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Abstract 

Some recursive constructions of α– resolvable group divisible designs with λ1=0 from 
certain group divisible designs with λ1=0 are presented here. In this process some non– 
isomorphic solutions of group divisible designs are also obtained. A group divisible design 
with λ1=0 is used in the construction of Group divisible codes, optimal codes over a cyclic 
group and LDPC codes, see Ge (2007), Chee et al. (2008) and Xu et al. (2019). Transversal 
designs are special classes of such designs.  

Keywords: Group divisible designs and codes; Uniform frames; α– resolvable designs; Optimal 
and LDPC codes. 

1. Introduction 

1.1.   Group divisible design 

In statistical design theory, a Group divisible (GD) design is defined as an arrangement 
of v (= mn; m, n ≥2; m groups of n treatments) treatments into b blocks such that each block 
contains k (<v) distinct treatments, each treatment occurs r times and any pair of distinct 
treatments which are first associates occur together in λ1 blocks and in λ2 blocks if they are 
second associates. Furthermore, if r– λ1=0 then the GD design is singular; if r– λ1>0 and rk–
vλ2=0 then it is semi-regular (SR); and if r– λ1>0 and rk–vλ2>0, the design is regular (R). 

In Combinatorial design theory; a GD design with index λ is a triple (𝒱, 𝒢, ℬ) where 
(i)	𝒱 is a finite set of elements and 𝒢 is a set of subsets of 𝒱, called groups, which partition 𝒱;  
(ii) ℬ is a set of subsets of 𝒱, called blocks, such that every pair of elements from distinct 

groups occurs in exactly λ blocks and |𝐺 ∩ 𝐵| ≤ 1 for all 𝐺 ∈ 𝒢, 𝐵 ∈ ℬ. 
If all the blocks of the GD design have the same size k and all the groups have the same 

size n then the GD design is uniform and it is known as (k, λ) – GD design of type nm for some 
positive integer m. 

Clearly a (k, λ) – GD design of type nm is a GD design with λ1=0 (in Statistical design 
theory). A GD design with λ1=0 is used in the construction of Group divisible codes, optimal 
codes over a cyclic group and LDPC codes, see Ge (2007), Chee et al. (2008) and Xu et al. 
(2019). A semi- regular GD design with λ1=0 and k = m is also known as a transversal design 
in combinatorial design theory.  
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1.2.  Partial resolution classes and frames 

Suppose b blocks of a block design D (v, b, r, k) can be divided into 𝑡 = 𝑟 𝛼⁄  classes, 
each of size 𝛽 = 𝑣𝛼 𝑘⁄  such that in each class of 𝛽 blocks every treatment of D is replicated α 
times. Then these t classes are known as α– resolution (or parallel) classes and the design is 
called an α– resolvable design. When α=1 the design is said to be resolvable and the classes 
are called resolution classes. 

Let 𝒱 be the set of treatments, 𝒢 be a set of subsets of 𝒱 (called groups), each of size n 
which partitions 𝒱 and ℬ be the set of subsets of 𝒱, called blocks of a GD design. A partial 
resolution class is a collection of blocks such that every treatment of 𝒱\𝐺, 𝐺 ∈ 𝒢 occurs exactly 
once and the treatments of 𝐺 do not occur.  

A uniform (k, λ) – frame of index λ is a GD design with parameters v, b, r, k, λ1 = 0, λ2 = 
λ, m, n such that 
(i) the block set ℬ can be partitioned into a family ℛ of partial resolution classes, and  
(ii) each 𝑅 ∈ ℛ can be associated with a group 𝐺 ∈ 𝒢 so that R contains every treatment of 
𝒱\𝐺 exactly once.  

 Such frame is of type nm where n is the size of the each group of the GD design. For 
details see Furino et al. (1996; pp. 27– 28) and Ge and Miao (2007). 

A comprehensive coverage of constructions of GD designs may be found in Dey (1986, 
2010), Raghavarao (1971), Raghavarao and Padgett (2005) and Saurabh et al. (2021). Some 
construction methods of α– resolvable partially balanced incomplete block designs may be 
found in Sinha and Dey (1982), Kadowaki and Kageyama (2009) and Saurabh and Sinha 
(2020). Here, some recursive constructions of α– resolvable group divisible designs with λ1=0 
from certain group divisible designs with λ1=0 are presented. In this process some non– 
isomorphic solutions of group divisible designs are also obtained. All the group divisible 
designs constructed here have λ1=0. SRX numbers are from Clatworthy (1973). 

2.  Recursive Constructions 

Theorem 1: The existence of a resolvable SRGD design with parameters  

v, b = nr, r, k, λ1 = 0, λ2= λ, m, n                                                                                               (1) 
implies the existence of another resolvable SRGD design with parameters  

𝑣∗ = 𝑣 + 𝑝𝑛, 𝑏∗ = 𝑛"𝑏, 𝑟∗ = 𝑛"𝑟, 𝑘∗ = 𝑘 + 𝑝, 𝜆#∗ = 0, 𝜆$∗ = 𝑛"𝜆,𝑚∗ = 𝑚 + 𝑝, 𝑛∗ = 𝑛      (2)  
p is a positive integer. 
 
Proof: Let 𝑅#, 𝑅$, … , 𝑅% be the resolution classes of the SRGD design with parameters (1). Let 
𝐵#& , 𝐵$& , … , 𝐵'&  be arbitrarily chosen blocks in its ith resolution class and 𝜃#, 𝜃$, … , 𝜃' be the new 
treatments other than the v treatments of the GD design. We form b/r resolution classes 	
𝑅#& , 𝑅$& , … , 𝑅( %⁄

& 	corresponding to a resolution class 𝑅& of the SRGD design with parameters (1) 
as follows: 
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𝑅#&  𝑅$&  … 𝑅( %⁄

&  
𝐵#&⋃{𝜃#} 
𝐵$&⋃{𝜃$} 

⋮ 
𝐵'&⋃{𝜃'} 

𝐵#&⋃{𝜃$} 
𝐵$&⋃{𝜃#} 

⋮ 
𝐵'&⋃{𝜃'*#} 

⋯ 
⋯ 
⋮ 
⋯ 

𝐵#&⋃{𝜃'} 
𝐵$&⋃{𝜃'*#} 

⋮ 
𝐵'&⋃{𝜃#} 

This process is continued for all the resolution classes of the SRGD design. New treatments 
are added once only in each block. The union of these new resolution classes generates the 
blocks of another resolvable SRGD design with parameters:  
          𝑣∗ = 𝑣 + 𝑛, 𝑏∗ = 𝑛𝑏, 𝑟∗ = 𝑏 = 𝑛𝑟, 𝑘∗ = 𝑘 + 1, 𝜆#∗ = 0, 𝜆$∗ = 𝜆𝑛,𝑚∗ = 𝑚 + 1, 𝑛∗ = 𝑛. 
Further, by repeated application of this process p (p a positive integer) times we will get a 
resolvable SRGD design with parameters (2). 

Example 1: Consider the following resolution classes of SR23: v = b = 9, r = k = 3, λ1 = 0, λ2 
= 1, m = n = 3 

R1 R2 R3 

1, 2, 3  
4, 5, 6 
7, 8, 9 

1, 5, 9 
2, 6, 7 
3, 4, 8 

1, 6, 8 
2, 4, 9 
3, 5, 7 

Then using Theorem 1, the resolution classes of SR43: v = 12, r = 9, k = 4, b = 27, λ1 = 0, λ2 = 
3, m = 4, n = 3 are 

𝑅## 𝑅$# 𝑅+# 𝑅#$ 𝑅$$ 𝑅+$  
1, 2, 3, 10 
4, 5, 6, 11 
7, 8, 9, 12 

1, 2, 3, 11 
4, 5, 6, 12 
7, 8, 9, 10 

1, 2, 3, 12 
4, 5, 6, 10 
7, 8, 9, 11 

1, 5, 9, 10 
2, 6, 7, 11 
3, 4, 8, 12 

1, 5, 9, 11 
2, 6, 7, 12 
3, 4, 8, 10 

1, 5, 9, 12 
2, 6, 7, 10 
3, 4, 8, 11 

 

𝑅#+ 𝑅$+ 𝑅++  
1, 6, 8, 10 
2, 4, 9, 11 
3, 5, 7, 12 

1, 6, 8, 11 
2, 4, 9, 12 
3, 5, 7, 10 

1, 6, 8, 12 
2, 4, 9, 10 
3, 5, 7, 11 

 

Example 2: Consider the following resolution classes of SR36: v = b = 8, r = k = 4, λ1 = 0, λ2 

= 2, m = 4, n = 2 
R1 R2 R3 R4 

1, 2, 3, 4 
5, 6, 7, 8 

1, 2, 7, 8 
3, 4, 5, 6 

1, 3, 6, 8 
2, 4, 5, 7 

1, 4, 6, 7 
2, 3, 5, 8 

Then using Theorem 1, the resolution classes of SR54: v = 10, r = 8, k = 5, b = 16, λ1 = 0, λ2 = 
4, m = 5, n = 2 are 

𝑅## 𝑅$# 𝑅#$ 𝑅$$ 𝑅#+ 𝑅$+ 
1, 2, 3, 4, 9 
5, 6, 7, 8, 

10 

1, 2, 3, 4, 
10 

5, 6, 7, 8, 9 

1, 2, 7, 8, 9 
3, 4, 5, 6, 

10 

1, 2, 7, 8, 
10 

3, 4, 5, 6, 9 

1, 3, 6, 8, 9 
2, 4, 5, 7, 

10 

1, 3, 6, 8, 
10 

2, 4, 5, 7, 9 
𝑅#, 𝑅$, 

1, 4, 6, 7, 9 
2, 3, 5, 8, 

10 

1, 4, 6, 7, 
10 

2, 3, 5, 8, 9 
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Theorem 2: The existence of an n– resolvable SRGD design with parameters (1) implies the 
existence of another n- resolvable SRGD design with parameters  

𝑣∗ = 𝑣 + 𝑝𝑛, 𝑏∗ = 𝑛"𝑏, 𝑟∗ = 𝑛"𝑟, 𝑘∗ = 𝑘 + 𝑝, 𝜆#∗ = 0, 𝜆$∗ = 𝑛"𝜆,𝑚∗ = 𝑚 + 𝑝, 𝑛∗ = 𝑛.     (3)   
p is a positive integer. 

Proof: Since the SRGD design with parameters (1) is n-resolvable, the number of resolution 
classes is r/n and the number of blocks in each resolution class is 𝑏𝑛 𝑟⁄ = 𝑣𝑛 𝑘⁄ = 𝑛$. Let 
𝑅#, 𝑅$, … , 𝑅% '⁄  be the resolution classes of SRGD design with parameters (1). Let 
𝐵#& , 𝐵$& , … , 𝐵'!

&  be arbitrarily chosen blocks in its ith resolution class and 𝜃#, 𝜃$, … , 𝜃' be the new 
treatments distinct from the v treatments of the SRGD design. We construct n resolution classes 
corresponding to a resolution class 𝑅& of the SRGD design as follows: 

 
𝑅#&  𝑅$&  … 𝑅'&  

𝐵#&⋃{𝜃#} 
𝐵$&⋃{𝜃#} 

⋮ 
𝐵'&⋃{𝜃#} 
𝐵'-#& ⋃{𝜃$} 

⋮ 
𝐵$'& ⋃{𝜃$} 

⋮ 
𝐵'!*#
& ⋃{𝜃'} 
𝐵'!
& ⋃{𝜃'} 

𝐵#&⋃{𝜃$} 
𝐵$&⋃{𝜃$} 

⋮ 
𝐵'&⋃{𝜃$} 
𝐵'-#& ⋃{𝜃#} 

⋮ 
𝐵$'& ⋃{𝜃#} 

⋮ 
𝐵'!*#
& ⋃{𝜃'*#} 
𝐵'!
& ⋃{𝜃'*#} 

⋯ 
⋯ 
⋮ 
⋯ 
⋯ 
⋮ 

 
⋯ 
⋯ 
⋯ 

𝐵#&⋃{𝜃'} 
𝐵$&⋃{𝜃'} 

⋮ 
𝐵'&⋃{𝜃'} 

𝐵'-#& ⋃{𝜃'*#} 
⋮ 

𝐵$'& ⋃{𝜃'*#} 
⋮ 

𝐵'!*#
& ⋃{𝜃#} 
𝐵'!
& ⋃{𝜃#} 

We continue this process for all the resolution classes of the SRGD design with parameters (1). 
New treatments are added once only in each block. The union of these new resolution classes 
generates the blocks of another n-resolvable SRGD design with parameters: 

𝑣∗ = 𝑣 + 𝑛, 𝑏∗ = 𝑏𝑛, 𝑟∗ = 𝑏 = 𝑛𝑟, 𝑘∗ = 𝑘 + 1, 𝜆#∗ = 0, 𝜆$∗ = 𝑛𝜆,𝑚∗ = 𝑚 + 1, 𝑛∗ = 𝑛. 
Further, by repeated application of this process p (p a positive integer) times we will get an n- 
resolvable SRGD design with parameters (3). 

Example 3: Consider the following 2– resolvable solution of SR66: v = 12, b = 8, r = 4, k = 6, 
λ1 = 0, λ2 = 2, m = 6, n = 2: 

 
R1 R2 

1, 2, 3, 4, 5, 6 
5, 6, 7, 8, 9, 10 

1, 2, 9, 10, 11, 12 
3, 4, 7, 8, 11, 12 

1, 3, 8, 5, 10, 12 
2, 4, 5, 7, 9, 12 
1, 4, 6, 8, 9, 11 
2, 3, 6, 7, 10, 11 

Then using Theorem 2, a 2– resolvable solution of SR82: v = 14, r = 8, k = 7, b = 16, λ1 = 0, λ2 

= 4, m = 7, n = 2 is obtained as: 
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𝑅## 𝑅$# 𝑅#$ 𝑅$$ 

1, 2, 3, 4, 5, 6, 13 
5, 6, 7, 8, 9, 10, 13 

1, 2, 9, 10, 11, 12, 14 
3, 4, 7, 8, 11, 12, 14 

1, 2, 3, 4, 5, 6, 14 
5, 6, 7, 8, 9, 10, 14 

1, 2, 9, 10, 11, 12, 13 
3, 4, 7, 8, 11, 12, 13 

1, 3, 8, 5, 10, 12, 14 
2, 4, 5, 7, 9, 12, 14 
1, 4, 6, 8, 9, 11, 13 
2, 3, 6, 7, 10, 11, 13 

1, 3, 8, 5, 10, 12, 
13 

2, 4, 5, 7, 9, 12, 13 
1, 4, 6, 8, 9, 11, 14 
2, 3, 6, 7, 10, 11, 

14 

Remark 1: Clatworthy (1973) reported a resolvable and a 4-resolvable solution for SR82 while 
the solution presented here is 2-resolvable. Hence the present solution is non– isomorphic.  

The following Table lists n-resolvable (n ≥1) solutions of some SRGD designs using 
Theorems 1 and 2 with p = 1: 

Table 1: SRGD Designs 
No. Original design Derived design Source 
1 SR1, Resolvable SR19, Resolvable Th. 1 
2 SR6, Resolvable SR25, Resolvable Th. 1 
3 SR23, Resolvable SR43, Resolvable Th. 1 
4 SR36, Resolvable  

and 2– resolvable 
SR54, Resolvable  
and 2– resolvable 

Th. 1 & 2 

5 SR52, 2– resolvable SR69, 2– resolvable Th. 2 
6 SR66, 2– resolvable SR82, 2– resolvable, 

Non- isomorphic 
Th. 2 

Theorem 3: The existence of a uniform (k, λ) – frame with parameters: v = b, r = k, λ1 = 0, λ2= 
λ, m, n implies the existence of a resolvable GD design with parameters  

𝑣∗ = 𝑣, 𝑏∗ = 𝑛𝑣, 𝑟∗ = 𝑛(𝑘 + 1), 𝑘∗ = 𝑘 + 1, 𝜆#∗ = 0, 𝜆$∗ = 𝜆𝑛 (𝑘 + 1) (𝑘 − 1)⁄ ,𝑚∗ = 𝑚, 
   𝑛∗ = 𝑛.                                                                                                               (4) 
where n is equal to the number of blocks in partial resolution class of a uniform (k, λ) – frame. 

Proof: Let 𝑅#, 𝑅$, … , 𝑅.	be the partial resolution classes. Let 𝐵#& , 𝐵$& , … , 𝐵'&  be arbitrarily 
chosen blocks and {𝜃#, 𝜃$, … , 𝜃'} be the missing group in ith partial resolution class of the 
uniform (k, λ) – frame. We form n resolution classes corresponding to a partial resolution class 
𝑅& as follows: 

𝑅#&  𝑅$&  … 𝑅'&  
𝐵#&⋃{𝜃#} 
𝐵$&⋃{𝜃$} 

⋮ 
𝐵'&⋃{𝜃'} 

𝐵#&⋃{𝜃$} 
𝐵$&⋃{𝜃#} 

⋮ 
𝐵'&⋃{𝜃'*#} 

⋯ 
⋯ 
⋱ 
⋯ 

𝐵#&⋃{𝜃'} 
𝐵$&⋃{𝜃'*#} 

⋮ 
𝐵'&⋃{𝜃#} 

We continue this process for all the partial resolution classes of an (k, λ) – frame. One of the n 
treatments from missing groups are added once only in each block. The union of these new 
resolution classes generates the blocks of a resolvable GD design with parameters (4). 

 

Example 4: Consider a (3, 1) – frame of type 24 whose partial resolution classes are: 
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Partial Resolution Classes R1 R2 R3  R4 

groups {1, 5} {2, 4} {3, 6} {7, 8} 

blocks {2, 6, 7} 
{3, 4, 8} 

{1, 6, 8} 
{3, 5, 7} 

{1, 4, 7} 
{2, 5, 8} 

{1, 2, 3} 
{4, 5, 6} 

Then using Theorem 3, we obtain a resolvable GD design with parameters SR39: v = 8, r = 8, 
k = 4, b = 16, λ1 = 0, λ2 = 4, m = 4, n = 2 whose resolution classes are: 

𝑅## 𝑅$# 𝑅#$ 𝑅$$ 𝑅#+ 𝑅$+ 
{1, 2, 6, 7} 
{3, 4, 5, 8} 

{2, 5, 6, 7} 
{1, 3, 4, 8} 

{1, 2, 6, 8} 
{3, 4, 5, 7} 

{1, 4, 6, 8} 
{2, 3, 5, 7} 

{1, 3, 4, 7} 
{2, 5, 6, 8} 

{1, 4, 6, 7} 
{2, 3, 5, 8} 

𝑅#, 𝑅$,   
{1, 2, 3, 7} 
{4, 5, 6, 8} 

{1, 2, 3, 8} 
{4, 5, 6, 7} 

  

Theorem 4: The existence of a nonresolvable SRGD design with parameters (1) implies the 
existence of another r–resolvable SRGD design with parameters  

𝑣∗ = 𝑣 + 𝑛, 𝑏∗ = 𝑛$𝑟, 𝑟∗ = 𝑛𝑟, 𝑘∗ = 𝑘 + 1, 𝜆#∗ = 0, 𝜆$∗ = 𝜆𝑛,𝑚∗ = 𝑚 + 1, 𝑛∗ = 𝑛. (5)
  

Proof: Let 𝐵#& , 𝐵$& , … , 𝐵'%&  be arbitrarily chosen blocks of the nonresolvable SRGD design with 
parameters (1) and 𝜃#, 𝜃$, … , 𝜃' be the new treatments other than v treatments of the SRGD 
design. We constitute an r– resolvable solution of a GD design with parameters (5) whose 
blocks are given as follows:  

𝑅# 𝑅$ … 𝑅' 
𝐵#⋃{𝜃#} 
𝐵$⋃{𝜃#} 

⋮ 
𝐵%⋃{𝜃#} 
𝐵%-#⋃{𝜃$} 

⋮ 
𝐵$%⋃{𝜃$} 

⋮ 
𝐵'%*#⋃{𝜃'} 
𝐵'%⋃{𝜃'} 

𝐵#⋃{𝜃$} 
𝐵$⋃{𝜃$} 

⋮ 
𝐵%⋃{𝜃$} 
𝐵%-#⋃{𝜃#} 

⋮ 
𝐵$%⋃{𝜃#} 

⋮ 
𝐵'%*#⋃{𝜃'*#} 
𝐵'%⋃{𝜃'*#} 

⋯ 
 
⋯ 
 
⋯ 
 
⋯ 
⋮ 
⋯ 
⋯ 

𝐵#⋃{𝜃'} 
𝐵$⋃{𝜃'} 

⋮ 
𝐵%⋃{𝜃'} 

𝐵%-#⋃{𝜃'*#} 
⋮ 

𝐵$%⋃{𝜃'*#} 
⋮ 

𝐵'%*#⋃{𝜃#} 
𝐵'%⋃{𝜃#} 

New treatments are added once only in each block. 

When r=n in Theorem 4, by the repeated application of the process in Theorem 2 we get: 

Corollary 1: The existence of a nonresolvable SRGD design with parameters (1) implies the 
existence of another n– resolvable SRGD design with parameters: 
 𝑣∗ = 𝑣 + (𝑝 + 1)𝑛, 𝑏∗ = 𝑛"-+, 𝑟∗ = 𝑛"-$, 𝑘∗ = 𝑘 + 𝑝 + 1, 𝜆#∗ = 0, 𝜆$∗ = 𝜆𝑛"-#,	 𝑚∗ = 𝑚 +
𝑝 + 1, 𝑛∗ = 𝑛; p is a positive integer.                                                                                     (6)                                                                                    

Example 5: Consider a SRGD design SR41: v = 12, b = 9, r = 3, k = 4, λ1 = 0, λ2 = 1, m = 4, n 
= 3 whose blocks are given as: 
{1, 2, 3, 4}, {4, 5, 7, 10}, {4, 6, 9, 11}, {1, 6, 7, 8}, {2, 5, 8, 11}, {3, 8, 9, 10}, {1, 10, 11, 12}, 
{2, 7, 9, 12}, {3, 5, 6, 12}.  
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Then using Theorem 4, a 3-resolvable solution of SR57: v = 15, b = 27, r = 9, k = 5, λ1 = 0, λ2 
= 3, m = 5, n = 3 is given as: 

 

 

 

 

 
 

Since r = n = 3 here, following Corollary 1 for p =1 we will get a SRGD design with parameters: 
v = 18, b = 81, r = 27, k = 6, λ1 = 0, λ2 = 9, m = 6, n = 3. 

Remark 2: Clatworthy (1973) reported a resolvable solution for SR57 whereas a 3-resolvable 
solution is obtained here for the same. Hence the present solution is non– isomorphic.  

Remark 3: The association scheme of the derived GD design in the Theorems 1, 2 and 4 is 
obtained by adjoining a new row: mn+1, mn+2,…, n(m+1) to the m×n association scheme of 
the original GD design. 
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