when making predictions. Attention networks were developed to address some of the limita-
tions of LSTMs, particularly their difficulty in capturing long-range dependencies and their
inefficiency with very long sequences. The attention mechanism allows the model to weigh
the importance of different input elements, enabling it to handle long-range dependencies
and improve performance on tasks such as machine translation, image captioning, and more.

The primary idea of attention is to assign different weights to different parts of the
input sequence. When making a prediction, the model can then focus more on the relevant
parts and less on the irrelevant ones. This selective focus helps capture relationships and
dependencies that span long distances in the input data.

Several types of attention mechanisms are designed to address specific needs or im-
prove computational efficiency. Here’s an overview of the most commonly used attention
mechanisms:

Additive (Bahdanau) Attention: Bahdanau attentionBahdanau et al| (2014), also
known as additive attention, was introduced by Dzmitry Bahdanau and colleagues in their
2014 paper to improve the performance of sequence-to-sequence (seq2seq) models, particu-

2024] TEXT REPRESENTATION JOURNEY 137

larly for machine translation. The main goal of Bahdanau’s attention is to allow the model
to focus on different parts of the input sequence dynamically when generating each part of
the output sequence. It combines the decoder hidden state and the encoder hidden states
using a trainable weight matrix and a non-linear activation function (typically tanh).

eri = v’ tanh(Wys; + Wihy) (7)

where W, and W), are weight matrices, v is a weight vector, s; is the decoder hidden state
at time t, and h; is the encoder hidden state at time .

Pros: Flexible and can capture complex relationships between the encoder and de-
coder states.

Cons: Computationally expensive due to the non-linear transformation.

Multiplicative (Luong) Attention: Proposed by Luong et al.Luong et al. (2015)), this
mechanism computes attention scores using a dot product (multiplicative) approach, which
is computationally more efficient than additive attention.

et,i = Szhl (8)

Pros: More efficient than additive attention.

Cons: May not perform as well as additive attention when the dimensions of s; and
h; differ significantly.

Self Attention: Self-attention is a mechanism used in various neural network archi-
tectures, particularly in transformers Vaswani et al.| (2017)), to enable models to focus on
different parts of the input sequence when processing each token. This mechanism allows
the model to capture dependencies regardless of their distance in the sequence, making it
highly effective for tasks like language modeling and machine translation.

In self-attention, each token in the input sequence is transformed into three vectors:
Query (Q), Key (K), and Value (V), as shown in fig [I| These vectors are derived through
learned linear transformations. Assume we have an input sequence of length n, represented
by the matrix XeR™?, where d is the dimensionality of the input embeddings. The input
matrix X is multiplied by three weight matrices to produce the Query, Key, and Value
matrices as follows:

Q=XWe,
K=XWE, (9)
V=XxWwY

where W@, WK WVeR%®¥% are weight matrices, and dj, is the dimensionality of Query, Key,
and Value vectors.

The core of the self-attention mechanism involves computing a score for each pair of
tokens in the sequence to determine how much focus one token should have on another. This
is done using the Query and Key matrices. The score for each pair is calculated as the dot

138 S. VERMA, P. BHATNAGAR AND A. SHARAN [SPL. PROC.

Scaled Dot-Product Attention Multi-Head Attention

Lirear

Concat

!

I i
Scaled Dot-Product i
Attention

: E

" i "
Lirwar Linear Lirnesar

Figure 1: Scaled Dot Product and Multi-head Attention

product of their Query and Key vectors, scaled by the square root of dj, to stabilize gradients

as follows:
T

Attention(Q, K, V') = softmax(?/d_
k

It is also known as scaled dot-product attention. The result of the self-attention
mechanism is a new representation of the input sequence, where each token now includes
information from all other tokens, weighted by their relevance. This process can be repeated
in multiple layers to capture increasingly complex dependencies.

WV (10)

To allow the model to focus on different parts of the sequence simultaneously, the self-
attention mechanism is often extended to multi-head attention. This involves using multiple
sets of Query, Key, and Value weight matrices:

MultiHead(Q, K, V) = Concat(heady, heads..., heady,)W° (11)

Each head independently performs the self-attention operation, and the results are concate-
nated and linearly transformed using the weight matrix W°.

The Transformer architecture has revolutionized the field of natural language pro-
cessing by enabling more efficient and effective processing of sequential data, notable for its
innovative encoder-decoder structure. This architecture is designed to handle sequence-to-
sequence tasks such as translation, summarization, and question-answering with unparalleled
efficiency and performance. The encoder is composed of multiple identical layers, each with
two key sub-layers: multi-head self-attention mechanisms and position-wise feed-forward
networks. The self-attention mechanism allows the encoder to weigh the importance of
different words in a sentence relative to each other, capturing complex dependencies and

2024] TEXT REPRESENTATION JOURNEY 139

relationships. Each encoder layer also includes residual connections and layer normaliza-
tion, ensuring stability and improving gradient flow during training. The decoder mirrors
the encoder but includes an additional sub-layer for masked multi-head self-attention, which
ensures that predictions for a given word depend only on previous words in the sequence,
maintaining causality. The decoder also integrates multi-head attention over the encoder’s
output, allowing it to focus on relevant parts of the input sequence when generating each
word of the output. This dual structure of the Transformer, with its powerful self-attention
mechanisms and ability to process input and output sequences in parallel, represents a sig-
nificant advancement over traditional recurrent models, offering superior scalability and the
ability to capture long-range dependencies more effectively.

This architecture is highly scalable and can be parallelized, leading to faster training
times and improved performance on large datasets. The Transformer has become the foun-
dation for many state-of-the-art models, including BERT, GPT, and T5, driving significant
advancements in tasks such as machine translation, text generation, and sentiment analysis.

5.4. BERT

Bidirectional Encoder Representations from Transformers(BERT) embeddings |Devlin
et al.| (2018) have revolutionized natural language processing by providing deep, contextu-
alized representations of words. Unlike traditional embeddings that generate a fixed vector
for each word regardless of context, BERT dynamically produces word vectors based on the
entire sentence, capturing intricate details of the language. BERT’s pre-training involves
two key subtasks: the masked language model (MLM) and next sentence prediction (NSP).

In MLM, a portion of the input tokens is randomly masked, and the model is trained
to predict these masked tokens based on the surrounding context. For example, in the
sentence "The quick brown fox jumps over the lazy [MASK],” BERT attempts to predict the
masked word "dog” using the context provided by the rest of the sentence. This task forces
BERT to develop a bidirectional understanding of language, considering both the left and
right contexts of each word.

NSP is designed to train BERT to understand the relationship between sentences.
During pre-training, BERT receives pairs of sentences. Some pairs are actual consecutive
sentences from the corpus, while others are random pairs. The model learns to classify
whether the second sentence logically follows the first. For instance, given the sentence pair
The man went to the store. He bought a gallon of milk, BERT should identify this as a
logical sequence. Conversely, for the pair The man went to the store. Penguins are great
swimmers, BERT should recognize this as a random pairing.

By combining these two subtasks, BERT achieves a robust understanding of language
context and sentence relationships. MLM helps BERT learn to predict words based on
context, enhancing its ability to generate accurate word embeddings in various contexts.
NSP, on the other hand, improves BERT’s grasp of coherence and logical flow between
sentences, which is essential for tasks requiring sentence-level comprehension, such as text
summarization and question answering.

These pre-training tasks enable BERT to produce embeddings that are highly effective
for a wide range of natural language processing tasks, leading to state-of-the-art performance

140 S. VERMA, P. BHATNAGAR AND A. SHARAN [SPL. PROC.

in many benchmarks.

6. Applications of Text Mining

The advancements in text mining and deep learning have given rise to Transformer-
based models with numerous real-time applications. These applications are transforming
our daily lives and benefiting society. Transformer models, such as BERT and GPT, utilize
self-attention mechanisms to efficiently manage dependencies across long sequences, signif-
icantly enhancing performance in various NLP tasks. The encoder-decoder architecture in
transformers, seen in models like TH and BART, uses an encoder to process input sequences
and a decoder to generate outputs, enabling tasks like translation and summarization. This
architecture allows for parallel processing, significantly accelerating training and inference.

In translation tasks, these models go beyond sequential translation, encoding based
on the semantics of the source language text and the context of both source and target
languages. This approach allows for the creation of multilingual translation models using
the same architecture with ample examples of translations. Additionally, Transformer models
have numerous applications in the public health domain, including drug recommendation,
drug design, health chatbots, personalized health recommendations, and telemedicine.

7. Conclusion

This paper has traced the development of text representation methodologies from the
foundational Vector Space Model to advanced Attention-based architectures. Beginning with
the Vector Space Model, which utilized TF-IDF to numerically represent text, we observed
its limitations in capturing contextual semantics. The Distributional Hypothesis provided
a theoretical basis for more nuanced vector representations like Word2Vec, significantly en-
hancing our ability to capture word meanings based on context. RNNs marked a significant
advancement in processing sequential data but were constrained by issues like vanishing gra-
dients, which were effectively addressed by LSTM networks. LSTMs improved the handling
of long-term dependencies, making them vital for various NLP tasks. The introduction of
the Attention mechanism and the subsequent Transformer architecture revolutionized text
representation by allowing models to selectively focus on different parts of the input, cap-
turing complex dependencies with unprecedented accuracy. This evolution highlights the
remarkable strides made in text representation, culminating in sophisticated models that
continue to push the boundaries of natural language processing.

References

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157-166.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidi-
rectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179-211.

2024] TEXT REPRESENTATION JOURNEY 141

Firth, J. (1957). A synopsis of linguistic theory, 1930-1955. Studies in Linguistic Analysis,
10-32.

Harris, Z. S. (1954). Distributional structure. Word, 10(2-3), 146-162.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9(8), 1735-1780.

Luong, M.-T., Pham, H., and Manning, C. D. (2015). Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G. S., and Dean, J. (2013b). Distributed
representations of words and phrases and their compositionality. Advances in Neural
Information Processing Systems, 26.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1532-1543.

Salton, G., Wong, A., and Yang, C.-S. (1975). A vector space model for automatic indexing.
Communications of the ACM, 18, 613-620.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information
Processing Systems, 30.

	Introduction
	Traditional TF-IDF based Vector Space Model (VSM)
	Weighting using TF-IDF (Term Frequency-Inverse Document Frequency)

	Distributional hypothesis
	Representing words using co-occurrence statistics

	Machine Learning for text representation
	Word2Vec
	GloVe

	Deep Learning based Language modeling
	Sequential Models: The Era of RNN and LSTM
	Limitation and constraints of LSTM
	Attention
	BERT

	Applications of Text Mining
	Conclusion

