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Abstract
This paper attempts to analyze the general autoregressive integrated moving average

model under the classical and Bayesian paradigms. The paper aims to forecast the infant
mortality rate of India under the two setups. A real data set is first examined for the
presence of stationarity and is achieved by performing logarithmic scale transformation and
then differencing it twice. After achieving stationarity, the most appropriate model is selected
among the various competing models by using Akaike’s information criterion and Bayesian
information criterion. The selected model is analysed and the results in classical framework
are obtained on the basis of maximum likelihood estimators. A complete Bayesian analysis is
performed by using vague priors for the parameters and posterior inferences are drawn using
Markov chain Monte Carlo simulation technique. The retrospective as well as prospective
predictions are obtained, under the two paradigms, for infant mortality rate data and the
results are, in general, found to be satisfactory.

Key words: Autoregressive integrated moving average model; Infant mortality rate; Station-
arity; Akaike’s information criterion; Bayesian information criterion; Markov chain Monte
Carlo simulation.
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1. Introduction

Forecasting demographic characteristics like fertility, morbidity, mortality, etc., is an
important facet for the socio-economic planners as it facilitates them to analyze and regulate
policies for the betterment of the human population. To forecast such characteristics require
an appropriate model building so that a reliable result can be obtained. In this paper,
we attempted to predict the infant mortality rate (IMR) of India in classical as well as
in Bayesian paradigms. Truly speaking, IMR represents the number of deaths of children
under one year of age per thousand live births. Being a vital demographic characteristic,
IMR affects the population structure of a country and the projection of human population as
well. Cruciality of the IMR data enforce us to model and forecast such a salient characteristic
with utmost care.
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In the past few decades, a deep review of literature shows a remarkable contribution
of the researchers to model and forecast mortality (see, for example, Keyfitz (1982), Pollard
(1987), McNown and Rogers (1989), Lee and Carter (1992), etc.). More specifically, McNown
and Rogers (1989) used a kind of parametrization of time series model to forecast mortality.
Later on, McNown and Rogers (1992) employed the use of time series methods to forecast
cause specific mortality. In their pioneering work Lee and Carter (1992) have proposed a
probabilistic approach to model the age-specific mortality and made a long term forecast
using time series methodology. Interestingly, Carter (1996) examined the stability of the
‘Lee-Carter method’ for structural change in a time series and made a comparison with the
‘Box-Jenkins methodology’ of autoregressive integrated moving average (ARIMA) process.
Tuljapurkar and Boe (1998) have critically examined the change of mortality pattern and
its forecasting. One should refer to Booth (2006) for a deep review of the methodologies to
model and forecast the demographic components.

The use of Bayesian methodology is no more exception in time series analysis, specif-
ically with demographic characteristics. Some of the recent works include Pedroza (2006),
Reichmuth and Sarferaz (2008), Alkema and Ann (2011), Tripathi et al. (2018) among
others. Pedroza (2006) applied a Bayesian approach in Lee-Carter model to forecast the
mortality rates. Reichmuth and Sarferaz (2008) have reanalyzed the Lee-Carter model in
Bayesian paradigm using the latent variable approach. Alkema and Ann (2011) used a hier-
archical time series model, in Bayesian paradigm, to estimate the under-five mortality rate.
Recently, Tripathi et al. (2018) used ARIMA model to predict the total fertility rate (TFR)
of India using classical and the Bayesian approaches.

In this paper, we have applied the methodology discussed by Tripathi et al. (2018) for
the time series based on IMR of India. In his classical work on IMR time series, Bishai (1995)
has explained the issues of non-stationarity and co-integration of IMR data with the other
socio-economic variables. In another study on IMR, Kurniasih et al. (2018) has discussed
about the different methods of forecasting and their relative comparison. To forecast IMR
time series data is always crucial for the view point of demographic planning and, hence, for
the strategic development of the nations like India. With the same very spirit, we attempted
to forecast IMR of India using ARIMA model.

Let {yt}; t = 1, 2, ..., T , be a sequence of time series observations and {εt} is a sequence
of independently and identically distributed (iid) error terms following normal distribution
each with mean zero and a constant variance, say, σ2, then the general form of the autore-
gressive moving average (ARMA) model of order (p,q) is given by:

yt = θ0 +
p∑
i=1

θiyt−i +
q∑
j=1

φjεt−j + εt, (1)

where θ0 represents the intercept term and θi’s, φj’s are the autoregressive (AR) and moving
average (MA) coefficients respectively.

One can further introduce a generalization of ARMA models by taking the difference
of a suitable order, say, d, of the original series yt. This new generalization is known as the
integrated form of ARMA model and is given by:
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wt = θ0 +
p∑
i=1

θiwt−i +
q∑
j=1

φjεt−j + εt, (2)

where wt represents the dth difference of yt. Particularly, in ARIMA model, the order of
differencing decides the level of stationarity of the time series. For more details one may
refer to Box et al. (2015).

Although, there are a number of methods available in time series literature for the
model assessment, we have adopted the techniques of autocorrelation function (ACF) and
partial autocorrelation function (PACF) plots in our case. This technique is proposed by
Box and Jenkins (1970) in their pioneering work on ARIMA model. Truly speaking, ACF
can be defined as the correlation between the two observations in a time series. It measures
the linear relationship between an observation at time t and the observation at some k (say)
distance apart. Slightly different from ACF, the PACF measures the degree of association
between the current and a previous observation, at a distance k (say), of a time series only
after removing the effects of other intermediate observations in between.

This paper proceeds as follows. The next section elaborates the data structure those
based on IMR of India and the model identification on the basis of ACF and PACF. The
two model selection criteria, that is, Akaike’s information criterion (AIC) and Bayesian
information criterion (BIC) are also being discussed for choosing an appropriate model. The
section finally ends with the numerical illustration of selected ARIMA model including both
retrospective as well as prospective predictions. Section 3 explains the necessary priors setup
and algorithm to draw the inferences under Bayesian paradigm. A detailed implementation
of Markov chain Monte Carlo (MCMC) procedure, using Gibbs sampler and Metropolis
algorithm, is also being discussed in a separate subsection. This section ends with the
retrospective and prospective predictions for IMR data. The last section provides with a
brief summary of the work done that concludes the whole paper.

2. Data Structure and Model Selection Criterion

We considered a real data set on IMR of India over the period of 48 years from 1971
to 2018. The data set, in the form of time series, has been collected from the SRS bulletin,
Registrar General of India (see, https://data.gov.in/resources/time-series-data-crude-
death-rate-cdr-and-infant-mortality-rate-imr-srs-1971-2016) and is framed in Table 1.
To see the movement of time series, we have plotted the original data set in Figure 1. It is
quite evident from the plot that the observed data on IMR shows a non-stationary pattern
as it shows a consistent decline over the years. One has to ensure that the time series must
achieve the stationarity to get a reliable result and for the further analyses.

To achieve the stationarity, we exercised the logarithmic scale transformation of the
original series and then differenced the transformed series twice. The resultant time series,
then, plotted for the different years as shown in Figure 2. The plot (Figure 2) confirms
the stationarity of the time series as the mean level is constant over the years. To further
strengthened our conclusion we shall provide some numerical evidences, for the differenced
data set, those based on Augmented Dickey-Fuller (ADF) test and Kwaitkwoski-Phillips-
Schmidt-Shin (KPSS) test. In case of ADF test the p-value is found to be 0.01 (less than 0.05)

https://data.gov.in/resources/time-series-data-crude-death-rate-cdr-and-infant-mortality-rate-imr-srs-1971-2016
https://data.gov.in/resources/time-series-data-crude-death-rate-cdr-and-infant-mortality-rate-imr-srs-1971-2016


104 M. AGARWAL, P. K. TRIPATHI AND S. PAREEK [Vol. 19, No. 2

that rejects the null hypothesis. Truly speaking, the ADF test assumes the null hypothesis
that a unit root is present in the AR process. KPSS test, on the other hand, assumes the
null hypothesis that the process is stationary. The p-value, in KPSS test, is found to be
0.1 (greater than 0.05) that accepts the null hypothesis. On the basis of p-values, in the
two tests, one may conclude that the data is stationary in nature and the values of the test
statistics are not so significant which are calculated as –5.07 for ADF test and 0.06 for KPSS
test, at 5% level of significance. It is important to mention here that an AR(p) model is said
to be stationary if there is no unit root present in the process, that is, if all the roots of the
characteristic polynomial lie outside the unit circle (see, for example, Tripathi et al. (2017)).

Table 1: IMR of India from 1971 to 2018 (from left to right)

129 139 134 126 140 129 130 127 120
114 110 105 105 104 97 96 95 94
91 80 80 79 74 74 74 72 71
72 70 68 66 63 60 58 58 57
55 53 50 47 44 42 40 39 37
34 33 32

Source: SRS bulletin, Registrar General of India

Figure 1: Time series plot for IMR data of India from 1971 to 2018

Once stationarity is achieved, we shall look forward for an appropriate model to get a
reliable forecast. For this purpose, we start with the popular ‘Box-Jenkins methodology’ for
the identification of order of ARIMA model, that is, p, d and q (see, for example, Box et al.
(2015)). To estimate p and q we have plotted the values of ACF and PACF, respectively,
against the lag values (see Figure 3). Following Box et al. (2015), we can observe from the
Figure 3 that AR(2) and MA(1) are the most suitable choices for the components of ARIMA
model. Since we have applied the second difference of the data set, therefore, the order of
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differencing d is fixed as 2. Consequently, a conclusive ARIMA model can be easily assessed
as ARIMA(2,2,1). For more details of the procedure one may refer to Tripathi et al. (2018).

Figure 2: Time series plot for twice differenced transformed IMR data of India

Figure 3: ACF and PACF plots for twice differenced IMR data

In order to avoid any fallacious conclusion, just on the basis of a tentative model
assessed graphically, we shall consider some other nearby candidate models and a suitable
model will be selected on the basis of some numerical findings. For this purpose, we used the
two well known model selection criteria in statistics, namely; AIC and BIC (see, for example,
Akaike (1974) and Schwarz (1978)). The two model selection criteria can be defined as below;

AIC = −2 logL̂+ 2k, (3)

and
BIC = −2 logL̂+ k log(T − p), (4)

where L̂ is the maximized likelihood function and k represents the number of parameters in
the concerned model. These two criteria possess a common characteristic that they more
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disagree with the model that contains large number of parameters and, hence, increase the
complexity of a model. The model corresponding to the least value of AIC (BIC) is considered
to be a good model and can be chosen for the purpose of further analysis. We will not go
into the details of these criteria due to space restriction, but the interested candidate may
refer to Ghosh et al. (2007) for more information. Moreover, to proceed further we have to
formulate the likelihood function of the candidate models which can be accomplished by the
general form of the likelihood of the ARIMA model.

Likelihood function of ARIMA model (2) can be approximately written by using the
conditional density of the differenced observations, w : w1, w2, ..., wT−d (see, for example,
Tripathi et al. (2018)), which is given by

f(wt|wt−1, wt−2, ..., wt−p; θ0,Θ,Φ, σ2) ∝
( 1
σ2

)
exp

− 1
2σ2 (wt − θ0 −

p∑
i=1

θiwt−i −
q∑
j=1

φjεt−j)2


(5)

Now, we can write the approximate likelihood function of model (2), using (5), as;

L(θ0,Θ,Φ, σ2|w) ∝
( 1
σ2

)(T−d−p)/2
exp

− 1
2σ2

T−d∑
t=p+1

(wt − θ0 −
p∑
i=1

θiwt−i −
q∑
j=1

φjεt−j)2

 , (6)

where Θ = (θ1, θ2, ..., θp) and Φ = (φ1, φ2, ..., φq).

2.1. Model selection and prediction

As discussed in Section 2, we considered some nearby competing ARIMA models to
validate our procedure. The competing models are; ARIMA(0, 2, 1), ARIMA(0, 2, 2),
ARIMA(1, 2, 0), ARIMA(2, 2, 0), ARIMA(1, 2, 1), ARIMA(1, 2, 2) and ARIMA(2, 2, 2).
By doing some small mathematical corrections in the expression (6), one can easily obtain
the approximate maximum likelihood (ML) estimators for the parameters involved in the
concerned model. All the competing models along with the ML estimates of their parameters
and the values of log-likelihoods are reported in the Table 2. Since, the likelihood functions
were not easily tractable, therefore, we have used numerical based approximation to obtain
the ML estimates of the parameters.

Although the interpretation of results obtained in Table 2 is quite obvious still we shall
highlight a few of them for the flow of analysis. The impact of intercept term on IMR data is
not so considerable in all the considered models. Also, one may observe that the stationarized
form of the data set shows less variability for error terms. Therefore, the fluctuations in the
random component can be assumed to be constant over a period of time. We shall next
proceed with the model selection for the observed stationarized form of the data.

The values of AIC and BIC, for each competing model, can be easily calculated by using
the formulae (3) and (4) and the same are reported in Table 3. It is quite evident that both
the criteria give their least value corresponding to ARIMA(2, 2, 0) that can be considered as
the most appropriate model among others. Undoubtedly, a graphical assessment is always
striking and reliable source of information still, we can not ignore the possibilities of numerical
evidences which are more appealing as they consider any kind of loss due to fitting as well as
complexity both. Certainly, we shall consider ARIMA(2, 2, 0) model for the further analyses
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and prediction of IMR of India.

Table 2: Classical estimates of the competing ARIMA models
Model Parameter ML estimate log L̂ Model Parameter ML estimate log L̂

θ0 0.0005 θ0 −0.0010

ARIMA(0, 2, 1) φ1 −0.9900 −89.4400 ARIMA(1, 2, 1) θ1 −0.2200 −96.1500

σ2 0.0012 φ1 −1.2200

σ2 0.0008

θ0 −0.0001 θ0 −0.0005

ARIMA(0, 2, 2) φ1 −1.0100 −86.3700 ARIMA(2, 2, 1) θ1 −0.5100 −90.3700

φ2 0.1400 θ2 −0.5900

σ2 0.0013 φ1 −1.1800

σ2 0.0009

θ0 −0.0010 θ0 0.0001

ARIMA(1, 2, 0) θ1 −0.5100 −75.5600 ARIMA(1, 2, 2) θ1 −1.0900 −88.2300

σ2 0.0020 φ1 0.2100

φ2 −1.1100

σ2 0.0011

θ0 −0.0012 θ0 0.0019

ARIMA(2, 2, 0) θ1 −0.9100 −71.8000 ARIMA(2, 2, 2) θ1 −1.1500 −79.4000

θ2 −0.5800 θ2 −0.5300

σ2 0.0011 φ1 −0.3400

φ2 −1.0000

σ2 0.0015

Table 3: Values of AIC and BIC for the competing ARIMA models

Model AIC BIC

ARIMA(0, 2, 1) 184.89 190.37

ARIMA(0, 2, 2) 180.75 188.07

ARIMA(1, 2, 0) 157.13 162.55

ARIMA(2, 2, 0) 151.60 158.73

ARIMA(1, 2, 1) 200.31 207.54

ARIMA(2, 2, 1) 190.74 199.66

ARIMA(1, 2, 2) 186.46 195.49

ARIMA(2, 2, 2) 170.80 181.51

Before we extend our study to the Bayesian analysis, let us perform the classical pre-
diction of IMR based on the selected ARIMA(2, 2, 0) model. For this purpose we took only
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43 observations out of 48 observations (see Table 1) and left rest of the values as the test
sample. We have obtained the necessary classical estimates for the parameters of ARIMA(2,
2, 0) model as discussed in Section 2 and predicted for the next (44th) observation using
the ML estimates of the parameters. This predicted observation then forms a sample of
size 44 and again the next (45th) observation is predicted by obtaining the corresponding
ML estimates using these 44 observations in a similar way. Proceeding in this way, we can
predict for all the corresponding values in the test sample.

Theoretically, to predict the future values of the original time series of size T , we have
predicted the very next value for the differenced time series (of size T − 2), that is, wthT−1
observation. Next, we shall obtain the future value corresponding to the scaled transformed
time series, that is, log(ŷT+1) which can be calculated using the recurrence relationship given
below;

log(ŷT+1) = ŵT−1 + 2log(yT )− log(yT−1), (7)

where ŵT−1 is the estimated predictive value corresponding to wthT−1 observation obtained
by using ARIMA(2, 2, 0) process that can comfortably be obtained from (2) for the error
term having the distribution N(0, σ̂2). Hence, the estimated predictive value for the original
series of IMR data set can be obtained by performing the inverse logarithmic transformation
on log(ŷT+1). To get the estimated predictive intervals, for the corresponding future values
of the original series, let us represent the ML estimates of the parameters as σ̂2, θ̂1 and θ̂2.
We have calculated the predictive intervals for the differenced series {wt} by means of the
formula;

ŵT−1 ± z1−α/2

√
V ar(ŵT−1), (8)

where z1−α/2 is the standard normal percentile and V ar(ŵT−1) = σ̂2

(1− ρ1θ̂1 − ρ2θ̂2)
with ρ1 =

θ̂1
(1−θ̂2) and ρ2 = θ̂2 + θ̂2

1
(1−θ̂2) . It is to be mentioned here that the confidence interval for the

scaled transformed series can be obtained by using the expression (7), just by replacing
ŵT−1 with LŵT−1 and UŵT−1 to get lower and upper limits, respectively. Here LŵT−1 and
UŵT−1 are the lower and upper limits of predicted intervals respectively for the differenced
data. Finally, the confidence interval for the original series is obtained by using the similar
inverse logarithmic transformation. Truly speaking, the expression (8) gives a 100(1 − α)%
confidence interval. To get 95% confidence interval, one may use the critical value at 0.05
level of significance from the standard normal table.

The 95% predictive intervals for the estimated predictive values, from 2014 to 2018, are
given retrospectively in Table 4. We have also calculated the width of predictive intervals (ω)
to observe the consistency of the prediction. It can be easily visualized that the estimated
predictive values of IMR data are not too far from the true values, also the true values
are well within the range of corresponding predictive intervals. The retrospective prediction
is quite satisfactory and, hence, we can predict the future values prospectively. For the
prospective prediction we have applied the same strategy on the whole data set and have
predicted for the next five years. The future predictions, for IMR of India, are reported in
the Table 5.
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Table 4: Retrospective predictions of IMR from 2014 to 2018 using the ML
estimates

Year True value Estimated predictive value 95% Estimated predictive interval ω

2014 39.00 38.08 34.33 42.24 7.91

2015 37.00 38.08 34.33 42.24 7.91

2016 34.00 38.14 32.39 42.31 9.92

2017 33.00 36.72 32.11 40.73 8.62

2018 32.00 37.71 31.00 41.83 10.83

Table 5: Future predictions of IMR for the next 5 years using ML estimates

Year Estimated predictive value 95% Estimated predictive interval ω

2019 30.31 27.30 33.65 6.35

2020 30.32 27.30 33.66 6.36

2021 30.36 27.35 33.71 6.36

2022 29.25 26.34 32.47 6.13

2023 30.03 27.05 33.34 6.29

It is to be noted that the future values of IMR go down, with a good consistency,
which is a good sign for a developing nation like India. Before we set up a concrete opinion
about these predicted values, let us extend this study to the advanced level and perform the
Bayesian analysis in the next section.

3. Bayesian Inference

The conditional likelihood function of the selected ARIMA(2,2,0) model for the differ-
enced data is given by

f(w|θ0, θ1, θ2, σ
2) ∝

( 1
σ2

)(T−4)/2
exp

− 1
2σ2

T−2∑
t=p+1

(wt − θ0 − θ1wt−1 − θ2wt−2)2

 , (9)

where wt = ∆2log(yt). To perform the Bayesian analysis, a suitable choice of prior distri-
bution is essential. Choosing the prior distributions is a vital aspect in Bayesian paradigm
and one can use the information, if any, while selecting a prior distribution. Such priors are
called informative priors. In case we have no information, the non-informative priors come
into existence. For the present study, we shall consider the non-informative (vague) priors
for σ2, θ0, θ1 and θ2 as we do not have any concrete information (see, for example, Tripathi
et al. (2017)). The following prior distributions have been considered for the completion of
Bayesian analysis;

g1(σ2) ∝ 1
σ2 ; σ2 ≥ 0, (10)

g2(θ0) ∝ U [−N1, N1]; N1 > 0, (11)
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g3(θ1) ∝ U [−N2, N2]; N2 > 0, (12)

and
g4(θ2) ∝ U [−N3, N3]; N3 > 0, (13)

where N1, N2 and N3 are the hyperparameters. One may choose the hyperparameters (large
enough) in such a way that the priors remain vague over the range of parameters. We have
considered the same set of values with opposite signs for the uniform range though, one can
choose the different values which permit the vagueness of prior distributions. Moreover, the
prior distribution for the σ2, in (10), is a type of prior suggested by Jeffrey and is widely used
by the researchers (see, for example, Marriott et al. (1996), Kleibergen and Hoek (2000) and
Tripathi et al. (2018) among others).

Next, we shall obtain the joint posterior distribution by updating the prior distributions
(from (10) to (13)) with the help of likelihood function (9) and it can be written up to
proportionality as;

p(θ0, θ1, θ2, σ
2|w) ∝

( 1
σ2

)(T−2)/2
exp

− 1
2σ2

T−2∑
t=p+1

(wt − θ0 − θ1wt−1 − θ2wt−2)2

 I[−N1,N1](θ0)

I[−N2,N2](θ1)I[−N3,N3](θ2), (14)

where I(.) denotes the usual indicator function that can take only two values; either zero or
one. Truly speaking, if a value of the parameter falls in the interval, it will take the value
one and zero otherwise.

It has been seen that the form of joint posterior (14) is analytically intractable, one has
to go for the sample based approaches to get the required posterior samples from this. We,
however, considered an MCMC approach and apply the Gibbs sampler with intermediate
Metropolis steps. It has been seen that after a large number of iterations the sequence
of parametric values converges in distribution to a random sample taken from the actual
posterior distribution. For more details of the procedure one may refer to Gelfand and
Smith (1991) and Upadhyay et al. (2001) among others. Once the posterior samples of
desired size are obtained, the unobserved future value (ŵT−1) can be simulated, for each of
the posterior samples, from the parent sampling distribution p(wT−1|θ0, θ1, θ2, σ

2, w). It can be
easily verified that the predicted observation ŵT−1 follows an univariate normal distribution
(see, for example, Tripathi et al. (2018)).

3.1. Full conditional distributions and MCMC implementation

To proceed for the MCMC implementation, let us calculate the full conditional distri-
bution of each parameter, from the joint posterior (14), up to proportionality as below;

p(θ0|θ1, θ2, σ
2, w) ∝ exp

− 1
2σ2

T−2∑
t=p+1

(wt − θ0 − θ1wt−1 − θ2wt−2)2

 , (15)

p(θ1|θ0, θ2, σ
2, w) ∝ exp

− 1
2σ2

T−2∑
t=p+1

(wt − θ0 − θ1wt−1 − θ2wt−2)2

 , (16)
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p(θ2|θ0, θ1, σ
2, w) ∝ exp

− 1
2σ2

T−2∑
t=p+1

(wt − θ0 − θ1wt−1 − θ2wt−2)2

 , (17)

p(σ2|θ0, θ1, θ2, w) ∝
( 1
σ2

)(T−2)/2
exp

− 1
2σ2

T−2∑
t=p+1

(wt − θ0 − θ1wt−1 − θ2wt−2)2

 . (18)

Among all, the full conditional of σ2 can be transformed into a gamma distribution by means
of the transformation τ = 1/σ2. A simple mathematics shows that τ follows a gamma distri-

bution with shape parameter (T −4)/2 and scale parameter 1
2

T−2∑
t=p+1

(wt−θ0−θ1wt−1−θ2wt−2)2.

It is also to be noted that the full conditionals (15), (16) and (17) are not easily available
in close form and direct simulation is not possible. We, therefore, adopted the Metropolis
algorithm to simulate from these full conditionals. To employ the Metropolis algorithm, a
univariate normal density is proposed in each case with mean value corresponding to the
ML estimate of the respected parameter and standard deviation is taken to be c times the
Hessian based approximation at the value of ML estimate. The constant c behaves like a
tuning parameter whose value often suggested to lie between 0.5 and 1.0 (see, for example,
Tripathi et al. (2018)). Thus, we created a single long run of the simulated values from the
posterior distribution (14) via the simple implementation of the Gibbs sampler. Posterior
estimates were, then, obtained by choosing the posterior samples at a regular gap, after
avoiding the initial transient behavior, so that the correlation between them is close to zero.
For further reading of the algorithm one may refer to Smith and Roberts (1993), Upadhyay
et al. (2001) among others.

3.2. Numerical illustration for Bayesian analysis

To illustrate the Bayesian methodology, discussed above, we took the same set of
data reported in Table 1. As discussed, we have calculated the ML estimates of the selected
ARIMA(2, 2, 0) model to initialize the Markov chain. The values of hyperparameters, N1, N2
and N3, were set to be 100 in each case to maintain the vagueness of the prior distributions.
An iterative procedure indicated us to choose the value of tunning parameter c as 0.7. It is
important to mention here that these values are chosen to get a good acceptance probability
in Metropolis algorithm. For successful implementation of the Gibbs sampler, we have
considered a single long run of the chain up to 50K iterations. After avoiding the initial
transient behavior of the chain at about 10K iterations, we took a sample of size 1K by
maintaining a gap of 40 so that the serial correlation is negligibly small. We have provided
the posterior summary, for the differenced data, on the basis of these 1K posterior samples
in Table 6.

The results obtained in Table 6 are self explanatory and it reveals the fact that the
estimated marginal posterior densities, for all the parameters, exhibit a normal trend, that
is, almost symmetrical in nature. Also, as obvious, the posterior modes are close enough
to the corresponding ML estimates which might be because of the vague consideration of
priors. Although, we are not giving the densities plots for the estimated parameters due to
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space restriction still most of the inferences can be easily guessed from the table. Moreover,
the length of highest posterior density (HPD) intervals tell the accuracy of the posterior
estimates.

Table 6: Posterior summary for the parameters of ARIMA(2, 2, 0) model

Parameter MLE Posterior Mean Posterior Median Posterior Mode 0.95 HPD interval

θ0 −0.0012 −0.0034 −0.0035 −0.0035 −0.0143 0.0102

θ1 −0.9110 −0.7719 −0.7710 −0.7622 −1.0235 −0.5528

θ2 −0.5814 −0.5163 −0.5185 −0.5344 −0.7667 −0.2674

σ2 0.0011 0.0016 0.0016 0.0016 0.0009 0.0023

Like the classical analysis, let us now work on the retrospective prediction of IMR
in Bayesian framework. Again, we have considered only first 43 observations, out of 48
observations, as the informative data set (see Table 1) and rests are left to see the forecasting
performance. We have applied the same strategy, as in classical prediction, to predict in
Bayesian context. It is to be noted that the whole Bayesian analysis is performed repeatedly
in each step of prediction until the last value is predicted. Moreover, to predict the next future
value, we simulated 1K predictive samples based on 1K posterior samples and predictive
summaries are drawn, for the next five values, in Table 7. It is important to know that the
estimated predictive values are corresponding to the modal values of the predictive samples.

Table 7: Bayesian retrospective predictions of IMR from 2014 to 2018

Year True value Estimated Bayes predictive value Estimated HPrD interval ω

2014 39.00 38.83 35.01 41.08 6.07

2015 37.00 37.12 33.08 39.65 6.57

2016 34.00 34.46 30.61 36.80 6.19

2017 33.00 35.39 31.84 37.33 5.49

2018 32.00 38.18 31.32 39.74 8.42

It is nice to interpret that the predicted values are pretty close to the true values.
Also, the 95% highest predictive density (HPrD) intervals are covering the corresponding
true values nicely. Referring to Table 4, it can be inferred that the Bayes predictions, in
general, appear to be more closer to the corresponding true values as compared to that on
the basis of likelihood only. Also, the estimated predictive intervals in Bayesian paradigm
appear to be more narrower than the classical paradigm (see the values of ω), that shows the
accuracy of Bayesian analysis over the classical approach. Moreover, the widths of estimated
predictive intervals ω in Table 7 look more consistent than those in Table 4.

Since the retrospective predictions (see Table 7) are found to be satisfactory, therefore,
we did the prospective prediction of IMR of India using the same Bayesian methodology.
For this prospective prediction, we considered the whole series (containing 48 observations)
and apply the same strategy to forecast the next five observations. Table 8 provides the
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future values of IMR for the next five years. It can be seen that values of IMR (Table 8) will
remain close, on an average, to 30.20 which, in fact, is a good sign and showing a decreasing
trend of IMR values in upcoming years. Although, in this study, we did not consider any
other demographic component which effects the IMR still, our findings are very hopeful and
realistic for the developing countries like India.

Table 8: Bayesian prospective predictions of IMR for the next 5 years

Year Estimated Bayes predictive value Estimated HPrD interval ω

2019 30.91 27.69 32.49 4.80

2020 29.84 25.90 30.37 4.47

2021 30.23 28.40 33.57 5.17

2022 30.26 28.22 33.88 5.66

2023 29.76 27.06 32.73 5.67

4. Conclusion

This paper has successfully modelled and analysed the ARIMA model under classical
and the Bayesian paradigms. The analyses resulted in retrospective as well as prospective
(for the next 5 years) predictions of IMR data of India. Stationarity of the data set has been
examined carefully using ADF and KPSS tests. The likelihood based estimates have been
used for the classical predictions whereas, for Bayesian predictions the corresponding modal
values of the parameters have been used. It is found that the latter paradigm provided
us with more accurate and reliable results as compared to the former. It is expected that
such an analysis will be helpful for the policy makers and researchers to come across an
appropriate planning.
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