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Abstract

This article obtains the exact expressions for the single and product moments of order statistics
from one parameter Lindley distribution when multiple outliers are present in the data. Using the
obtained moment relations, we compute the single and product moments (e.g. means, variances and
covariances) of various order statistics. Next, we explore the impact of the presence of pronounced
outliers on these variances and covariances, while the shape parameters have been shifted in value. We
also investigate the robustness issues of the sample L-moments.

Key words: Order statistics; Outliers; Single and product moments; Covariances; Sample L-moments.

AMS Subject Classification: 62G30; 62F10

1. Introduction

In the fields of engineering, medical and biological science, the statistical analysis of
lifetime data plays a significant role. In fact, the lifetime distributions are being used in different
forms of investigations from the issue of survival time of manufactured items in engineering
to the researches involving human diseases in biomedical sciences. In the literature, there are
several statistical distributions available for modelling lifetime data. Among these
distributions, the predominantly used one is exponential distribution (due to its closed form)
for its survival function. The Lindley distribution belongs to the exponential family distribution
and can be written as a mixture of exponential and gamma distributions. This distribution is
better than exponential failure time distribution, wherein hazard rate is not unimodal or bathtub
shaped [see Bakouch et al. (2012)]. The Lindley distribution, having an advantage over the
exponential distribution, is due to the fact that the former possesses the increasing hazard rate
and decreasing mean residual life time function (MRLF), whereas the latter one possesses
constant hazard rate and MRLF. Maybe, owing to this nice property, recently many authors
have paid their attention to Lindley distribution as a life time model in different perspectives
[see Kumar and Jose (2018)]. Ghitany et al. (2008) showed through waiting time data that
Lindley distribution provides a better model as compared to the well-known exponential
distribution. This distribution also provides a better fit to competing risks lifetime data in
contrast to exponential and Weibull distributions [see Mazuchelia and Achcarb (2011)]. A
discrete Lindley model was introduced by Gomoz-Deniz and Calderin-Ojeda (2011) with its
applications in collective risk modelling. Krishna and Kumar (2011) demonstrated that Lindley
distribution might fit better than exponential, lognormal and gamma distributions in some real
life problems under progressive Type-II censoring scheme. Mazucheli et al. (2019) introduced
a transformed form of Lindley distribution i.e. unit-Lindley distribution and demonstrated that
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unit-Lindley regression could offer a better fit as compared to beta regression model by using
the data of inadequate water supply and sewage in the cities of Brazil from the southeast and
northeast region.

The specific area moments of order statistics has been consistently being used in other
disciplines such as life testing, reliability theory, signal and image processing etc. In the early
70s, many researchers started working on studies of order statistics based on outlier model due
to the robustness issue. An outlier in a dataset is an observation that appears to be inconsistent
with the remaining observations [see Prasad et al. (2008)]. In any dataset, the presence of single
or multiple outlier(s) may leads to a flawed conclusion drawn from the experiment; thus it is
important to detect and handle the outlier(s) efficiently. In fact, the detection of multiple
outliers in comparison to detection of a single outlier is much more difficult [see Bhar et al.
(2013)].

Much of the work on order statistics in connection with robustness issue has been
focused when there is one outlier present in the sample (single outlier model), but nothing much
in case of multiple outliers model. Barnett and Lewis (1994) extensively discussed the topic of
development on the single outlier model. Arnold and Balakrishnan (1989) obtained the density

function of 7" order statistic as well as the joint density function of X gand X o (1<r<s<

n) when the sample of size is » and the sample contains an unknown single outlier.
Balakrishnan (1994a) obtained the recurrence relations for the single and product moments of
order statistics from right truncated exponential distribution under the multiple-outliers model.
Balakrishnan ((1994b), 2007) provided many results on order statistics from multiple-outliers
model and the robustness issues involved in those models. Sultan and Moshref (2014) obtained
the exact expressions of order statistics for the single and product moments of order statistics
from Weibull distribution under the multiple-outliers model (i.e. with slippage of
observations).

This article derives the exact expressions of order statistics for the single and product
moments of order statistics from Lindley distribution when multiple outliers are present in the
data. The rest of this article is organized as follows. In Section 2, we give the preliminaries
which will be used to derive the main result. In Section 3, we derive the exact expression of
the single and product moments of order statistics from Lindley distribution under the multiple-
outlier model. In Section 4, we obtain the L-moments of order statistics and also examine the
robustness of the sample L-moments in the presence of outliers through some numerical
illustrations. In Section 5, we establish some special cases. Finally, in Section 6, we sketch a
conclusion of the article.

2. Preliminaries

Under the multiple outliers model set up, we assume that x ,x,,...,x, are independent
variables with x x . x,_, are (n— p) independent random variables from one form of the

Lindley distribution with probability density function (pdf) f{x) given by

2

1+0)

f(x)= (I1+x)e™, x>0,0>0, (1)
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while x x .,x, are the p independent random variables (i.e. p outliers) from another

n—p+12>"n—p+2°°°

form of the Lindley distribution with pdf g(x) given by

2
T

(1+7)

g(x)= (I+x)e ™, x>0,7>0, (2)

where @, ¢ are the shape parameters of pdfs f(x) and g(x) respectively. We also suppose

that these parameters are linked with each other by a relationship 7 = %, he(0,1). It can be

shown that both the cumulative density functions (cdfs) are related with the corresponding pdfs
by the following relationships:

02
f(x) —m(Hx){l—F(x)} (3)
and
g(x)=—"——(1+x){1-G(x)}. (4)
I+7+m

Let x, <ux, <..<x, denote the order statistics obtained from a sample of n

observations. Then, the pdf of the 7" order statistic x. , under the multiple-outliers model is as
follows [see Childs (1996) and Sultan and Moshref (2014)]:

min(n—p-1,r-1)
fulpl)= 20 GAOOF@F G - FEy™ -Gy
s=max(0,r—p-1)

min(n—p,r-1)

+ Y GgF@{GH) ™ I-F) " {I-G(x)}""™  —o<x < oo
s=max(0,r—p)
)
where
_ (n—p)!p!
sl r=s=Dn—p-s-DI(p-r+s+1)’
and

_ (n=p)'p!
2ol r—s=Dn—p-s)i(p—r+s)!

Similarly, the joint density function of the " and s™ order statistics x_ andx _ (1< r<

s < n), under the multiple-outliers model is given by [see Childs (1994) and Sultan and Moshref
(2014)]:

s—r—1 min(n—p—j-2,r-1)

[Pl y)="% )Alf(x)f(y){F(x)}i G {FO) - Fo)Y

j=0 i=max(0,s—p—j-2

X {G(y) — G(.X') }S—’_l—f {1 _ F(y)}n—p—i—j—Z {1 _ G(y) }p—s+i+j+2

s—r—1 min(n—p—j-l,r—

S ”)AJ(x)g(y){F(x)}f{G(x)}’1"{F(y)—F<x)}’

j=0 i=max(0,s—p—;-1

x {G( y)—G(x) }H’l’f {1 —F( y)}n,p,,-,j,l {1 _G (y)}PferiJrjﬂ



130 MAHESH KUMAR PANDA [Vol. 18, No. 1

s—r—1 min(n—p—j—l,r—

) i r=1-i j
+ go ,-:maxm;-p- ,_I)Azg(x)f NFO GO {F(y) - F(x))
G =G - F)f T L= Gon

s—r—1 min(n—p—j,r-1

S j@g(x)g(y){F(x)}"{G<x)}’1"{F<y)—F<x)}’

j=0 i=max(0,s—p—j

<{GON -G L= FIT -G —eo<x <y <o (6)
where
4 = (n—p)!p!
L =1-iN N s—r=1-Dn-p—i—j - p-s+i+j+2)
4= (- p)!p!
2o -1-D M s—r=1- )n-p—-i—j-Dl(p-s+i+j+1)
(n—p)!p!
and

A, = )
} MNr—=1-D)jl(s—r-1=-)Hn-p—-i—-H(p-s+i+))!
3.  Moments of Order Statistics

In this section, we obtain the exact expressions for the single and product moments of
order statistics from Lindley distribution based on multiple-outliers model (based on p-outliers
observations).

3.1. Single moments

In this subsection, we derive the kth moment of the 7" order statistics uh) [p], 1<r<n
under the multiple-outliers model.

Relation 1: For 1<r<n, and k=0, 1, 2,.... the X" moment u®[p] is given by

min(n—p-1,r-1) s(8§Y=s-1(r—s—1\n-p-sti-1{ p — p—S +i-1
Wpl=0* Y Y| |2 . >
s=max(0,r—p-1) i=0\ I ) j=0 Jj =0 /

—r+s+j+1 —r+s+ 7+ ema(l+m+1 . Lpm
Xp > J (p : j = ( J(_l h '0' - —rts+j+1
q A+6)" 7 (147)" ™"

m=0 m q=0

I'k+qg+1)
[6’(n—p—s+i)+z'(p—r+s+j+1)

min(n—p,r-1) s (8=t (r—8—1\n-p=s+if n— p—S + 1 \p-r+s+j p—-r +5+ ]
s=max(0,7—p) =0\ ) j=0 Jj =0 / m=0 m
l+m+1 l +m+ 1 o [_m
X Z (_1)1+] 9 4 —r+s+j+1
= (1+0)n—p—s+z (1+T)P J

q
5 ['(k+g+1)
[9(n—p—s+i)+r(p—r+s+j+l)

X ]k+q+1

]k+q+1

(7

Proof: For 1<, <p, and k=0, 1, 2,... and by substituting equations (3) and (4) in equation
(5), we have
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(k) 2 min(n-_p=1.r-1) « xk (1 + .X) K r—s—1 _ n—p—s _ p-r+s+l
asllpl=0" 3 e[ AF @ G) T - Fof - Gl
e T (o G = oY (- Gy dx
s=max(0,r—p) 0 l+7+7x (8)

Using binomial theorem in equation (8) and subsequently expanding the same we get
" 2min(nil,rl) iril s\r—s—1 1
’u”n[ ]:C 9 ( 1)l+] . n—p—s+i —r+s+l+j
: s=max(0,r—p-1) i=0 j=0 J (1+0)y"""(A+o)"™ e
% J:O xk(l+X)(l + 0+ @C)n—p—s-ﬂ'—l(l_'_ T+ zx).U*VfYHJrje—[(n—p—s+i)€+(p—r+s-%—l+j)r]xdx

min (n—p,r-1) s r—s—1 s r—s— 1 1
te, 7 )™/ 4 4
2 Z z Z ( ) ] (1+9)n—p—s+l (1+T)p—r+s+1+]

s=max(0,r—p) i=0 ;=0

XI:X (1+x)(1+0+@C)nfp—ﬁi(l+z_+DC)P—F'*'S#]'ef[(nfp—er[)49+(pﬂ‘+s+l+j)r]xdx (9)

Again, using binomial theorem in equation (9) and further simplifying we get the result
in equation (7). O

The expression in equation (7) is used to calculate the mean and variance of the order
statistics whenn=6,p=0,1,2, =1 and 7 = %, h=0.1,0.2,0.3, 0.4, 0.5 and are presented

in Table 1 (Annexure). We can verify the results in Table 1 for the case p = 0, by using the
well-known identity [see Arnold and Balakrishnan (1989), p. 6]

(0+2)

Zﬂ,6—6E( )= 60(0 A

From Table 1, we see the following:

(1) The variance decreases as p increases.

(2) The variance is an increasing function of / for » =1 and it is a decreasing function of /
for =15, 6. For r =2, 3 and 4 the behaviour is not consistent.

(3) For small 7, the relative change in variance is more with the increase in the number of
outliers from p = 1 to p = 2 for different values of 4.

3.2. Product moments

In this subsection, we derive the (k, /)" moment of the /" and s™ order statistics 4" [p],

under the multiple-outliers model.

Relation 2. For 1<r<s<pn,and k, /=0, 1,2,.... the product moments ") [p] is given by

) 4s—r—l min (n—p—j-2,r-1) i r=1-i j s—r-l1
:Llrsn[ ]:Alg Z ZZZ Z

j=0 i=max(0,5-p—j-2) b=0d=0t=0 ¢=0 p=0  p,=0 P3=0 P4=0 1,=0

—j bt+j-t d+s—r—j—q-1 n—p—i—j+t=2 p—s+i+j+q+2 p;+p,+1
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Py+pytl I+l d i iYr—-1-i ] S—I"—l—j b+j—t
DD NG Vi
L=0 a=0 b d t q D

X(d+s—r—j—q—1j{n—p—i—j+l—2}(p—s+i+j+q+2j
P> Ps yn
X(pl + D, +1j(p3 + D, +1] S S (I+1,)!
I, l A+O)™" 7 A+7) 7 al
y I'tk+1, +a+1)
[O(n—s+j+D]" O +n-r+1)

k+l+a+1

2 2Sﬂ’—l min (n-p—j-1,r=1) § r-1-i j s—r=l-j b+j—t d+s—r—j—q-1 n—p—i—j+t-1 p—s+i+j+q+1
+24,0°77 2 2 DIDNDY 2
j=0 i=max(0,s—p—j-1) b=0 d=0 =0 0 p1=0 p4=0

Prpo+l pytpa+l I+l 1\r—
% Z Z Z( 1)b+d+t+q( ]

L=0  1,=0

q] S§—r— 1 Jj b+]—t
L
d+s—r—j—q-1\n—p—i—j+t-— —s+1+]+q+1
(s

. (pl +p, + 1}(}93 +p, + lj QPP g PP (I +1,)!
ll 12 (1 + 9)b+n—p—i (1 + T)d—r+p+i+l a!
y I'k+1, +a+1)
[6(n s+ j+ D] 0B +n—r+ 1))

PR —1 min(n—p—j,r-1) i r=1-i j s—r=l—jb+j—t d+s—r—j—q-1 n—p—i—j+t p—s+i+j+q p+p,+1
+ 4,70 Y )3 DIDIDINDIND)
j=0 i=max(0,s—p—j) b=0d=0t=0 ¢=0 p;=0 p,=0 73=0 p4=0 L=0

p3tpatl 1+ d i ) l"—l—i J S—l"—l—j b+j—t
DIEDY S Vi
L=0 a=0 b d t q P

(d+s—r—j—q—lj(n—p—i—j+tj(p—s+i+j+qj(pl +p, +1j
X
2 Ps Py l;

y Ds +p4 +1 €P1+P32.P2+P4 (l+12)l
12 (1 +0)b+n—p—i (1 +T)d—r+p+i+l a!
I'tk+1, +a+1) (10)

X [g(n —s+j+ 1)]l+ll+1 [H(b n—rat 1)]k+ll+a+1

Proof: For |<r<s<pn, andk, [=0,1,2,... and by using equations (3) and (4) in equation
(6), we have

(k) 4”‘“"“‘””’2"” e Xt (1+x)y' (1+y) i i B j
wal1=0 S Al a0 ey){ G FO) = F

x{G(») - G(x>}“‘f‘1‘~" L= FO)" "7 =GO} L = F(x) Jdxdy
O M N e R e e e
—Olmax(Ospjl) ox(1+0+&)(1+7+10)
<AG() = GO L= F™ T L= G L= F () jdxdy
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2 oS minimpojr ek (1+x)yl(1+J/) i rl-i _ j
MG IN I sy aw e GG AL IR LR

<{G() -G {L-FO)"T 1= GO 1 - G(x) Jdxdy

4 St minl ” e e M1+ x)y (14 ) i roli j
F)V{G F(y)-F
R T 3££(l+r+zx)(l+ zy){ FE@I T FO) =~ F ()
<{G(Y) -G I=F)" T 1I=GO) Y L= G(x) fdxdy. (11)

Using binomial theorem in equation (11) and subsequently expanding the same we get

k) 4s—r—1 min(n—p—j-2,r— i r=1=i j s—r=l—jb+j—t d+s—r—j—q-1 n—p—i—j+t-2 p—s+i+j+q+2 p+p,+l  py+p,+l
Hogn[P]1=0" 2 2 AZZZ 2
j=0 i=max(0,s—p—j-2) b=0d=0 t=0 ¢=0 p,=0 p,=0 p3=0 p4=0 L=0 5,=0

pypeaseea [ FImE S s ==Y ot d s —r—j-q-1
x(=1) b J . . ” ).

(n—p—i—j+t—2J(p—s+i+j+q+2j(pl+p2+1J[p3+p4+lj
X
P Py ll L

+ +
0!’1 P3 ,l-pz Pa

X b+n—p—i d—r+p+i+l
(1+6) (1 +7)
o k+l | I+l _~x{0(b+j—t+1)+r(d+s—r—1— J+q)} Y{O(n—p—i—jrt-lyte(p-s+i+j+q+2)}
XAy e dudy

s—r—1 min(n—p—;-1,r-1) i or=l-i

e D Y zi

Jj=0 i=max(0,s—p—j-1) t=0 ¢=0 p,=0 p,=0 =0 p4=0 L=0 5,=0

b=0 d=0
x(—l)b’“"”*{ j(r 1—1][} (s r—1- ]J(b+j_tj(d+s r—j—q- IJ
t P>
(n—p—i—]+t—lj(p s+z+]+q+lj(pl+p2+lJ(p3+p4+lJ
X
P 2

+ +
91’1 P3TP2 Ps

X b+n—p—i d—r+p+i+l
1+6) (1+7)
% .[o Joo xk+11 y1+12 e—x{a(b+ Jt+)r(d+s—r—1— j+q)}e—y{9(n—p—[— JHt=1)+r(p-s+itj+q2)} dx dy

s—r—=l—j b+j—t d+s—r—j—q-1 n—p—i—j+t—1p—s+i+j+q+1p+pr+1 p3+py+1

s—r—1 min(n—p—j-1,r-1) s—r —1—j b+j-td+s—r—j—q-1 n—p—i—j+t-1 p—s+i+j+q+l

4072y 5 Azi

j=0 i=max(0,s—p—j-1) b=0 d=0 =0 :O p2=0 p3=0 p4=0

s—r—1—-j\b+j—t
j( q J( P j
d+s—r—j—q—-1\n- p—l—]+l—1 p—s+i+j+qg+1
{7, J( A

p,+p, 1\ ps+p,+1 HP P P2tPs
X - N
l] lz (1+ 0)b+n*p*l (1 + T)d7r+p+z+l

I J‘ k+1; l+lze—x O(b+j—t)+r(d+s—r— j+q)} —){H(n—p z—j+t)+r(p—s+l+j+q+1)}dxdy

pi+pa+l p3+py +1

bdt
x +d+t+q

N
N2
7~ .
~ .

L=0 =0 b

45% —r—1 min(n—p-j,r-1) r=l=i j s—r=l-jb+j—t d+s—r—j—q-1 n—p—i—j+t p—s+itj+q p+p,+1 p3tp,+l

w0 ST 4SSy

j=0 i=max(0,s—p—j) b=0d=0 t=0 ¢=0 p,=0 =0 p3=0 p4=0 4=0 5L,=0
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x(—1)b+d+z+q(ij(r—1—1'](1)(8—r—l—jj(bﬂ'—tJ[dH—r—j—q—lJ
b d t q pl p2
("‘P‘i‘j+’j(P—S+i+j+qj(pl + ) +1](p3 + P4 +1J
X
p3 p4 Zl 12

9P| +p3 2-Pz +Dy

X - -
(1+0)b+nfpfl (1+z_)d7r+p+l+l

b+l I+l — i i _ o et
XJ'SOJ‘;OX +|y +2€ x{@(bJrj t)+7(d+s—r ]+q)}e y{@(n p—i—j+t)+z(p 9+z+/+q+l)}dxdy (12)

After simplifying equation (12) by evaluating the integrals using gamma function we
get the required relation in equation (10).

O
Next, we have evaluated the covariance using the product moments in equation (10)
withn=6, §=1 and 7 = % with p =0, 1, 2 and tabulated in Table 2 (Annexure). The results

in Table 1 can be verified for the case p = 0 by using the well-known identity [see Arnold and
Balakrishnan (1989), p.10]

5 6 6
Z z:ui,j:n = [2J[E(X)]2

i=l j=i+l

From Table 2, we see that the covariance increases as 4 increases while it decreases with
the increase in p values. For small » and s, the relative change in covariances is more with the
increase in number of outliers from p = 1 to p = 2 for all values of / and p.

4. Robustness of the L-Moments

In this section, we discuss the issue of robustness by estimating the bias and mean square
error (MSE) of sample L-moments of the population L-moments for the distribution in equation
(1) under various choices of 7.

According to Hosking (1990), the L-moments are basically linear functions of the data
and are more robust than the usual moments when outliers are present in the data. Also,
sometimes these estimators produce efficient parameter estimators as compare to maximum
likelihood estimates (MLEs).

Using the expression of the first four population L-moments 4, 4,,4, and A, [see

Hosking (1990), p. 107] for the distribution in equation (1) and using equation (7) we compute
the values of all the first population L-moments for p = 0, 1 and 2 which is given in Table 3
(Annexure).

The expressions of the first four sample L-moments [see Hosking (1990), p. 113] are as
follows:

L =n"'Yx, (13)

i
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I[J NCHRE IR (14)
2 i>j
;( J > ZkZ(xm—2x +Xx,.,), (15)
and 14 i(j zz Z Z(xtn_3x +3xkn xl:n)' (16)
i>j>k>l

Using equations (14), (15) and (16) and the population L-moments from the Table 3 we
have estimated the Bias and MSE of sample L-moments in Table 4, Table 5 and Table 6
(Annexure) for n = 10, 20 and 30 respectively. The random samples are simulated from Lindley
distribution for @ =1 using the LindleyR package in R software. The bias and MSE are
computed using R (based on 10,000 runs). The R code is not included but it is available upon
request from the author.

From Table 4, Table 5 and Table 6 we sce that

1) In general for most of the values of ‘p” and ‘A’ the MSE decreases as ‘n’ increases.
2) When p =0, [, has the smallest MSE among the three sample L-moments.

3) The values of bias and MSE gradually decrease with the increase in the order of the
values of ‘p” and ‘%’ i.e. the bias and MSE are having inverse relation with the order of
the sample L-moments. Again, the relative change in bias and MSE gradually decreases
with the increase in the order of the sample L-moment for different values of ‘p’

5.  Special Cases
By substituting p = 0 in equation (7), it reduces to

,u(k) H> . HHHM(—I)i o' r—=1\n—-r+i\l+1 C(k+q+1)
" RALRRA i [ q )[0(n—r+i+1)]H

(17)

where
n!

Cp=—"""" .
T (r=Dl(n-r)!

Again, replacing p = 0 in equation (10), we get

94 r=1 s—r—1 b+s—r—l-j n+j-s p;+1 p3+l 1+, 91’1*[73 r—1Ys—r—-1
(el _ bi
Hroea = 1+6)""" Cren 2, E:l plz::o p}{lo 112:30 h=0 azo( D (1+¢9)b( b ]( J J

(b+s—r—]—lj( +]—s)(p] +1][p3 +1j (I+1,)!

X - <7

Py P l; l al
I'k+1, +q+1)

" 1 (18)
[O(n—s+ j+ D] [0 +n—r+1)] 0

where
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B n!
e e D s —r— 1) (n—s)

The results in equations (17) and (18) are the single and product moment of order
statistics from one parameter Lindley distribution [see Sultan and AL-Thubyani (2016), p. 3
and p. 4] respectively.

6. Conclusion

In this article, we obtain the explicit form of single and product moments of order
statistics from one parameter Lindley distribution when multiple outliers are present in the data.
These moment relations are generalized form of the moments of order statistics of the Lindley
distribution obtained by Sultan and AL-Thubyani (2016) under the multiple-outliers model set

up.

The findings of the present study suggest that both the variances and covariances of order
statistics of Lindley distribution decreases with the increase in the number of outliers present
in the data. For small values of » (in case of single moment order statistics) and » and s (in case
of product moment order statistics) the relative change in variances and covariances is
comparatively more ie. the smaller order statistics are more sensitive to the presence of
outliers, as one would expect. While for higher values of r the variance is negatively correlated
with / (scaling factor); the covariance remains positively correlated with 4 for all » and s, <
s. We also find that the bias and MSE of higher sample L-moments gradually reduced. The
robustness feature of the sample L-moments is evident from the fact that the higher order
sample L-moments provide more protection against the presence of pronounced outliers as the
relative change in bias and MSE is reasonably less with the increase in number of outliers.
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ANNEXURE
Table 1: The means and variances in the presence of multiple outliers when n = 6
r|p Mean Var Mean Var Mean Var Mean Var Mean Var
1110 | 02997 | 0.0773
12 | 0.6292 | 0.1637
13 1.0116 | 0.2774
|4 1.4885 | 0.4568
B3 2.1597 | 0.8255
6 3.4110 | 2.1743
h=0.1 h=02 h=0.3 h=0.4 h=0.5
(L] 1 | 0.0851 | 0.0070 | 0.1448 | 0.0198 | 0.1871 | 0.0322 | 0.2179 | 0.0428 | 0.2409 | 0.0516
12 0.3740 | 0.0993 | 0.4132 | 0.0962 | 0.4549 | 0.1011 | 0.4930 | 0.1103 | 0.5260 | 0.1207
El 0.7605 | 0.2303 | 0.7781 | 0.2209 | 0.8066 | 0.2155 | 0.8402 | 0.2169 | 0.8744 | 0.2234
4] 1.2507 | 0.4228 | 1.2567 | 0.4158 | 1.2721 | 0.4055 | 1.2961 | 0.3984 | 1.3259 | 0.3973
Bl 1.9360 | 0.8025 | 1.9376 | 0.7992 | 1.9439 | 0.7900 | 1.9575| 0.7775 | 1.9789 | 0.7670
6 3.2025 | 2.1669 | 3.2027 | 2.1660 | 3.2043 | 2.1608 | 3.2093 | 2.1482 | 3.2202 | 2.1289
(112 ] 0.0492 | 0.0023 | 0.0949 | 0.0087 | 0.1355| 0.0173 | 0.1708 | 0.0270 | 0.2012 | 0.0367
12 0.1338 | 0.0096 | 0.2376 | 0.0286 | 0.3196 | 0.0491 | 0.3864 | 0.0688 | 0.4425 | 0.0873
El 0.4645 | 0.1431 | 0.5297 | 0.1320 | 0.6050 | 0.1363 | 0.6791 | 0.1507 | 0.7481 | 0.1699
4] 0.9590 | 0.3618 | 0.9848 | 0.3410 | 1.0322 | 0.3230 | 1.0932| 0.3178 | 1.1606 | 0.3254
Bl 1.6622 | 0.7626 | 1.6691 | 0.7500 | 1.6902 | 0.7249 | 1.7281 | 0.6990 | 1.7811 | 0.6832
6 2.9492 | 2.1505 | 2.9502 | 2.1465 | 2.9557 | 2.1296 | 2.9706 | 2.0958 | 2.9995 | 2.0508
* The results remain same for all values of h when p = 0.
Table 2: The covariances in the presence of multiple outliers when n =6
p=0 p=1 p=2
rls| B [ h=01|h=02]h=03|h=04|h=05]|h=01|hr=02 |h=03|h=04|h=05
1]2] 0.0575 | 0.0199 | 0.0278 | 0.0331 | 0.0377 | 0.0418 | 0.0035 | 0.0101 | 0.0172 | 0.0240 | 0.0303
1] 3] 02005 | 0.0564 | 0.0877 | 0.1091 | 0.1266 | 0.1420 | 0.0194 | 0.0386 | 0.0590 | 0.0800 | 0.1012
2131 0.1483 | 0.1006 | 0.1043 | 0.1074 | 0.1112 | 0.1162 | 0.0386 | 0.0540 | 0.0649 | 0.0756 | 0.0868
1141 08749 | 0.1941 | 0.3036 | 0.3741 | 0.4308 | 0.4835 | 0.0465 | 0.0941 | 0.1473 | 0.2062 | 0.2695
21 4] 0.6203 | 0.3654 | 0.3910 | 0.4159 | 0.4413 | 0.4685 | 0.1159 | 0.1887 | 0.2426 | 0.2916 | 0.3411
314103949 | 0.3102 | 0.3120 | 0.3136 | 0.3165 | 0.3224 | 0.1996 | 0.2111 | 0.2208 | 0.2327 | 0.2490
11 5] 47651 | 0.9196 | 1.4366 | 1.7330 | 1.9385 | 2.1201 | 0.1625 | 0.3160 | 0.4725 | 0.6448 | 0.8379
215]3.0990 | 1.6620 | 1.7596 | 1.8437 | 1.9184 | 1.9970 | 0.4198 | 0.6883 | 0.8702 | 1.0230 | 1.1769
315] 19092 | 1.3646 | 1.3849 | 1.4162 | 1.4560 | 1.5054 | 0.7706 | 0.8494 | 0.9366 | 1.0291 | 1.1322
415] 1.3947 | 1.1475| 1.1493 | 1.1524 | 1.1577 | 1.1687 | 0.8573 | 0.8675 | 0.8815 | 0.9011 | 0.9323
116] 34584 | 6.1630 | 9.6334 | 11.450 | 12.436 | 13.080 | 0.8723 | 1.6678 | 2.3711 | 3.0249 | 3.6854
21 6| 19979 | 10.217 | 10.755 | 11.149 | 11.381 | 11.536 | 22758 | 3.7227 | 4.5735 | 5.1174 | 5.5537
316] 11.168 | 75911 | 7.6829 | 7.8078 | 7.9318 | 8.0554 | 3.9772 | 4.3269 | 4.6847 | 5.0045 | 5.3116
41 6] 77404 | 6.0517 | 6.0717 | 6.1271 | 6.2207 | 6.3521 | 4.2195 | 4.3019 | 4.4670 | 4.6992 | 4.9895
506] 8.1472 | 6.9541 | 6.9568 | 6.9680 | 6.9931 | 7.0394 | 5.6128 | 5.6253 | 5.6636 | 5.7365 | 5-8549

* The results remain same for all values of h when p = 0.
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Table 3: First four Population L-Moments

/11 2’2 2’4
p=0 | h* 1.5000 | 0.6875 | 0.1921 | 0.0978
p=1 [ Ah=0.1 ]0.1090 | 0.7013 | 0.2133 | 0.0856
h=0.2 10.2333 ] 0.6591 | 0.2243 | 0.0862
h=0.3 ]0.3692] 0.6268 | 0.2240 | 0.0911
h=0.4 10.5142] 0.6056 | 0.2172 | 0.0951
h=0.5 |0.6666 | 0.5956 | 0.2078 | 0.0971
p=2 | h=0.1 0.0543 | 0.4180 | 0.0213
h=0.2 0.1152 | 0.3448 | 0.0716
h=0.3 0.1806 | 0.2852 | 0.1741
h=0.4 0.2489 | 0.2401 | 0.1027
h=20.5 0.3194 | 0.2084 | 0.1018

Table 4: Bias and MSE of sample L-moments/ , [, and /, for n =10

12 l% 14
p h Bias MSE Bias MSE Bias MSE
0 | A* ]0.0027 | 0.0528 | 0.0018 | 0.0252 | 0.0018 | 0.0187
1 | 0.1 [0.0099 | 0.0533 | 0.0135 | 0.0251 | 0.0069 | 0.0189
1 | 0.2 ]0.0242 | 0.0550 | 0.0219 | 0.0267 | 0.0086 | 0.0193
1 | 0.3 |0.0503 | 0.0566 | 0.0209 | 0.0254 | 0.0043 | 0.0186
1 | 0.4 |0.0652 | 0.0570 | 0.0197 | 0.0251 | 0.0025 | 0.0185
1 | 0.5 ]0.0738 | 0.0571 | 0.0101 | 0.0243 | 0.0001 | 0.0182
2 | 0.1 |0.6129 | 0.4279 | 0.1982 | 0.0637 | 0.0674 | 0.0228
2 | 0.2 |0.5510 | 0.3575 ] 0.1272 | 0.0412 | 0.0157 | 0.0190
2 | 0.3 |0.469 | 0.2725 | 0.0724 | 0.0299 | 0.0799 | 0.0248
2 | 04 |0.3982 | 0.2101 | 0.0349 | 0.0257 | 0.0081 | 0.0181
2 | 0.5 ]0.3288 | 0.1591 | 0.0068 | 0.0250 | 0.0035 | 0.0250

* The results remain same for all values of h when p = 0.
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Table 5: Bias and MSE of sample L-moments/,, /, and ], for n =20

12 13 14

p h Bias MSE Bias MSE Bias MSE

0 | A* |0.0015 | 0.0254 | 0.0012 | 0.0107 | 0.0013 | 0.0040
1 | 0.1 |0.0115| 0.6898 | 0.0171 | 0.1965 | 0.0098 | 0.0041
1 | 0.2 |0.0269 | 0.0266 | 0.0250 | 0.0115 | 0.0114 | 0.0042
1 | 03 | 0.0542 | 0.0282 | 0.0282 | 0.0113 | 0.0050 | 0.0041
1 | 04 | 0.0749 | 0.0309 | 0.0206 | 0.0114 | 0.0033 | 0.0041
1 | 0.5 | 0.0838 | 0.0325 | 0.0126 | 0.0109 | 0.0012 | 0.0040
2 | 0.1 |0.6329 | 0.4264 | 0.2164 | 0.0580 | 0.0702 | 0.0089
2 | 0.2 | 0.5646 | 0.3443 | 0.1414 | 0.0310 | 0.0212 | 0.0044
2 | 03 |0.4924 | 0.2679 | 0.0840 | 0.0178 | 0.0788 | 0.0101
2 | 04 |0.4191 | 0.2011 | 0.0408 | 0.0122 | 0.0054 | 0.0041
2 | 0.5 ]0.3494 | 0.1461 | 0.0107 | 0.0106 | 0.0028 | 0.0041

* The results remain same for all values of h when p = 0.

Table 6: Bias and MSE of sample L-moments/,, /, and /, for n =30

lZ

L

l,

h

Bias

MSE

Bias

MSE

Bias MSE

h*

0.0006

0.0167

0.0009

0.0067

0.0005 | 0.0040

0.1

0.0147

0.0168

0.0197

0.0071

0.0106 | 0.0041

0.2

0.0258

0.0171

0.0288

0.0076

0.0107 | 0.0042

0.3

0.0552

0.0193

0.0294

0.0078

0.0054 | 0.0041

0.4

0.0766

0.0223

0.0230

0.0074

0.0024 | 0.0040

0.5

0.0851

0.0238

0.0139

0.0069

0.0011 | 0.0039

0.1

0.6345

0.4192

0.2202

0.0553

0.0723 | 0.0091

0.2

0.5647

0.3356

0.1467

0.0283

0.0227 | 0.0045

0.3

0.4954

0.2621

0.0881

0.0144

0.0789 | 0.0101

2
2
2
2

0.4

0.4261

0.1981

0.0425

0.0088

0.0947 | 0.0130

2

0.5

0.3558

0.1432

0.0127

0.0070

0.0031 | 0.0041

* The results remain same for all values of h when p = 0.



