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Abstract 

Nonlinear growth models play a very important role in almost all disciplines.  The current 

status of applying them to data is to first assume an additive error in the model and then employing 

nonlinear estimation procedures. In this article, limitations of this methodology are highlighted. It 

is advocated that, for a more realistic modeling, a stochastic term should be added to the differential 

equation form of a growth model, thereby yielding a stochastic differential equation (SDE) growth 

model. A brief description is provided of the two types of stochastic calculi due respectively to 

Stratonovich and Ito. The methodologies for application of several univariate growth models, viz. 

Gompertz, Richards, von Bertalanffy and generalized logistic SDE models are described. Some 

work dealing with bivariate SDE growth models is also discussed. Finally, some future research 

problems in the area are outlined. 

Key words: Bivariate growth models; Gompertz model; Richards model; Stochastic calculi; 

Stochastic differential equation; Von bertalanffy model. 

     

1 Introduction 
 

It is by now well-recognized that any type of statistical inquiry, in which principles from 

some body of knowledge are employed, would lead to a Nonlinear statistical model Seber and 

Wild (2003). Nonlinear growth models, such as Gompertz, Logistic, Richards and von Bertalanffy 

models are widely employed for describing growth of various species of plants, animals, etc. A 

heartening aspect of these models is that they are mechanistic in nature and so the underlying 

parameters have specific biological interpretations. Growth models are generally expressed in 

terms of nonlinear differential equations. An attractive feature of these models is that they can be 

converted to linear forms by means of some transformations, like Logarithmic   and Reciprocal.   

Consequently, exact   solutions of the underlying differential equations can be obtained, which are 

nonlinear in parameters. The usual practice for applying them to data is to add an additive term,  

with suitable assumptions,   on the right hand side of the deterministic   solutions   and  applying  
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Nonlinear  estimation   procedures, such  as  Levenberg- Marquardt  procedure  Seber and Wild  

(2003)  for  estimation  of parameters. A large number of articles dealing with this methodology 

have appeared in reputed research journals during the last two decades or so (See, e.g. Ross et al., 

2010; Matis et al., 2011). 

 

Although the above methodology has served many useful purposes in the past, it suffers 

from two main limitations. The first one is that it is applicable only when the data are available at 

equal time-intervals. The philosophy behind above models is that the growth rate is fast in the 

initial phase and then it slows down in the next phase, thereby leading to a sigmoid type of curve. 

Therefore, quite often, researchers record growth data in the initial phase at quick intervals and in 

the subsequent phase at wide intervals. This leads to generation of data at unequal intervals. 

Further, for culture fisheries, getting age-length data at equal intervals may not be difficult but for 

capture fisheries, these types of data are invariably at unequal intervals. Also, collection of growth 

data over time involves constraints of time, personnel, and budgets, etc. that do not always satisfy 

the requirement of obtaining data at equal intervals. Undoubtedly, the data that do exist in studies 

with missing data or data at unequal time-intervals are potentially informative, and precluding such 

data from analysis could affect conclusions adversely Dennis and Ponciano (2014). The other 

limitation is that, by simply adding an error term, a nonlinear statistical model is not capable of 

describing the underlying fluctuations of the system satisfactorily, particularly for longitudinal 

data. It may be highlighted that both the above limitations can be successfully tackled by 

employing the more general approach of ‘Stochastic Differential Equation (SDE)’ Oksendal 

(2003). These are generally obtained by adding a stochastic term on the right hand side of the 

differential equation form of deterministic formulation of a growth model. It may be noted that, in 

a physical situation, random environmental fluctuations due to variations in parameters, such as 

birth and death rates generally occur with great rapidity as compared to the time-scale of 

population growth. Therefore, the stochastic term is generally assumed to be a Gaussian white 

noise stochastic process. A heartening aspect of this prescription is that the resultant process 

becomes Markovian. However, the price to be paid is that the sample paths are very irregular and 

do not admit of derivatives in the conventional sense. To handle this situation, two types of 

stochastic calculi due respectively to, Stratonovich and Itô, have been developed in the literature. 

In the former, usual rules of calculus continue to apply whereas in the latter, these are suitably 

modified. However, for the present article, both these calculi yield identical results as we shall deal 

only models with additive noise, which is independent of state variable. Cohen and Elliott (2015). 

 

2 The Stratonovich and Ito Calculi  

 

Consider a deterministic model described by the differential equation: 
 

                             𝑑𝑋/𝑑𝑡 = 𝑓(𝑋) + 𝑔(𝑋)𝑍,                                                                                (1)  
 

where 𝑓 and 𝑔 are deterministic functions of X(t) and Z reflects the state of the environment. To 

incorporate environmental variation, Z is replaced by some stochastic process Z(t). If Z(t) is a 
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“well-behaved” stochastic process in the sense that its sample paths are smooth functions, then the 

solution X(t) becomes non-Markovian. Considering the fact that compared to the theory of Markov 

processes, the theory of non-Markov processes has not yet been developed to such a point that it 

can be applied to concrete physical or biological problems, it would be very desirable for the 

mathematical treatment if the solution X(t) is a Markov process. For that to be so, the sample paths 

of Z(t) should be deprived of memory, i.e. the random variables Z(t1) and Z(t2) should be 

uncorrelated, for all t2 ≠ t1, a situation clearly in contrast with the smoothness property of sample 

paths. It is well-known that Z(t) is Markov only when Z(t) is a Gaussian white noise process. The 

price that is paid for this convenience is that the sample paths of X(t) are very irregular and do not 

admit of derivatives in the conventional sense. To overcome this difficulty, two new calculi have 

been proposed. These are now discussed briefly. 

Consider the stochastic differential equation (SDE): 
 

                             dX/dt= 𝑓(𝑋) + 𝑔(𝑋)𝑍(𝑡),                                                                                (2) 
 

where 𝑓(𝑋) and 𝑔(𝑋) are deterministic functions of X(t), and Z(t) is a Gaussian white noise 

process. In order to avoid the mathematical pathology associated with white noise, eq. (2) is 

expressed in terms of the Weiner process W(t) as 
 

                              𝑑𝑋 = 𝑓(𝑋)𝑑𝑡 + 𝑔(𝑋)𝑑𝑊(𝑡).                                                                    (3) 

 

This SDE is actually shorthand for the stochastic integral equation: 
 

                              𝑋(𝑡) = 𝑋(𝑡𝑜) + ∫ 𝑓
𝑡

𝑡𝑜
(𝑋(𝑠))𝑑𝑠 + ∫ 𝑔

𝑡

𝑡𝑜
(𝑋(𝑠))𝑑𝑊(𝑠),                                 (4) 

 

The ambiguity arises from the fact that the Weiner process is of unbounded variation, i.e. 

almost every realization has infinite length on a finite time-interval. Therefore, the last integral of 

(4), viz. 

                              ∫ 𝑔
𝑡

𝑡𝑜
(𝑋(𝑠))𝑑𝑊(𝑠)                                                                                          (5) 

 

cannot, in general, be interpreted as an ordinary Riemann-Stieltjes integral. In other words, the 

limit of the approximating sums 
 

                              𝑆𝑛 =  𝑔(𝑋(𝜏𝑖)){𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖)}                                                              (6) 
 

is dependent on the particular choice of the evaluation points. If t0<t1<…<tn = t is a partition of the 

interval of integration, then the stochastic integral (5) is defined as the limit of sums of the form 
 

                             ∑ 𝑔[𝑋(𝑡𝑖) + (1 − )𝑋(𝑡𝑖+1)]𝑛−1
𝑖=𝑜 {𝑊(𝑡𝑖+1) − 𝑊(𝑡𝑖)}.                                  (7) 

 

Thus, there are many possible definitions of (5) each of which gives rise to a different result. 

Only two of these definitions, those attributed to Ito (obtained on taking =1) and Stratonovich 

(obtained on taking =0.5) yield solutions which are likely to be useful as models. Only the Ito’s 

definition has the appealing mathematical property that the process X(t) is a martingale, i.e. for 

𝑡 ≥ 𝑠, with probability one 
 

                                 𝐸[𝑋(𝑡)|𝑋(𝑢), 𝑢 ≤ 𝑠] = 𝑋(𝑠). 
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Also𝐸[𝑋(𝑡)]  = 0. However, it is disconcerting that ordinary rules of calculus do not apply 

for Ito calculus. For example 
 

                                 ∫ 𝑊(𝑠)
𝑡

𝑡𝑜
𝑑𝑊(𝑠) =

1

2
{𝑊2(𝑡) − 𝑊2(𝑡𝑜)} −

1

2
(𝑡 − 𝑡𝑜), 

and 

                                𝑑(𝑊𝑛(𝑡)) = 𝑛𝑊𝑛−1(𝑡)𝑑𝑊(𝑡) +
1

2
𝑛(𝑛 − 1)𝑊𝑛−2(𝑡)𝑑𝑡. 

 

The Stratonovich definition has the advantage that here the ordinary rules of calculus apply.  

Mathematically, Ito calculus is more fundamental and more general than the Stratonovich calculus. 

It may be mentioned that the two prescriptions are equivalent in the sense that it is possible to pass 

from the results obtained under one interpretation to the results for the other interpretation via a 

transformation formula. A problem arises as to which of these calculi should one use in a given 

physical or biological situation. If the SDE is obtained as the white noise limit of a real noise 

problem, then the Stratonovich interpretation is appropriate. Further, if the process of interest and 

the noise it is subject to are inherently continuous, then the Stratonovich calculus is better; if the 

process is discrete with uncorrelated noise, then the Ito calculus is appropriate. Unfortunately, 

neither of these results addresses the situation which is most common in population biology, 

namely the case in which “real model” is a difference equation subject to autocorrelated noise. A 

good description of various aspects of stochastic calculus is available in Oksendal (2003) and 

Cohen and Elliott (2015). 

 
 

3 Gompertz SDE growth model 

 

The differential equation form of Gompertz growth model Seber and Wild (2003) is given 

by  

  

    𝑑𝑦𝑡 𝑑𝑡⁄ = 𝑟𝑦𝑡 log𝑒(𝐾 𝑦𝑡⁄ ).                          (8) 

 

The transformed Gompertz statistical growth model can be written as Prajneshu and Ghosh, 

(2017): 

                                  log𝑒𝑦𝑡 =  [log𝑒𝐾 + log𝑒(𝑦0 𝐾⁄ )𝑒𝑥𝑝(−𝑟𝑡)] + 𝜀𝑡
∗.                                   (9) 

 

Following along similar lines as Filipe et al. (2013), analogous Gompertz SDE model with 

constant diffusion coefficient is given by 

 

                                  𝑑𝑍𝑡 = 𝑟(𝛼 − 𝑍𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡,                                                                        (10) 

                                                   

where  𝛼 = log𝑒𝐾,  𝑍𝑡 = log𝑒𝑦𝑡, and 𝑊𝑡 is a Wiener process with variance parameter unity. After 

integration of both sides and applying Ito calculus, solution 𝑍𝑡 of the SDE model given 𝐹𝑡𝑘
=

{𝑍𝑡𝑗
: 𝑗 ≤ 𝑘} is   

                                  𝑍𝑡 = 𝛼 + (𝑍𝑡𝑘
− 𝛼)𝑒−𝑟(𝑡−𝑡𝑘) + 𝜎𝑒𝑥𝑝(−𝑟𝑡) ∫ 𝑒𝑥𝑝(𝑟𝑠) 𝑑𝑊𝑠

𝑡

𝑡𝑘
.                    (11) 

Note that solution of the above Gompertz SDE model given by eq. (11) is a Gaussian process 

with conditional mean and variance given respectively by  
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  𝜇𝑍:𝑡|𝑡𝑘
= 𝐸{𝑍𝑡|𝐹𝑡𝑘

} = 𝛼 + (𝑍𝑡𝑘
− 𝛼)𝑒−𝑟(𝑡−𝑡𝑘),  𝜎𝑍:𝑡|𝑡𝑘

2 = 𝑉{𝑦𝑡|𝐹𝑡𝑘
} =

𝜎2(1−𝑒−2𝑟(𝑡−𝑡𝑘))

2𝑟
.       (12) 

 

The transition probability density function of the process {𝑍𝑡, 𝑡 ≥ 0} is asymptotically 

stationary with mean and variance given respectively by 𝛼 and  𝜎2 (2𝑟).⁄   however, it may be 

noted that the mean-value function of {𝑍𝑡}, i.e.  𝐸[𝑍𝑡] = 𝛼 + (𝑍𝑡0
− 𝛼)𝑒−𝑟(𝑡−𝑡𝑘) is a sigmoid 

curve. It may be pointed out that the solution of Gompertz SDE model given by eq. (11) is capable 

to model growth under dependent error processes {𝜎𝑒𝑥𝑝(−𝑟𝑡) ∫ 𝑒𝑥𝑝(𝑟𝑠) 𝑑𝑊𝑠, 𝑡 ≥ 0
𝑡

𝑡0
}. Finally, 

predicted value of 𝑦𝑡 may be obtained by evaluating conditional mean of 𝑦𝑡 given past values of 

the process {𝑦𝑡𝑗
: 𝑗 ≤ 𝑘}, and the same is given by 

 

                          𝜇𝑦:𝑡|𝑡𝑘
= 𝑒𝑥𝑝(𝜇𝑍:𝑡|𝑡𝑘

+ 0.5𝜎𝑍:𝑡|𝑡𝑘

2 ),                                                        (13) 
 
 

The parameters of Gompertz SDE model in eq. (11) may be estimated by the Method of 

maximum likelihood, which is carried out by maximizing joint likelihood of the transformed 

process{𝑍𝑡}. To this end, joint likelihood is expressed in terms of product of conditional likelihoods 

at time-epoch 𝑡 given 𝐹𝑡𝑘
, which are Gaussian with conditional means and variances given by eq. 

(12). Relevant computer code in SAS software package for fitting the model to data is available in 

Prajneshu and Ghosh (2017).  
 
 

4     Gompertz SDE growth model with time-dependent diffusion 

 

One limitation of the model discussed in Section 3 is that the underlying diffusion term is 

assumed to be time-independent and, therefore, its solution is a homogenous Markov chain. In 

other words, it implies that the conditional probability distribution evolves only with respect to 

time elapsed between past and present but not on the time over which the system is recorded. 

However, it is quite reasonable that the growth rate of living organisms would be changing as age 

increases. Therefore, for a more realistic modelling, diffusion term should be time-dependent 

Ghosh and Prajneshu (2017a).  

 

Ghosh and Prajneshu (2017a) recently considered time-varying diffusion coefficient in eq. 

(10) as 

 

                          𝑑𝑍𝑡 = 𝑟(𝛼 − 𝑍𝑡)𝑑𝑡 + 𝜎𝑉𝑡𝑑𝑊𝑡.                                   (14) 

 

Taking 𝑉𝑡 = 𝑎 + 𝑏𝑡 as a first-order approximation, solution of eq.(14) is 𝑍𝑡 = 𝛼 +

(𝑦0 − 𝛼)𝑒−𝑟(𝑡−𝑡0) + 𝜎𝑒−𝑟𝑡 ∫ 𝑒𝑥𝑝(𝑟𝑠)𝑉𝑠𝑑𝑊𝑠
𝑡

𝑡0
. Thus, the conditional distribution of 𝑍𝑡 given 𝐹𝑡𝑘

 is 

normal with mean 𝛼 + (𝑍𝑡𝑘
− 𝛼)𝑒−𝑟(𝑡−𝑡𝑘) and variance 

 
           𝜎𝐿:𝑍

2 = 𝜎2[𝑎2(1 − 𝑒−2𝑟(𝑡−𝑡𝑘)) + 2𝑏{(𝑡 − 𝑡𝑘𝑒−2𝑟(𝑡−𝑡𝑘)) − (2𝑟)−1(1 − 𝑒−2𝑟(𝑡−𝑡𝑘))} + 𝑏2{(𝑡2 − 𝑡𝑘 
2 𝑒−2𝑟(𝑡−𝑡𝑘)) − 𝑞}] (2𝑟)⁄ ,    

                                                                                                                                                         (15) 

                                                                                                                                                                                                                … (15)                             
        where 
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                       𝑞 = 𝑟−1([𝑡 − 𝑡𝑘𝑒−2𝑟(𝑡−𝑡𝑘)] − (2𝑟)−1[1 − 𝑒−2𝑟(𝑡−𝑡𝑘)]).        
       

It may be noted that the transition probability distribution of the process {𝑍𝑡 , 𝑡 ≥ 0} is non-

homogeneous and the process is asymptotically non-stationary with variance given by 𝜎𝑡
2 = 

𝜎2 {𝑎2 + 𝑏 (𝑡 −
1

2𝑟
) (2 −

𝑏

𝑟
) + 𝑏2𝑡2} (2𝑟)⁄ , while asymptotic mean is 𝛼. Since the transformation 

𝑔(. ) is monotonically non-decreasing, therefore, approximate conditional mean-value function of 

untransformed process {𝑌𝑡}, viz. 𝐸(𝑦𝑡|ℱ𝑦:𝑡𝑘
) = 𝑔−1 (𝐸(𝑍𝑡|ℱ𝑡𝑘

)) is also monotonically non-

decreasing and tends to 𝑔−1(𝛼) as 𝑡 → ∞. For dynamic computation of predicted values of  {𝑌𝑡}, 

above approach may be used.   Therefore, using inverse transformation, viz. 𝑔−1(𝑍𝑡) = 𝑒𝑥𝑝(𝑍𝑡), 
evaluation of conditional expectation of 𝑦𝑡 reduces to computation of moment generating function 

of Gaussian random variable 𝑍𝑡. Therefore, predicted value of 𝑦𝑡 is given by conditional mean of 

𝑦𝑡 as 
 

                                        𝜇𝑦:𝑡|𝑡𝑘
= 𝑒𝑥𝑝(𝜇𝑍:𝑡|𝑡𝑘

+ 0.5𝜎𝑍:𝑡|𝑡𝑘

2 ),                                            (16) 

 

and prediction error variance, viz. conditional variance of 𝑦𝑡, is given by 

 

                                       𝜎𝐿,𝑦:𝑡|𝑡𝑘

2 = {𝑒𝑥𝑝(2[𝜇𝑍:𝑡|𝑡𝑘
+ 𝜎𝐿,𝑍:𝑡|𝑡𝑘

2 ])}{1 − 𝑒𝑥𝑝(−𝜎𝐿,𝑍:𝑡|𝑡𝑘

2 )}.              (17)  

        
To carry out the above analysis to a dataset, salient codes in SAS software package, Ver. 

9.4 are available in Ghosh and Prajneshu (2017a). 

 

5 Richards SDE growth model 

 

Richards four-parameter nonlinear growth model, which is a generalization of the well-

known logistic and Gompertz models, is a very versatile model for describing many growth 

processes. It may be pointed out that the corresponding SDE growth model becomes very 

cumbersome. Therefore, the methodology is developed for a particular value of m, say 𝑚 =
 −1 2⁄ .  as discussed by Ghosh and Prajneshu (2017b), the Richards SDE growth model can be 

written as 
 

               𝑑𝑦𝑡 𝑑𝑡⁄ = {−2𝑟𝑦𝑡(𝐾−1 2⁄ − 𝑦𝑡
−1 2⁄

) 𝐾−1 2⁄⁄ } {1 + {𝜂𝑡 𝑟(𝐾1 2⁄ − 𝑦𝑡
1 2⁄

)⁄ }}.                 (18) 
 

Using the variance stabilization transformation 𝑍𝑡 = 𝑔(𝑦𝑡) = 𝑦𝑡
1 2⁄

 and chain rule of 

differentiation, linear SDE in transformed variable 𝑍𝑡 may be obtained. Hence, advantage of the 

nonlinear SDE model given in eq. (18) is that it is capable of yielding closed form solution by 

getting solution of SDE in transformed variable. Thus, after necessary simplification, eq. (18) is 

reduced to Linearized Richards SDE (LRSDE) model, given by  
 

                                                 𝑑𝑍𝑡 = 𝑟(𝛼 − 𝑍𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡,                                                     (19) 

where 𝛼 = 𝐾1 2⁄  and 𝑊𝑡 is the Brownian or Wiener process with variance parameter unity. Given 

ℱ𝑡𝑘
= {𝑍𝑡: 𝑡 ≤ 𝑡𝑘}, solution of the LRSDE model, obtained by using Ito calculus, is given by Filipe 

et al. (2013) 

                         𝑍𝑡 = 𝐾1 2⁄ + (𝑍𝑡𝑘
− 𝐾1 2⁄ )𝑒−𝑟(𝑡−𝑡𝑘) + 𝜎𝑒𝑥𝑝(−𝑟𝑡) ∫ 𝑒𝑥𝑝(𝑟𝑠) 𝑑𝑊𝑠

𝑡

𝑡𝑘
 .                (20) 
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Note that solution of the above LRSDE model is Markovian and follows Gaussian process 

with conditional mean and variance given by 𝜇𝑍:𝑡|𝑡𝑘
= 𝐸{𝑍𝑡|𝐹𝑡𝑘

} = 𝛼 + (𝑍𝑡𝑘
− 𝛼)𝑒−𝑟(𝑡−𝑡𝑘) and 

𝜎𝑍:𝑡|𝑡𝑘

2 = 𝑉{𝑦𝑡|𝐹𝑡𝑘
} = 𝜎2(1 − 𝑒−2𝑟(𝑡−𝑡𝑘)) (2𝑟)⁄  respectively. The mean-value function of  {𝑍𝑡}, 

i.e.  𝐸[𝑍𝑡] = 𝛼 + (𝑍𝑡0
− 𝛼)𝑒−𝑟(𝑡−𝑡𝑘) is a sigmoid curve, whereas the transition probability is 

homogeneous and homoscedastic.  It may be noted that variance-function of {𝑍𝑡} depends on time, 

which allows the variance of {𝑦𝑡} to change over time. The process is also asymptotically 

stationary with mean and variance given by 𝛼 and 𝜎2 (2𝑟)⁄ .  

 

Ghosh and Prajneshu (2017b) also derived the optimal predictor for untransformed data 

along with prediction error variance. Relevant computer programs are included in the above article. 

Finally, as an illustration, pig growth data are considered. 

 

6 Von Bertalanffy (VB) SDE Growth Model 

 

The well-known VB growth model plays a very important role in estimating the age-length 

relationship in fisheries. The deterministic VB age-length growth model can be written  
 

                                    𝑙𝑡  = 𝛼[1 − 𝑒𝑥𝑝{−𝛽(𝑡 − 𝑡0)}]                                                       (21) 
 

where 𝛼, 𝛽, 𝑡0 represent respectively the ultimate fish length, curvature parameter and initial time-

epoch at which fish length is zero. As discussed by Prajneshu et al. (2017), the analogous VBSDE 

model can be written as 
 
 

                                  𝑑𝑒𝑥𝑝(𝑟𝑡)𝑙𝑡 = 𝑟𝛼𝑒𝑥𝑝(𝑟𝑡)𝑑𝑡 + 𝜎𝑒𝑥𝑝(𝑟𝑡)𝑑𝑊𝑡,   𝑙𝑡0
= 0.                              (22) 

 

where 𝑊𝑡 is a Wiener process with variance parameter unity. Integrating both sides and applying 

Ito calculus, solution 𝑙𝑡 of the VBSDE model, given 𝐹𝑡𝑘
= {𝑙𝑡𝑗

: 𝑗 ≤ 𝑘} is   
 

                                   𝑙𝑡 = 𝛼 + (𝑙𝑡𝑘
− 𝛼)𝑒−𝑟(𝑡−𝑡𝑘) + 𝜎𝑒𝑥𝑝(−𝑟𝑡) ∫ 𝑒𝑥𝑝(𝑟𝑠) 𝑑𝑊𝑠

𝑡

𝑡𝑘
.                     (23) 

 
 

Since the age-length data is observed in controlled environment and the length data is 

obtained from age at time-epoch 𝑡 = 0, therefore it is of interest to estimate 𝑡0 in addition to  

𝑟, 𝛼, 𝜎2. Note that the processes {𝑙𝑡: 𝑡 ≥ 𝑡0}  is Markovian and stationary with conditional mean 

𝜇𝑙:𝑡|𝑡𝑘
 and variance 𝜎𝑙:𝑡|𝑡𝑘

2  given by 
 

                                   𝜇𝑙:𝑡|𝑡𝑘
= 𝐸{𝑙𝑡| 𝑙𝑠: 𝑠 ≤  𝑡𝑘} = 𝛼 + (𝑙𝑡𝑘

− 𝛼)𝑒−𝑟(𝑡−𝑡𝑘),                                (24a) 
 

                                  𝜎𝑙:𝑡|𝑡𝑘

2 = 𝑉{𝑙𝑡| 𝑙𝑠: 𝑠 ≤  𝑡𝑘} =
𝜎2(1−𝑒−2𝑟(𝑡−𝑡𝑘))

2𝑟
                                               (24b) 

 

Method of maximum likelihood is applied to obtain estimates of parameters. To this end, 

joint likelihood is expressed in terms of product of conditional likelihoods at time-epoch 𝑡 

given ℱ𝑡𝑘
= { 𝑙𝑠: 𝑠 ≤  𝑡𝑘}, which are Gaussian with conditional means and variances respectively 

given by eqs. (24a) and (24b). It may be highlighted that only the VBSDE model is capable of 

predicting future length at any time-epoch continuously. The optimal (exact) predictor of  𝑙𝑡 given 

{ 𝑙𝑠: 𝑠 ≤ 𝑡𝑘} is given by 𝜇𝑙:𝑡|𝑡𝑘
= 𝐸{𝑙| 𝑙𝑠: 𝑠 ≤  𝑡𝑘} = 𝛼 + (𝑙𝑡𝑘

− 𝛼)𝑒−𝑟(𝑡−𝑡𝑘). One may also use 

naïve approach for prediction of  𝑙𝑡 by considering the predicted value of  𝑙𝑡′ at some intermediate 
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time-epoch 𝑡′, where 𝑡𝑘 < 𝑡′ < 𝑡. Relevant computer code for fitting the model to data in SAS 

software package are available in Prajneshu et al. (2017). 

 
 

7  Generalized Logistic SDE Growth Model 
 

Rahman et al. (2009) considered the generalized logistic differential equation model given 

by  

                                                    

                           𝑑𝑁 𝑑𝑡⁄ = 𝑎𝑁𝛽 − 𝑏𝑁𝛾.                                                                                     (25) 

 

This equation was then perturbed by extrinsic Gaussian white noise through its growth 

coefficient a. The drift and diffusion parameters of the stochastic logistic model were estimated 

using Levenberg-Marquardt optimization method of nonlinear least squares. The solution of the 

deterministic model was approximated using Fourth Order Runge-Kutta method. As the SDE 

model does not have an exact analytical solution, numerical methods are required to solve them 

approximately. The usual approximation is the Euler-Maruyama and Milstein numerical schemes 

Picchini et al. (2006).  Rahman et al. (2009) employed the latter scheme as it is more precise than 

the former. Superiority of the logistic SDE growth model over the corresponding deterministic 

model was shown for data pertaining to cell growth of Clostridium Acetobutylicum. 

 

8  Bivariate SDE Growth Models 

 

Gutierrez et al. (2008) proposed a bivariate stochastic Gompertz diffusion model as the 

solution for a system of two Ito SDE that are similar as regards the drift and diffusion coefficients 

to those considered in the univariate Gompertz diffusion model.  Probabilistic characteristics of 

this model, such as bivariate transition density, bidimensional moment functions, conditioned 

trend functions and in particular, correlation function between each of the components of the model 

were established. Maximum likelihood estimation of the bidimensional drift and the diffusion 

matrix of the diffusion were carried out and a computational statistical methodology for this 

purpose based on discrete observations over time was proposed. Thus, a method for trend analysis 

was established. It was applied to the real case of two dependent variables, Gross Domestic Product 

(GDP) and CO2 emission in Spain on the basis of annual observations of the variables over the 

period 1986–2003. The application is a new methodology in environmental and climate change 

studies, and provides an alternative to other approaches of a more econometric nature, or those 

corresponding to the methodology of secular trends in time-series.  

 

Rupsys and Petrauskas (2010) presented a new method for describing the bivariate 

diameter and height distribution of trees growing in a pure, uneven-aged forest by using a SDE 

framework to derive a bivariate age-dependent probability density function of tree diameter and 

height when the tree diameter and height follow a bivariate stochastic Gompertz shape growth 

process. The bivariate stochastic Gompertz model is fit to diameter and height observations for 

pine trees in the Dubrava district of Lithuania. A considerable advantage of the bivariate stochastic 

Gompertz growth model is that the model parameters are easily interpretable. All results are 

implemented in the symbolic algebra system MAPLE.  
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9  Some Future Research Problems 
 

These are outlined below: 
 

(i) In Section 4 of the present article, the methodology is discussed for application of 

Gompertz model in random environment when diffusion term is assumed to be a linear 

function of time. However, methodology valid for more complicated time-dependent 

diffusion terms needs to be developed. 

  

(ii) In Section 5 of the present article, the methodology is discussed for application of 

Richards model in random environment for one particular value of the parameter 𝑚. 
This work may be extended for any value of 𝑚. 

 

(iii) In this article, the noise term is assumed to be ‘white noise’. However, for a more 

realistic modeling, it should be ‘coloured’ (Behera and O’Rourke 2008). But then the 

process becomes non-Markovian, and development of efficient estimation procedures 

may be a challenging task. 

 

(iv) All the models discussed so far assumed that that the rate of change of the variable 

depends only on their current values. However, in the real world, growth rate of a 

population often does not respond immediately to changes, but rather would do so after 

some time lag. Allen (2014) derived stochastic versions of several discrete delay and 

continuous delay differential equation models. This type of work may be extended to 

other growth models and efficient estimation procedures for fitting those models to data 

needs to be explored. 

 

(v) For a nonlinear SD, Yamamura and Shoji (2008) developed multi-step ahead forecasts 

for discrete sampling through a local linear model for estimating the drift term 

nonparametrically using Gaussian kernel. Effort needs to be directed towards applying 

efficient technique of Wavelet analysis for estimation of drift term.  It may be noted that 

the procedure of Yamamura and Shoji (2008) yields point estimates for multi-step ahead 

forecasts. However, it is widely recognized that this is meaningful only when the 

corresponding standard errors due to forecasts are also computed. Therefore, to this end, 

attempt should be made to estimate the theoretical conditional variance of the diffusion 

process.  

 

10 Concluding Remarks 

 

Nonlinear growth models have a long history of applications in several disciplines, such as 

Agriculture, medicine, and industry. An attractive feature of these models is they can be converted 

to linear forms by means of suitable transformations. Before 1963, only ‘intrinsically nonlinear 

growth models’ were used, as efficient nonlinear estimation procedure, viz. Levenberg-Marquardt 

algorithm was not discovered. It may be pointed out that this methodology was not mathematically 

correct and so has also led to erroneous conclusions. But there was no choice. Even when 

Levenberg-Marquardt algorithm was discovered in 1963, it was very difficult to apply and so 

researchers continue to apply the ‘intrinsically nonlinear models’ until statistical software 

packages, such as SAS and SPSS were developed and reached researchers sometime in 1980’s.  
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So, during the last three decades or so, nonlinear growth models have been widely employed 

through nonlinear estimation procedures. These models also suffer from some limitations as 

described in the present article. So, there is a need to abandon these in favour of Stochastic 

differential equation growth models. Although a large number of research papers dealing with the 

theoretical aspects of Stochastic differential equations have been published, it is disconcerting to 

note that very few of them have so far been applied to real data (See, e.g. Prajneshu 1980 and 

Skiadas 2010). Thus, it is high time to reduce this wide gap and at the same time build a synergistic 

interaction between the theoretical and applied aspects in this area. 
 

Acknowledgements 

The authors are grateful to Science and Engineering Research Board, New Delhi for providing 

financial assistance under Research Project No. SB/S4/MS/880/2014. Thanks are also due to the 

referee and Chief Editor for valuable comments. 

 
 

References 

Allen, E.J. (2014). Derivation and computation of discrete-delay and continuous-delay SDEs in 

mathematical biology. Mathematical Biosciences and Engineering, 11, 403-425. 

Behera, A. and O’Rourke, S.F.C. (2008). The effect of correlated noise in a Gompertz growth   

model. Brazilian Journal of Physics, 38, 272-278.  

Cohen, S.N. and Elliott, R. J. (2015). Stochastic Calculus and Applications. 2nd Ed. Birkhauser, 

Switzerland (ISBN: 978-1-4939-2866-8). 

Dennis, B. and Ponciano, J.M. (2014). Density dependent state space model for population 

abundance data with unequal time intervals. Ecology, 95, 2069-2076. 

Filipe, P.A., Braumann, C.A., Brites, N.M. and Roquete, C.J. (2013). Prediction for individual 

growth in a random environment. In “Recent Developments in Modeling and Applications 

in Statistics, Eds. Oliveira, P.E., Temido, M.G., Henriques, and Vichi, M., pp. 193-201, 

Springer, Berlin (ISBN: 978-3-642-32418-5)”. 

Ghosh, H. and Prajneshu (2017a).  Gompertz growth model in random environment with time-

dependent diffusion.  Journal of Statistical Theory and Practice, 11, 746-758.  

Ghosh, H. and Prajneshu (2017b).  Richards stochastic differential equation model and its 

application.  Journal of the Indian Society of Agricultural Statistics, 71, 127-138. 

Gutierrez, R., Gutierrez-Sanchez, R. and Nafidi, A. (2008). A bivariate stochastic Gompertz 

diffusion model: Statistical aspects and application to the joint modeling of the gross 

domestic product and CO2 emissions in Spain. Environmetrics, 19, 643-658. 

Matis, J.H., Mohammed, K.T. and Al-Muhammed, M. (2011). Mitigating autocorrelation in 

Richards growth model analysis using incremental growth data with application to Turkey 

growth. Journal of the Indian Society of Agricultural Statistics, 65, 69-76. 

Oksendal, B. (2003). Stochastic Differential Equations: An Introduction with Applications. 5th      

Ed. Springer Science & Business Media, Berlin (ISBN: 978-3-540-04758-1). 

Picchini, U., Ditlevsen, S. and Gaetano, A.D. (2006).  Modelling the euglycemic hyperinsulinemic 

clamp by stochastic differential equations.  Journal of Mathematical Biology, 53, 771-796. 

Prajneshu (1980). Time dependent solution of the logistic model for population growth in random 

environment. Journal of Applied Probability, 17, 1083-1086. 

Prajneshu, Ghosh, H. and Pandey, N.N.  (2017). Fitting of von Bertalanffy growth model: 

Stochastic differential equation approach. Indian Journal of Fisheries, 64, 24-28. 

http://link.springer.com/book/10.1007/978-3-642-32419-2
http://link.springer.com/book/10.1007/978-3-642-32419-2


2019]           STOCHASTIC DIFFERENTIAL EQUATION MODELS  83 

Prajneshu and Ghosh, H. (2017).  A new approach for fitting growth models in random 

environment. Indian Journal of Animal Sciences, 87, 1531- 1535. 

Rahman, H.A., Bahar, A., Aziz, M.K.B.M., Rosli, N., Salleh, M. and Weber, G.-W. (2009). 

Parameter estimation of stochastic logistic model: Levenberg-Marquardt method. 

Matematika, 25, 91-106. 

Ross, G.J.S., Prajneshu, and Sarada, C. (2010). Reparameterization of nonlinear statistical models: 

A case-study.  Journal of Applied Statistics, 37, 2015-2026.   

 Rupšys, P. and Petrauskas, E. (2010). The bivariate Gompertz diffusion model for tree diameter 

and height distribution. Forest Science, 56, 271-280. 

Seber, G.A.F. and Wild, S.  (2003). Nonlinear Regression. John Wiley, New York (ISBN: 978-

04-71471-356). 

Skiadas, C.H. (2010). Exact solutions of stochastic differential equations: Gompertz, generalized 

logistic and revised exponential. Methodology and Computing in Applied Probability, 

12, 261-270. 

Yamamura, M. and Shoji, I. (2008): A nonparametric method of multi-step ahead forecasting in 

diffusion processes. Physica A, 389, 2408-2415. 
 

 

 

 

  


