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Abstract
The objective of this study is to introduce a new family of probability density functions

using a given probability density function and analyze some of its important theoretical
properties involving quantiles and failure rate. As an offshoot of this new family of probability
density functions, a two-component mixture density that behaves differently at the tail-ends
viz., the two densities tend to be negligible to the left / right of two designated tail-end values,
respectively, is proposed. This is important as mixture probability distributions have been
extensively studied in the literature and their applications in real life are also well-known.
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1. Introduction

The subject of mixture distributions is important from theoretical as well as practical
points of view. Three major references that deal with this topic are Everittt and Hand (1981),
Titterington, Smith and Makov (1985), and McLachlan and Basford (1988). Theoretical
aspects are concerned with (i) obtaining parameter estimates within models and those of
mixing distributions, (ii) identification of the number of components in a finite mixture, (iii)
imputation of the missing indicators of component membership for mixture data, whereas
practical aspects deal with areas such as fisheries research, economics, medicine, biology,
psychology, palaeontology, geology, botany, agriculture, zoology, reliability and many other
fields.

Mathematically, mixture distributions are typically formalized as follows.
Consider a pair Y = (X,Z) of random variables with g(y) as its joint probability density
and suppose that

g(y) = g(x, z) = f(x|z)π(z)
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where f and π are, respectively, a conditional and marginal density. Then, in terms of this
factorization, the marginal density for X, p(x), is

p(x) =
∫
f(x|z)π(z)dz.

If the support of π is finite and concentrated on c1, c2, . . . , ck, say, then we get

p(x) =
k∑
i=1

πif(xi)

where
fi(x) = f(x|Z = ci)

and
πi = P (Z = ci)

for i = 1, 2, . . . , k.

In this case, X is said to have a finite mixture distribution, the fi are called the
component densities and the probabilities {πi} are called mixing weights.

In this paper, a new family of probability density functions using the given probability
density function has been proposed and some of its important theoretical properties involving
quantiles and failure rate have been analyzed. As an offshoot of this new family of probability
density functions, a two-component mixture density that behaves differently at the tail-ends
viz., the two densities tend to be negligible to the left / right of two designated tail-end
values, respectively, is proposed. The applications for this version of mixture model are
understood to arise in car industries.

The organization of this paper is as follows. Section 2 discusses new models and as-
sociated theoretical results. Section 3 contains simulation results, while Section 4 presents
conclusions.

2. General Model

This section presents a new class of probability density functions and the same is given
in Definition 1 below.

Definition 1: Let X be an absolutely continuous random variable having f(x) as its
probability density function and F (x) as its cumulative density function. Then for every pair
of real numbers s and t, s < t, we may define an induced random variable X∗(s, t) having
probability density function f ∗(x|(s, t)) given by

f ∗(x|(s, t)) =


λf(x) x < s
(λ+ δ)f(x) s ≤ x < t
δf(x) x ≥ t
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with p ∈ (0, 1), λ = (1− p)
D1

, δ = p

D1
, and D1 = (1− p)F (t) + p(1− F (s)).

The corresponding Cumulative Distribution Function (CDF) is given by

F ∗(x|(s, t)) =


λF (x) x < s

(λ+ δ)F (x)− δF (s) s ≤ x < t

λF (t)− δF (s) + δF (x) x ≥ t.

Remark 1: It may be noted that the probability density function f ∗(x|(s, t)) defined
above in Definition 1 is discontinuous at s and t where s, t, and p are assumed to be fixed.
However, further, it may be noted that the corresponding CDF F ∗(x|(s, t)) is continuous at
s and t.

Remark 2: It may be noted that {X∗(s, t), s < t} is a family of random variables
induced by the given absolutely continuous random variable X and it is such that it is
deflated in both the tails and inflated in the middle.

Remark 3: A special case of interest is when s and t, s < t, are chosen such that
F (s) = F (t), where F (t) is the survival function of the original absolutely continuous random
variable X which gives rise to a new random variable X∗(s, t). In this case, F (s) = F (t) = D1
and for any 0 < p < 1,

f ∗(x) =


(1−p)
F (s) f(x) x < s
1

F (s)f(x) s ≤ x < t
p

F (s)f(x) x ≥ t.

Further to this, we may also note the following:
(a) For p = 1,

f ∗(x) =
{ 0 x < s

f(x)
F (s) x ≥ s.

Note that f ∗(x) is a probability density function of a random variable X∗(s, .) which
is truncated to the left of s.
(b) For p = 0,

f ∗(x) =
{

f(x)
F (t) x < t

0 x ≥ t.

Note that f ∗(x) is a probability density function of a random variable X∗(., t) which
is truncated to the right of t.
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Remark 4: It is easy to verify for selected values of s, t that

λ ≤ 1⇔ p ≥ F (t)
F (t) + F (s)

and
δ ≤ 1⇔ p ≤ F (t)

F (t) + F (s) .

Here is an interesting result one that makes connection between percentile points of
the original probability density function f and those of the new probability density function
f ∗. We state it in the form of properties of f ∗ in relation to f.

Let F ∗(x∗q) = q and F (xq) = q, and ηq be such that F ∗(xq) = q + ηq where the sign of
ηq is positive (negative) when f ∗ is positively skewed (negatively skewed). Then
Property A: For x < s, x∗q = F−1

(
qD1

(1− p)

)
.

Property B: For s ≤ x < t, x∗q = F−1
(
q +D1ηq

)
.

Property C: For x ≥ t, x∗q = F−1
(
q + D1

p
ηq

)
.

We provide the proofs of these properties in the Appendix A.

A question regarding stochastic comparison between X∗ and X is in order. The fol-
lowing result is geared towards that. The concept of a random variable being stochastically
larger than another random variable and the concept of failure rate can be found in Barlow
and Proschan (1975).

Theorem 1: The random variable X∗ having f ∗ as its pdf is stochastically larger than
the random variable X with pdf f if and only if p ≥ F (t)

F (t)+F (s) .

Proof: Not to obscure the essential steps of reasoning, we will go through the following
Lemmas.

Lemma 1: For x < s, the random variable X∗ having f ∗ as its pdf is stochastically
larger than the random variable X with pdf f if and only if p ≥ F (t)

F (t)+F (s) .

Proof: For x < s,

F ∗(x) = λF (x) < F (x)⇔ λ = (1− p)
D1

≤ 1⇔ p ≥ F (t)
F (s) + F (t)

.

Lemma 2: For s ≤ x < t, the random variable X∗ having f ∗ as its pdf is stochastically
larger than the random variable X with pdf f if and only if p ≥ F (x)F (t)

F (x)F (s)+F (x)F (t) .

Proof: For s ≤ x < t,

F ∗(x) = (λ+ δ)F (x)− δF (s) < F (x)⇔ F (x)
D1
− F (x) < δF (s) as λ+ δ = 1

D1

⇔ (1−D1)
D1

F (x) < p

D1
F (s)⇔ p ≥ F (x)F (t)

F (x)F (s) + F (x)F (t)
.
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Lemma 3: For x > t, the random variable X∗ having f ∗ as its pdf is stochastically
larger than the random variable X with pdf f if and only if p ≥ F (t)

F (t)+F (s) .

Proof: For x > t,

F ∗(x) = λF (t) + δF (x)− δF (s) ≤ F (x)⇔ (1− p)
D1

F (t) + p

D1
F (x)− p

D1
F (s) ≤ F (x)

⇔ p ≥ F (t)F (x)
[F (t)F (x) + F (s)F (x)]

= F (t)
F (t) + F (s) .

Proof of Theorem 1: The property of F ∗ being stochastically larger than F implies
that simultaneously last inequalities involving p in the proofs of Lemma 1, Lemma 2, and
Lemma 3 have to necessarily hold good. This amounts to saying that

p ≥ max
{ F (t)
F (t) + F (s)

, sup
x∈[s,t)

F (x)F (t)
F (x)F (s) + F (x)F (t)

,
F (t)

F (t) + F (s)
}
.

We establish that this is equivalent to the condition stipulated in the statement of this
Theorem.

To this end, we make two claims and prove them.
Claim 1:

F (t)
F (t) + F (s)

≤ F (t)
F (t) + F (s)

⇔ F (t)(F (t) + F (s)) ≤ F (t)(F (s) + F (t))

⇔ F (t)F (t) + F (t)F (s) ≤ F (s)F (t) + F (t)F (t)

⇔ F (s) ≤ F (t) always holds as s < t.

Thus, Claim 1 proved.
Claim 2:

sup
x∈[s,t)

F (x)F (t)
F (x)F (s) + F (t)F (x)

≤ F (t)
F (t) + F (s) .

Consider
F (x)F (t)

F (x)F (s) + F (t)F (x)
≤ F (t)
F (t) + F (s)

⇔ F (x)F (t)F (t) + F (x)F (t)F (s) ≤ F (t)F (x)F (s) + F (t)F (t)F (x)

⇔ F (x)F (t) ≤ F (t)F (x)

⇔ F (x) ≤ F (t) which is valid for x ∈ [s, t).

Thus, Claim 2 is proved and the proof is complete.

The following Theorem attempts to make connection between the failure rate of f ∗ and
that of f .
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Theorem 2: The probability density function f ∗ corresponding to the random variable
X∗ has increasing (decreasing) failure rate η∗ over the set C iff for x ∈ C

max [(η(x)− d(ln η(x))
dx

), 0] < (>) min
[

δf(x)
[1− λF (t)− δF (x) + δF (s)] ,

δf(x)
[1− λF (x)]

]

where η(x) is the failure rate of the random variable X with f as its probability density
function and the set C is such that C ⊆ R+, and, further, for x ∈ C x 6= s, t.

Proof: The proof of this Theorem is rather long and a bit complicated. We provide
details of this proof in the Appendix B.

It is interesting to note that the family of probability distribution functions given in
Definition 1 results from the following tweaked version of a mixture of two probability distri-
bution functions having an appealing feature that this mixture density behaves differently at
the tail-ends viz., the two densities tend to be negligible to the left / right of two designated
tail-end values, respectively.

Definition 2: Let Xi be an absolutely continuous random variable with fi(x) as its
probability density function and Fi(x) as its cumulative density function for i = 1, 2. For
every p ∈ (0, 1) and every pair of real numbers s, t (s < t),

h2(u|(s, t)) =


(1−p)
D2

f1(u) u < s
1
D2

((1− p)f1(u) + pf2(u)) s ≤ u < t
p
D2
f2(u) u ≥ t

defines a probability density function of a random variable U(s, t), say, for fixed values of s
and t. Here D2 = (1− p)F1(t) + pF 2(s).

The corresponding Cumulative Distribution Function (CDF) is given by

H2(u|(s, t)) =


(1−p)
D2

F1(u) u < s
1
D2

((1− p)F1(u) + p(F2(u)− F2(s)) s ≤ u < t
1
D2

(1− p)F1(t) + p(F2(u)− F2(s)) u ≥ t.

Remark 5: It may be noted that Definition 2 reduces to Definition 1 if X1 and X2
are identically distributed random variables.

Remark 6: The applications for this version of mixture model are understood to arise
in car industries.

Conclusions: In this paper, a new family of probability density functions from a given
probability density function is generated, and the relationships of the former to the latter
in terms quantiles and failure rate are studied. This family of probability density function
results from the tweaked version of a mixture of two probability density functions.
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APPENDIX A

Proof of Property A: For x < s, F ∗(x) = λF (x).
Let x∗q be such that F ∗(x∗q) = q and xq be such that F (xq) = q.
Thus, we have, F ∗(x∗q) = λF (x∗q) = q.

This implies that F (x∗q) = q
λ

with λ = (1−p)
D1

and D1 = (1− p)F (t) + pF (s).

i.e. x∗q = F−1( q
λ
) = F−1

(
qD1

(1− p)

)
.

Proof of Property B: For s ≤ x < t,

F ∗(x) = λF (x) + δF (x)− δF (s)
= (λ+ δ)F (x)− δF (s)

= 1
D1

F (x)− δF (s).

With x∗q and xq as defined above, we have

F ∗(x∗q) = 1
D1

F (x∗q)− δF (s)

= q (1)

F ∗(xq) = 1
D
F (xq)− δF (s)

= 1
D1

q − δF (s)

= q + |ηq| (2)
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where |ηq| is such that (i) it will be positive if F ∗ is positively skewed and (ii) it will be
negative if F ∗ is negatively skewed. From (1) and (2) we have

|F ∗(x∗q)− F ∗(xq)| =
∣∣∣ 1
D1

F (x∗q)− δF (s)− 1
D1

F (xq)− δF (s)
∣∣∣

=
∣∣∣ 1
D1

F (x∗q)−
1
D1

F (xq)
∣∣∣

= |ηq|.

This implies that 1
D1
F (x∗q) − 1

D1
F (xq) = ηq i.e. 1

D1
F (x∗q) = 1

D1
F (xq) + ηq This, in turn,

implies that x∗q = F−1
(
q +D1ηq

)
.

Proof of Property C: For x ≥ t, F ∗(x) = λF (t)− δF (s) + δF (x). Thus, for x∗q and xq as
defined above, we have

F ∗(x∗q) = λF (t)− δF (s) + δF (x∗q)
= q (3)

F ∗(xq) = λF (t)− δF (s) + δF (xq)
= q + |ηq|. (4)

From (3) and (4) we have

|F ∗(x∗q)− F ∗(xq)| = |δF (x∗q)− δF (xq)|
= |δF (x∗q)− δq|
= |ηq|.

This yields x∗q = F−1
(
q + D1

p
ηq

)
.

APPENDIX B

From the expressions of f ∗(x) and F ∗(x), it follows that the corresponding failure rate η∗ is
given by

η∗(x) =



λF (x)η(x)
1− λF (x) x < s

(λ+ δ)F (x)η(x)
1− (λ+ δ)F (x) + δF (s) s ≤ x < t

δF (x)η(x)
1− λF (t)− δF (x) + δF (s) x ≥ t

where η(x) denotes the hazard rate of f(x), while η∗(x) denotes the hazard rate of f ∗(x).
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First, let x < s. Then η∗(x) is increasing in x if and only if its derivative dη∗(x)
dx

is greater
than 0. Note that

dη∗(x)
dx

=
d[λF (x)(η(x))

1−λF (x) ]
dx

=
(1− λF (x))(−λf(x)η(x) + λF (x)dη(x)

dx
)

(1− λF (x))2 + (λ)2F (x)f(x)η(x)
(1− λF (x))2 .

Thus dη∗(x)
dx

> 0 iff (1− λF (x))(−λf(x)η(x) + λF (x)dη(x)
dx

) + (λ)2F (x)f(x)η(x) > 0
i.e., dη∗(x)

dx
> 0 iff (λ)2F (x)f(x)η(x) > λF (x)[1− λF (x)][(η(x))2 − dη(x)

dx
]

i.e., dη∗(x)
dx

> 0 iff (λ)f(x)η(x) > [1− λF (x)][(η(x))2 − dη(x)
dx

].
Next, whenever s ≤ x < t, we have

η∗(x) = (λ+ δ)F (x)η(x)
1− (λ+ δ)F (x) + δF (s) .

Then η∗(x) is increasing in x iff its derivative dη∗(x)
dx

is greater than 0.
Note that

dη∗(x)
dx

=
d[ (λ+δ)F (x)η(x)

1−(λ+δ)F (x)+δF (s) ]
dx

=
[1− (λ+ δ)F (x) + δF (s)][−(λ+ δ)f(x)η(x) + (λ+ δ)F (x)dη(x)

dx
]

[1− (λ+ δ)F (x) + δF (s)]2

+ (λ+ δ)2F (x)f(x)η(x)
[1− (λ+ δ)F (x) + δF (s)]2 .

Thus, dη∗(x)
dx

> 0 iff

[1− (λ+ δ)F (x) + δF (s)][−(λ+ δ)f(x)η(x) + (λ+ δ)F (x)dη(x)
dx

] + (λ+ δ)2F (x)f(x)η(x) > 0

dη∗(x)
dx

> 0 iff (λ+ δ)2F (x)f(x)η(x) > (λ+ δ)F (x)[1− (λ+ δ)F (x) + δF (s)][(η(x))2 − dη(x)
dx

]
d(η∗(x))
dx

> 0 iff (λ+ δ)f(x)η(x) > [1− (λ+ δ)F (x) + δF (s)][(η(x))2 − dη(x)
dx

].
Lastly, for x ≥ t we have

η∗(x) = δF (x)η(x)
1− λF (t)− δF (x) + δF (s) .

Then η∗(x) is increasing in x iff its derivative dη∗(x)
dx

is greater than 0.
Here

dη∗(x)
dx

=
d[ δF (x)η(x)

1−λF (t)−δF (x)+δF (s) ]
dx

=
[1− λF (t)− δF (x) + δF (s)][−δf(x)η(x) + δF (x)dη(x)

dx
]

[1− λF (t)− δF (x) + δF (s)]2

+ (δ)2f(x)F (x)η(x)
[1− λF (t)− δF (x) + δF (s)]2
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dη∗(x)
dx

> 0 iff [1−λF (t)− δF (x) + δF (s)][−δf(x)η(x) + δF (x)d(η(x))
dx

] + (δ)2f(x)F (x)η(x) > 0
i.e., dη∗(x)

dx
> 0 iff (δ)2f(x)F (x)η(x) > δF (x)[1−λF (t)− δF (x) + δF (s)][(η(x))2− d(η(x))

dx
] i.e.,

dη∗(x)
dx

> 0 iff (δ)f(x)η(x) > [1− λF (t)− δF (x) + δF (s)][(η(x))2 − dη(x)
dx

].
Thus η(x) is increasing in x in the respective intervals iff

(λf(x)η(x) > [1− λF (x)][(η(x))2 − dη(x)
dx

]

(λ+ δ)f(x)η(x) > [1− (λ+ δ)F (x) + δF (s)][(η(x))2 − dη(x)
dx

]

(δ)f(x)η(x) > [1− λF (t)− δF (x) + δF (s)][(η(x))2 − dη(x)
dx

].

Note that in the above, if the first and the third inequalities hold then the second inequality
automatically holds.

In view of this, η(x) is increasing (decreasing) in respective intervals iff

max[((η(x))2 − dη(x)
dx

), 0] < (>) min[ δf(x)η(x)
1− λF (t)− δF (x) + δF (s) ,

λf(x)η(x)
1− λF (x) ]

that is,

max[(η(x)− (d ln η(x)
dx

)), 0] < (>) min[ δf(x)
1− λF (t)− δF (x) + δF (s) ,

λf(x)
1− λF (x) ].

The proof is complete.


