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Abstract
Configuration of sub-assemblies in series is recommended in some environments.

Reliability assessment of two-component series system receiving shocks from a single source
is studied. Shocks are of two types: damage shocks and fatal shocks. The component fails
either due to exceedance of damage to its threshold or when it experiences a fatal shock.
The two cases of fixed and random thresholds are considered. Computation and comparison
of estimators of two models is done through simulation.
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1. Introduction

Configuration of sub-assemblies of a system in different ways is attempted (explored)
to meet certain requirements. The two fundamental configurations of subassemblies are
series and parallel. These have been studied extensively by reliability engineers, economists,
life science and social science researchers. One can quote several examples, wherein series
configurations of sub-assemblies is considered such as water heaters, lamps in a circuit, water
pumps, freezers and refrigerators, solar panels, etc. Series configuration is needed when the
same current must flow through all the sub-assemblies, easy overheating of components is
to be avoided, voltage is to be increased to meet the minimum operating requirements of
the inverter in solar appliances. In this paper, an attempt is made to study the reliability
of two component series system receiving shocks from single source wherein the shocks are
of two types: damage shocks and fatal shocks. The pioneering work on shock models is
by Esary and Marshall (1973). A-Hameed and Proschan (1973),A-Hameed and Proschan
(1975) have considered non-stationary shock models and shock models with underlying birth
process. Ross (1981) has studied generalized Poisson shock models. Survival under the pure
birth shock model was studied by Klefsjö (1981). Shanthikumar and Sumita (1983) have
discussed on general shock models with correlated renewal sequences. Semi-Markov shock
models with additive damages is studied by Posner and Zuckerman (1986). Anderson (1987)
has proposed limit theorems for general shock models. Some multivariate distributions were
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derived from non-fatal shock models by Savits (1988). Gut (1990) and Skoulakis (2000) have
contributed to the literature on general shock models for reliability system and cumulative
shock models respectively. Mallor and Santos (2003) have dealt with classification of shock
models in system reliability. Applications of Poisson shock models in insurance and credit
risk is studied by Lindskog and McNeil (2003). Inference for reliability of shock models is
studied by Chikkagoudar and Palaniappan (1981), Kunchur and Munoli (1993), Munoli and
Suranagi (2007),Munoli and Suranagi (2009) and Munoli and Bhat (2011).

Several researchers have contributed to the fields of modelling system reliability, its
optimization, bounds on system reliability and inference for system reliability. Here are
few references of contributions to these fields: Rutemiller (1966), Zacks and Even (1966),
Chung (1995), R̊ade (1976), Nakagawa and Rosenfeld (1979), Weier (1981), Necsulescu and
Krausz (1986), Fujii and Sandoh (1984), Wani and Kabe (1971), Hanagal (1996), Munoli and
Mutkekar (2011a), Munoli and Mutkekar (2011b). In the present study, a two-component
series system is subjected to a sequence of shocks occurring randomly in time as events of
Poisson process. Shocks are occurring with intensity λ, λ > 0. Shocks are of two types;
damage shocks and fatal shocks. Any shock will be a damage shock with probability ‘p’ and
fatal shock with probability (1 − p). Every damage shock causes some amounts of damage
to both components. Damages are non-accumulating. The component fails whenever the
damage exceeds threshold (u) of the component. If not, the component functions as good
as new one. On the other hand, the component may also fail when it experiences a fatal
shock. The two components function independently. The system fails when either of the two
components fail (series system). Let X and Y denote respectively the amount of damages to
first failing component of the system and surviving component of the system. X and Y are
assumed to be exponential random variables (r.v.’s) with parameter θ, θ > 0. The system
reliability at time ‘t’ is given by

S1(t) =
∞∑

k=0

e−pλt(pλt)k

k! e−(1−p)λt P k (1)

The above expression represents the following:

The first term e−pλt(pλt)k

k! is the expression for the probability that system has expe-
rienced ‘k’ number of damage shocks during (0, t), e−(1−p)λt represents the probability that
the system did not experience a fatal shock during (0, t). P k is the probability that the
system survives with k number of shocks that it has experienced during (0, t). The system
may experience during (0, t) no shock or one shock or two shocks,. . . ; hence the summation
with k = 0, 1, 2, . . . . P k is given by

P k = P (Both components survive with k number of damage shocks)
= P (X1 < u, . . . , Xk < u) . P (Y1 < u, . . . , Yk < u)

=
(
1 − e−uθ

)k
.
(
1 − e−uθ

)k

=
(
1 − e−uθ

)2k
(2)

Now, substituting the value of P k from expression (2) in the expression for S1(t) (expression
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(1)) and simplifying, we get the expression for reliability of series system as

S1(t) = e−λt[1−p(1−e−uθ)2
] (3)

The real-life examples from health science and finance for a shock model with damage shocks
and fatal shocks are:

Example 1: Heart disease is the leading cause of death worldwide. The common heart
diseases are heart attack and cardiac arrest. Heart attacks occur when blood flow to the heart
muscle is temporarily blocked, starving the muscle tissue of oxygen which causes scarring
and damage to heart muscle (damage shock with amount of damage tolerable and the person
survives with this heart attack). For a heart attack to lead to death the damage to the heart
needs to be large enough resulting in irregular heart beat and stop eventually (failure due to
damage exceeding threshold). Cardiac arrest is an abrupt loss of heart function, breathing
and consciousness. It results from an electric disturbance in the heart that disrupts its
pumping action, stopping blood flow to the different organs and can lead to death (fatal
shock).

Example 2: While lending loans to customers, financial institutes choose customers who
fetch the institute high profit. If a loanee defaults (fatal shock), it will be a loss to financial
institute. On the other hand, the loanee may do some partial repayments, close the loan
account by paying off the loan early. In this case the lender will lose a proportion of the
interest. Here partial repayments are damages due to shocks and due to closing the loan
account early is failure due to damage exceeding the shock.

These examples are discussed in detail in Munoli and Suhas (2019).

The rest of the paper is organized as follows: Life testing experiment is explained
in Section 2. MLE’s of the parameters of the model and their asymptotic distribution are
obtained in Section 3. Computation of estimators is dealt with in Section 4. Section 5
deals with the case of thresholds of the components being r.v’s. Comparison of two cases of
fixed and random thresholds is made in Section 6, conclusions are also outlined in the same
section.

2. Life testing experiment

Suppose, ‘r’ two-component systems having life distribution (1 − S1(t)) are subjected
to a life testing experiment, and the experiment continues until all the systems fail. For the
ith system, let the first failure (of two components) occur at the mth

i shock, i = 1, 2, . . . , r,
which coincides with system failure (also known as a series system). Out of ‘r’ number
of first failing components, ‘r1’ components fail due to damage exceeding threshold ‘u’,
and r2(= r − r1) components fail due to experiencing a fatal shock. Let Xij and Yij,
i = 1, 2, . . . , r; j = 1, 2, . . . , mi, be the random variables representing damages due to
the jth damage shock to failing and surviving components of the ith system. The Xij′s
and Yij′s are assumed to be independent exponential random variables with parameter θ
(θ > 0). Let tij be the time epoch at which the ith system experienced the jth shock
(j = 1, 2, . . . , mi; i = 1, 2, . . . , r). The inter-arrival times (ti,j − ti,j−1) are exponential ran-
dom variables with parameter pλ.
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For ‘r1’ systems, first failure (out of two components) has occurred due to damage ex-
ceeding the threshold, the joint pdf of the r.v’s mi, ti1, ti2, . . . , timi

, Xi1, . . . , Ximi−1, Yi1, . . . ,
Yimi

is
r1∏

i=1
(pλ)mie−pλtmi θmi−1e−θ

∑mi−1
j=1 xij e−uθ θmi e−θ

∑mi
j=1 yij (4)

It is assumed that the amount of damage due to a shock at which component has failed (due
to damage exceeding its threshold) is not observable but is known to exceeds its threshold.

For ‘r2’ systems, the first failure (out of 2 components) has occurred due to fatal
shock and the joint pdf of r.v’s mi, ti1, . . . , timi

, Xi1, . . . , Ximi−1, Yi1, . . . , Yimi−1 is given by

r2∏
i=1

(pλ)mi−1e−pλtmi−1θmi−1e−θ
∑mi−1

j=1 xij .(1 − p)λ e−(1−p)λ(tmi −tmi−1)θmi−1e−θ
∑mi−1

j=1 yij (5)

In this case, as the system failure has occurred due to experiencing a fatal shock at
mth

i shock, the damages due to fatal shock for both surviving and failing components are not
observed. Combining (4) and (5), the joint pdf L1 of all random variables of the experiment
is given by

L1 = pm−r2λme−pλt.. θ2m−r1−2r2 e−θ(x..+y..+r1u) (1 − p)r2 e−λt′ (6)

where,

t.. = ∑r1
i=1 tmi

+ 2∑r2
i=1 tmi−1−

∑r2
i=1 tmi

t′ = ∑r−r1
i=1 (tmi

− tmi−1)

x.. = ∑r
i=1

∑ri−1
j=1 xij

y.. = ∑r1
i=1

∑mi
j=1 yij +∑r2

i=1
∑mi−1

j=1 yij

m = ∑r
i=1 mi

3. MLE’s of parameters

Treating L1 as function of parameters, the MLE’s of parameters are obtained as

p̂ = [m − (r − r1)] t′

mt′ + (r − r1) t..
(7)

λ̂ = mt′ + (r − r1) t..

t′(t.. + t′) (8)

θ̂ = 2m − 2r + r1

x.. + y.. + r1u
(9)

Using invariance property of MLE’s, the MLE Ŝ1(t) of S1(t) is obtained by substituting p̂,
λ̂ and θ̂ for p, λ and θ respectively in expression (3).

In order to obtain asymptotic distribution of p̂ , λ̂ and θ̂, Fisher information matrix
I(p, λ, θ) is obtained as



2024] RELIABILITY ASSESSMENT OF TWO-COMPONENT SERIES SYSTEM SHOCK MODEL 137

I(p, λ, θ) =


2m−2r+r1

θ2 0 0
0 m−(r−r1)

p2 + r−r1
(1−p2) E(t..)

0 E(t..) m
λ2



=


2m−2r+r1

θ2 0 0
0 b E(t..)
0 E(t..) m

λ2

 (10)

where,

b = m−(r−r1)
p2 + r−r1

(1−p2) , E(t..) = ∑r1
i=1

mi

pλ
+ 2∑r−r1

i
mi−1

pλ
−∑r−r1

i=1 [mi−1
pλ

+ 1
(1−p)λ ]

Using multivariate central limit theorem and asymptotic properties of MLE (under regularity
conditions), we have

((p − p̂) ,
(
λ − λ̂

)
, (θ − θ̂)) → N3(0, I−1)

and I−1 is given by

I−1 =


θ2

2m−2r+r1
0 0

0 m
mb−λ2(E(t..))2 − λ2E(t..)

mb−λ2[E(t..)]2

0 − λ2[E(t..)]2

mb−λ2[E(t..)]2
bλ2

mb−λ2[E(t..)]2

 (11)

4. Simulation study

Validation of the model and computation of estimators is made through Monte-Carlo
simulation. The random variables of the model are generated for different values of r, t and
parameter combinations as below:

For the ith series system of two components, the r.v’s ti1, ti2, . . . , timi
, Xi1, . . . , Ximi−1,

Yi1, Yi2, . . . , Yimi−1, Yimi
in the case of system failure due to damage shock are generated as

follows:

Step 1: Let u = u0 and a random number wi is generated from U(0, 1). If 0 < wi <
p(= p0) , then the system failure is considered as failure due to damage shock.

Step 2: Initialize mi = 0, for θ = θ0 the r.v. Xi1, Yi1 following exponential distribution
with parameter θ0 are generated. With this mi is incremented by 1. Xi1 and Yi1 are compared
with u0. If both Xi1 < u0 and Yi1 < u0 , the process of exponential r.v’s generation with
parameter θ0 and comparing with u0 is repeated with incrementation of mi by 1 with every
repeatation. The iteration at which either of Xij or Yij exceeds u0, mi is noted.

Step 3: mi number of inter-arrival times having exponential distribution with param-
eter p0λ0 are generated. Addition of these inter-arrival times results in timi

.

Step 4: If wi > p0, then system failure is considered as failure due to fatal shock. Step
2 and 3 are repeated with the difference that (mi − 1) interarrival times having exponential
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distribution with parameter (p0λ0) are generated, adding all these, ti,mi−1 is obtained. One
inter-arrival time (ti,mi

− ti,mi−1) is generated having exp((1 − p0) λ0) distribution.

Steps 1 to 4 are repeated for r = 25, 30, 40, 50.

The statistics x.., y.., r1, m, t.., t′ are computed, using which MLE Ŝ1(t) of S1(t)
are obtained at given mission time. Also using the considered set of parameter combinations
S1(t) is also obtained for same mission times. The discrepancy between theoretical S1(t)
and estimated Ŝ1(t) is studied through bias for three sets of parameter combinations and are
presented in Table 1, Table 2 and Table 3.

Table 1: Survival probabilities and bias for p = 0.7, λ = 0.3, u = 0.95, θ = 0.8

Absolute Bias
t S1(t) r=25 r=30 r=40 r=50
0.5 0.886703 0.024142 0.009437 0.008541 0.002917
0.75 0.834963 0.034296 0.013352 0.01208 0.004119
1 0.786242 0.043307 0.016791 0.015188 0.005171
1.25 0.740364 0.051269 0.019796 0.017901 0.006085
1.5 0.697163 0.058268 0.022405 0.020256 0.006874
1.75 0.656483 0.064384 0.024654 0.022283 0.00755
2 0.618176 0.06969 0.026574 0.024013 0.008124

Table 2: Survival probabilities and bias for p = 0.4, λ = 0.4, u = 1.75, θ = 0.7

Absolute Bias
t S1(t) r=25 r=30 r=40 r=50
0.5 0.849827 0.047447 0.042041 0.005374 0.003764
0.75 0.783422 0.066517 0.058848 0.007443 0.005211
1 0.722206 0.082895 0.073223 0.009163 0.006412
1.25 0.665773 0.096855 0.085421 0.010575 0.007397
1.5 0.61375 0.108646 0.095668 0.011717 0.008192
1.75 0.565792 0.118495 0.104174 0.012622 0.00882
2 0.521581 0.126606 0.111126 0.013319 0.009303
2 0.52709 0.091367 0.047135 0.04284 0.007813

Table 3: Survival probabilities and bias for p = 0.65, λ = 0.5, u = 1.2, θ = 1.1

Absolute Bias
t S1(t) r=25 r=30 r=40 r=50
0.5 0.849827 0.047447 0.042041 0.005374 0.003764
0.75 0.783422 0.066517 0.058848 0.007443 0.005211
1 0.722206 0.082895 0.073223 0.009163 0.006412
1.25 0.665773 0.096855 0.085421 0.010575 0.007397
1.5 0.61375 0.108646 0.095668 0.011717 0.008192
1.75 0.565792 0.118495 0.104174 0.012622 0.00882
2 0.521581 0.126606 0.111126 0.013319 0.009303
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5. A random threshold case

Assuming that the thresholds of two components of the series system are independent
r.v’s having exponential distribution with parameter σ, σ > 0; and with other modelling
features same as in Section 1, the reliability of the system at mission time ‘t’ is given by

S2(t) = e−λt[1−p( θ
θ+σ )]2

(12)

In order to assess S2(t), considering the life testing experiment of ‘r’ systems with
life distribution (1 − S2(t)) and following on the lines of Section 2, the joint distribution of
the random variables mi, ti1, ti2, . . . , timi

, Xi1, . . . , Ximi−1, Yi1, Yi2, . . . , Yimi−1, Yimi
, ui,1, ui,2

for all ‘r’ systems is given by

L2 = pm−r2λme−pλt..θ2m−r1−2r2e−θ(x..+y..)(1 − p)r2e−λt′
(

σ

σ + θ

)r1

σ2re−σu (13)

where, t.., t′, x.., y.., m are as defined in (6) with u. = ∑r1
i=1 ui,1 +∑r2

i=1 ui,2 Using L2, the
MLE’s of p, λ, θ, σ are obtained as

p̂ = [m − (r − r1)] t′

mt′ + (r − r1) t..
(14)

λ̂ = mt′ + (r − r1) t..

t′(t.. + t′) (15)

and σ̂ and θ̂ are obtained numerically using Newton-Raphson method by solving the equa-
tions given below

(σ + θ) (x.. + y..) + r1 = 0 (16)
1
σ

(
2r1 + 2r2 + r1θ

σ + θ

)
− u. = 0 (17)

Using invariance property of MLE, MLE Ŝ2(t) of S2(t) is obtained as

Ŝ2(t) = e
−λ̂t

[
1−p̂

(
θ̂

θ̂+σ̂

)]2

(18)

Ŝ2(t) is computed using Monte-Carlo simulation procedure. For the ith system, for genera-
tion of random variables mi,ti1,ti2,. . . ,timi

,Xi1,. . . ,Ximi−1,Yi1,Yi2,. . . ,Yimi
and computation of

Ŝ2(t), Section 4 is referred. The random thresholds Ui1, Ui2 are generated from exponential
distribution with parameter σ = σ0 and results are presented in Table 4, Table 5 and Table
6.

From above tables, it is evident that for both the sets of parameter combinations under
the two cases of fixed and random thresholds of components, bias of estimators decreases as
the number of systems on test (r) increases.
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Table 4: Survival probabilities and bias for p = 0.7, λ = 0.3, σ = 0.7, θ = 0.8

Absolute Bias
t S2(t) r = 25 r = 30 r = 40 r = 50
0.5 0.886802 0.072797 0.069117 0.06289 0.061482
0.75 0.835103 0.104912 0.099509 0.090392 0.088335
1 0.786418 0.134412 0.127362 0.115497 0.112826
1.25 0.740571 0.161466 0.152842 0.138364 0.135112
1.5 0.697397 0.186231 0.176103 0.159144 0.155342
1.75 0.65674 0.208854 0.19729 0.177978 0.173656
2 0.618454 0.229475 0.216541 0.194998 0.190186

Table 5: Survival probabilities and bias for p = 0.4, λ = 0.4, σ = 0.3, θ = 0.7

Absolute Bias
t S2(t) r = 25 r = 30 r = 40 r = 50
0.5 0.851462 0.054733 0.045812 0.040406 0.035388
0.75 0.785685 0.076962 0.064254 0.056585 0.049486
1 0.724988 0.096202 0.080112 0.070441 0.061515
1.25 0.668981 0.112745 0.093647 0.082213 0.07169
1.5 0.6173 0.126859 0.105096 0.092118 0.08021
1.75 0.569612 0.138785 0.114674 0.100354 0.087252
2 0.525608 0.148745 0.122579 0.107099 0.092979

Table 6: Survival probabilities and bias for p = 0.65, λ = 0.5, σ = 0.4, θ = 1.1

Absolute Bias
t S2(t) r = 25 r = 30 r = 40 r = 50
0.5 0.849922 0.097285 0.087879 0.069802 0.029125
0.75 0.783553 0.138312 0.124615 0.098482 0.04062
1 0.722367 0.174835 0.157104 0.123524 0.050357
1.25 0.665959 0.207239 0.185722 0.14527 0.058528
1.5 0.613955 0.23588 0.210813 0.164031 0.065305
1.75 0.566013 0.261086 0.232694 0.180093 0.070845
2 0.521814 0.283157 0.251655 0.193718 0.075288

6. Comparison, results analysis and conclusion

The estimators for two models of series systems with components having fixed thresh-
old and random threshold are compared by computing the mean square errors of Ŝi(t), i =
1, 2 using

MSEi

(
Ŝi(t)

)
= 1

M

∑M
j=1

(
Si(t) − Ŝij(t)

)2
; i = 1, 2 for m = 10000

The relative efficiencies of Ŝ2(t) as compared Ŝ1(t) are obtained as the ratio of MSE (Ŝ1(t))
to MSE (Ŝ2(t)) and are presented in Table 7.

From Table 7, it is clear that the estimators of the series system with fixed threshold
are more efficient as compared to estimators of series system with random threshold. Hence,
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Table 7: Relative efficiency of Ŝ2 (t) as compared to Ŝ1 (t)

P=0.7, λ=0.3, u=0.95, P=0.4, λ=0.4, u=1.75, P=0.65, λ=0.5, u=1.2,
σ=0.7, θ=0.8 σ=0.3, θ=0.7 σ=0.4, θ=1.1

t S1(t) S2(t) Efficiency S1(t) S2(t) Efficiency S1(t) S2(t) Efficiency
0.5 0.8848 0.8868 0.0423 0.8521 0.8515 0.06055 0.84985 0.84995 0.1773
0.75 0.8323 0.8351 0.0411 0.7865 0.7857 0.0593 0.7834 0.7836 0.1732
1 0.7830 0.7864 0.0400 0.7260 0.7250 0.0581 0.7222 0.7224 0.1692
1.25 0.7365 0.7406 0.0389 0.6702 0.6690 0.0570 0.6658 0.6660 0.1652
1.5 0.6928 0.6974 0.0378 0.6186 0.6173 0.0558 0.6138 0.6140 0.1612
1.75 0.6517 0.6567 0.0368 0.5710 0.5696 0.0547 0.5658 0.5660 0.1573
2 0.6130 0.6185 0.0357 0.5271 0.5256 0.0536 0.5216 0.5218 0.1534

the study is suggestive of series system with components having fixed threshold, which results
in gain in reliability of series system. This is because when the thresholds are r.v.’s and if
one of the component’s thresholds turns out to be too small, then system will be less reliable.
Instead, maintaining the threshold of weakest component at certain level (optimum) would
be the wise criteria to enhance system reliability.
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