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Abstract

In this paper, we obtain distribution-free prediction intervals for future order statistics
based on an observed sequence of k-record values. The Prediction intervals for future k-
record values based on observed order statistics and prediction intervals of future record
values based on observed k-record values are also derived in a similar manner. The coverage
probabilities of the derived intervals are exact and independent of the parent distribution.
Finally, two real data sets are used to illustrate the proposed methodologies developed in
this paper.
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1. Introduction

Let X1, X2, . . . , Xn be a random sample of size n arising from a population with abso-
lutely continuous cumulative distribution function (cdf) G(x) and probability density func-
tion (pdf) g(x). By arranging the random sample in an increasing order of magnitude as
X1:n ≤ X2:n ≤ · · · ≤ Xn:n, the order statistics of the sample can be obtained. The ith
order statistic of the sample X1, X2, . . . , Xn is then Xi:n. Order statistics have wide range
of applications in many fields including industry, reliability analysis and material strength.
For more discussions regarding the order statistics, one may refer to Arnold et al. (1992)
and David and Nagaraja (2003). One major application of order statistics in the study of
reliability of systems is the following. A system is called a k-out-of-m system if it consists
of m components and the system functions satisfactorily if at least k (≤ m) components
function. If the lifetimes of the components are independently distributed, then the lifetime
of the system coincides with that of the (m− k + 1) th order statistic of the lifetime of the
components. Thus, order statistics play a key role in studying the lifetimes of such systems.

The cdf of the ith order statistic Xi:n based on a random sample of size n from a
continuous population with cdf G(x) and pdf g(x) is given by (see, Arnold et al.,1992)

Fi:n(x) =
n∑

r=i

(
n

r

)
[G(x)]r

[
Ḡ(x)

]n−r
, −∞ < x < ∞. (1)
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The pdf corresponding to the cdf (1) is given by

fi:n(x) = 1
B(i, n− i+ 1) [G(x)]i−1

[
Ḡ(x)

]n−i
g(x), −∞ < x < ∞, (2)

where Ḡ = 1 −G and B (., .) denotes the complete beta function.

Let {Xi, i ≥ 1} be a sequence of independent and identically distributed (iid) random
variables with an absolutely continuous cdf G(x) and pdf g(x). If an observation Xj exceeds
all of its previous observations, that is, Xj > Xi for every i < j, then it is referred to as an
upper record value. Thus X1 is the first upper record value by definition. Similarly, the lower
record values can be defined. Many authors have studied the record values of iid random
variables as well as their features in the literature. Arnold et al. (1998), Ahsanullah (1995)
and the literature referenced therein can be used to have a more in-depth look at this topic.

Since Chandler (1952) brought up the idea of record values for the first time in the
literature, there has been a significant growth in the study of record values. Record values
have many statistical applications, such as modelling and inference involving data pertaining
to mining, sports, industry, seismology, life testing and so on. Interested Surveys are given in
Glick (1978), Gulati and Padgett (1994), Ahsanullah (1995), Arnold et al. (1998), Nagaraja
(1988) and the literature cited therein.

One of the challenges in dealing with problems involving inference with record data
is that the expected waiting time for consecutive records after the first is infinite. Such an
issue does not arise if we use the k-records proposed by Dziubdziela and Kopociński (1976).
We use the following formal definition of k-record values given by Arnold et al. (1998).

For a fixed positive integer k, the upper k-record times τn(k) and the upper k-record
values Un(k) are defined as follows.
Define τ1(k) = k and U1(k) = X1:k then for n > 1,

τn(k) = min
{
i : i > τn−1(k), Xi > Xτn−1(k)−k+1:τn−1(k)

}
.

Then the sequence of upper k-record values
{
Un(k), n ≥ 1

}
is defined as

Un(k) = Xτn(k)−k+1:τn(k) .

The cdf of the nth upper k-record value Un(k) for n ≥ 1 is given by (see, Arnold et al.,1998)

Fn(k)(x) = 1 −
[
Ḡ(x)

]k n−1∑
i=1

[
−k log Ḡ(x)

]i
i! , −∞ < x < ∞. (3)

The pdf corresponds to the cdf (3) is given by

fn(k)(x) = kn

Γ(n)
[
− log Ḡ(x)

]n−1 [
Ḡ(x)

]k−1
g(x), −∞ < x < ∞, (4)
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where Γ(·) denotes the complete gamma function. Similarly, we can define the lower k-record
values as well.

For a fixed positive integer k, the sequence of lower k-record times
{
τ ∗

n(k)

}
and lower

k-record value Ln(k) are defined as follows. Let
τ ∗

1(k) = k and L1(k) = Xk:k then for n > 1,

τ ∗
n(k) = min

{
j : j > τ ∗

n−1(k), Xj < Xk:τ∗
n−1(k)

}
.

Now the sequence of lower k-record values
{
Ln(k), n ≥ 1

}
is defined by

Ln(k) = Xk:τ∗
n(k)

.

Recently, the k-records data has shown an increased trend in problems involving statistical
inference and future event prediction. Chacko and Muraleedharan (2018) have obtained the
Bayesian and maximum likelihood estimators for the parameters of a generalized exponential
distribution based on k-record values. The same problem was discussed by Muraleedharan
and Chacko (2019) for Gompertz distribution. The recurrence relation for the single and
product moment of Gompertz distribution and its characterization based on k-records were
studied by Minimol and Thomas (2014). The Bayesian estimation of parameters for a Gum-
bel distribution and the one sample prediction of future k-record values under the Bayesian
frame work were studied by Malinowska and Szynal (2004). The best linear unbiased predic-
tor (BLUP) for future k-record value based on k-records arising from a normal distribution
was discussed by Chacko and Mary (2013) whereas the same problem for a generalized Pareto
distribution was discussed by Muraleedharan and Chacko (2022). Paul and Thomas (2015)
established some properties of upper k-record values which characterize the Weibull distri-
bution and has derived the BLUP for the model. Deheuvels and Nevzorov (1994) studied
the limiting behaviour of k-record values such as strong laws of large numbers, central limit
theorems, functional laws of the iterated logarithm and strong invariance principles etc.

In statistical inference, predicting future events based on the current knowledge is a
fundamental problem. It can be expressed in a variety of ways and in various settings. There
are two different sorts of prediction problems. The one sample prediction problem is that
the event to be predicted comes from the same sequence of events, whereas the two sample
prediction problem is when the event to be predicted comes from a different independent
sequence of events.

Several authors have considered prediction problem involving record values and order
statistics. Hsieh (1997) developed the explicit expression for the prediction intervals for
future Weibull order statistics. Al-Hussaini and Ahmad (2003) obtained the Bayesian pre-
diction bounds for future record values from a general class of distributions. Prediction of
distribution-free confidence intervals based on record values, order statistics and progres-
sively type II censored samples were extensively discussed by Ahmadi and Balakrishnan
(2005, 2008, 2010), Ahmadi et al. (2010) and Guilbaud (2004) respectively. In this pa-
per, we consider the two sample distribution-free prediction intervals for order statistics and
k-record values.

This paper is structured as follows. In Section 2, we use the observed k- record values to
derive the prediction intervals and the corresponding prediction coefficient for future order
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statistics. In Section 3, based on the observed order statistics, we obtain the prediction
intervals and its coefficient for the future k-record values. In Section 4, we consider the
interval prediction of future record values based on observed k-record values. In Section 5,
two real data sets are used to exemplify the proposed approaches presented in this paper
and finally some concluding remarks are made in Section 6.

2. Prediction of order statistics based on k-record values

In this section, we consider the two-sided prediction intervals for an order statistic from
the future sample based on the observed k-record values. Let

{
Ri(k), i ≥ 1

}
be a sequence of

observed upper (lower) k-record values arising from a population with absolutely continuous
cdf G(x). Suppose we are interested in obtaining an interval of the form

(
Rs(k), Rt(k)

)
,

1 ≤ s < t, for the rth order statistic Yr:n, 1 ≤ r ≤ n, of the future sample of size n arising
from the same population such that

P
(
Rs(k) ≤ Yr:n ≤ Rt(k)

)
= 1 − α.

Then the interval
(
Rs(k), Rt(k)

)
is called a 100 (1 − α) % prediction interval with prediction

coefficient (1 − α) for the future order statistic Yr:n. In this section, we derive such two-sided
prediction intervals for Yr:n with coverage probabilities that are free of the parent distribution
function G.

2.1. Prediction of order statistics based on upper k-record values

Let {Yi, i ≥ 1} be a sequence of iid random variables having an absolutely continuous
cdf G(x) and pdf g(x). In the following theorem, we establish the prediction intervals for
future order statistics based on the observed sequence of upper k-record values.

Theorem 1: Let
{
Ui(k), i ≥ 1

}
be a sequence of observed upper k-record values arising from

a population with absolutely continuous cdf G and pdf g. Let Y1:n ≤ Y2:n ≤ · · · ≤ Yn:n be
the order statistics from a future random sample of size n arising from the same cdf G.
Then

(
Us(k), Ut(k)

)
, for 1 ≤ s < t, is a prediction interval for the rth order statistic Yr:n, for

1 ≤ r ≤ n, whose coverage probability is free of G and is given by

α1(k) (s, t; r, n) = r

(
n

r

)
t−1∑
i=s

r−1∑
j=0

(
r − 1
j

)
(−1)j ki

(n+ k + j + 1 − r)i+1 . (5)

Proof: For a given real number v and for 1 ≤ s < t, we have

P
(
Us(k) ≤ v

)
= P

(
Us(k) ≤ v, Ut(k) < v

)
+ P

(
Us(k) ≤ v, Ut(k) ≥ v

)
= P

(
Ut(k) < v

)
+ P

(
Us(k) ≤ v ≤ Ut(k)

)
.

Hence
P
(
Us(k) ≤ v ≤ Ut(k)

)
= P

(
Us(k) ≤ v

)
− P

(
Ut(k) < v

)
. (6)
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By using (3), (6) can be expressed as

P
(
Us(k) ≤ v ≤ Ut(k)

)
=
[
Ḡ(v)

]k t−1∑
i=s

[
−k log Ḡ(v)

]i
i! . (7)

Now for 1 ≤ s < t, and using the conditioning arguments, we can write (7) as

α1(k) (s, t; r, n) = P
(
Us(k) ≤ Yr:n ≤ Ut(k)

)
=

∞�
−∞

P
(
Us(k) ≤ Yr:n ≤ Ut(k)|Yr:n = v

)
fr:n(v)dv

=
∞�

−∞

P
(
Us(k) ≤ v ≤ Ut(k)

)
fr:n(v)dv

=
t−1∑
i=s

n!
i! (r − 1)! (n− r)!

∞�
−∞

[
−k log Ḡ(v)

]i [
Ḡ(v)

]n+k−r
[G(v)]r−1

× g(v)dv. (8)

Taking y = −k log Ḡ(v) and applying the binomial expansion, (8) reduces to the following

α1(k) (s, t; r, n) = r

k

(
n

r

)
t−1∑
i=s

r−1∑
j=0

(−1)j

i!

(
r − 1
j

) ∞�

y=0

yi exp
[
−
(
n+ k + j + 1 − r

k

)
y

]
dy

= r

(
n

r

)
t−1∑
i=s

r−1∑
j=0

(
r − 1
j

)
(−1)j ki

(n+ k + j + 1 − r)i+1 . (9)

Hence the proof.

If n, r and the desired confidence level α0 are supplied, we can choose s and t so that
α1(k) (s, t; r, n) surpasses α0 . Since α1(k) (s, t; r, n) is a step function, the confidence coefficient
may not equal to α0 but may be set to a value somewhat higher than α0. Furthermore, the
choice of s and t is not unique. So, for a given confidence level α0, r and n, we would
like to construct a prediction interval whose expected length as short as possible among all
prediction intervals with the same level. First, notice that the two-sided prediction intervals
exist for a given α0, r and n if and only if, for large m,

P
(
U1(k) ≤ Yr:n ≤ Um(k)

)
≥ α0.

We have evaluated α1(k) (s, t; r, n) for n = 20, 30 and some selected values of (s, t) and r
for k = 2 and k = 3 and the values are presented in Table 1. It can be observed that the
prediction coefficient is increasing in r when the other parameters (s, t) and n are fixed and
achieves reasonable prediction coefficient value when r close to n. It is also observed that for
fixed n, r and k, the prediction coefficient α1(k) (s, t; r, n) is decreasing in s and increasing in
t.
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2.2. Prediction of order statistics based on lower k-record values

In this subsection, we consider the prediction intervals for future order statistics on the
basis of the observed lower k-record values. If Ln(k) denotes the nth lower k-record value,
then the cdf of Ln(k) is given by

F ∗
n(k)(x) = [G(x)]k

n−1∑
s=1

[−k logG(x)]s

s! , −∞ < x < ∞. (10)

The pdf corresponds to the cdf (10) is given by

f ∗
n(k)(x) = kn

Γ(n) [− logG(x)]n−1 [G(x)]k−1 g(x), −∞ < x < ∞. (11)

Now we can establish the following theorem for the interval prediction of future order statis-
tics based on the observed sequence of lower k-record values.

Theorem 2: Suppose the conditions of Theorem 1 hold and let
{
Li(k), i ≥ 1

}
be the se-

quence of observed lower k-record values emerging from the population. Then
(
Lt(k), Ls(k)

)
,

for 1 ≤ s < t, is a prediction interval for the rth order statistic Yr:n, for 1 ≤ r ≤ n, whose
prediction coefficient is free of G and is given by

α2(k) (s, t; r, n) = r

(
n

r

)
t−1∑
i=s

n−r∑
j=0

(
n− r

j

)
(−1)j ki

(r + k + j)i+1 . (12)

Proof: The proof is similar to that of Theorem 1 and thus omitted.

Remark 1: Since α2(k) (s, t; r, n) = α1(k) (s, t;n− r + 1, n), we can use Table 1 for evaluating
(12).

2.3. Prediction of order statistics based on upper and lower k-record values
jointly

In certain studies such as meteorological studies, the upper and lower k-record values
are observed simultaneously. In such studies, when predicting the order statistics from a
future sample, it is preferable to examine both the upper and lower k-record values together.

Theorem 3: Suppose the conditions of Theorem 1 hold; let Ls(k) and Ut(k) denote the sth
lower k-record and tth upper k-record values respectively. Then

(
 Ls(k), Ut(k)

)
is a prediction

interval for the rth order statistic Yr:n, for 1 ≤ r ≤ n, with coverage probability free of G
and is given by

α3(k) (s, t; r, n) = r

(
n

r

)s−1∑
i=0

n−r∑
j=0

(−1)j
(

n−r
j

)
ki

(j + k + r)i+1 +
t−1∑
i=0

r−1∑
j=0

(−1)j
(

r−1
j

)
ki

(n+ j + k + 1 − r)i+1

− 1. (13)

Proof: For a fixed real number v and 1 ≤ s < t, we can express

P
(
Ls(k) ≤ v ≤ Ut(k)

)
= [G(v)]k

s−1∑
i=0

[−k logG(v)]i

i! +
[
Ḡ(v)

]k t−1∑
i=0

[
−k log Ḡ(v)

]i
i! − 1. (14)
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Now for 1 ≤ s < t, and using the conditioning arguments, we can write (14) as

α3(k) (s, t; r, n) = P
(
Ls(k) ≤ Yr:n ≤ Ut(k)

)
=

∞�
−∞

P
(
Us(k) ≤ Yr:n ≤ Ut(k)|Yr:n = v

)
fr:n(v)dv

=
∞�

−∞

P
(
Us(k) ≤ v ≤ Ut(k)

)
fr:n(v)dv

=
s−1∑
i=1

n!
i! (n− r)! (r − 1)!

∞�
−∞

[−k logG(v)]i
[
Ḡ(v)

]n−r
[G(v)]k+r−1 g(v)dv

+
t−1∑
i=1

n!
i! (n− r)! (r − 1)!

∞�
−∞

[
−k log Ḡ(v)

]i [
Ḡ(v)

]k+n−r
[G(v)]r−1 g(v)dv − 1

= r

(
n

r

)
s−1∑
i=1

n−r∑
j=0

(−1)j
(

n−r
j

)
i!k

∞�

y=0

yi
(
e− y

k

)j+k+r
dy + r

(
n

r

)
t−1∑
i=1

r−1∑
j=0

(−1)j
(

r−1
j

)
i!k

×
∞�

z=0

zi
(
e− z

k

)n+j+k+1−r
dz − 1

= r

(
n

r

)t−1∑
i=0

r−1∑
j=0

(−1)j
(

n−r
j

)
ki

(j + k + r)i+1 +
t−1∑
i=0

r−1∑
j=0

(−1)j
(

r−1
j

)
ki

(n+ j + k + 1 − r)i+1

− 1.

Hence the proof.

Table 2 provides the values of α3(k) (s, t; r, n) for n = 10, 20 and 30 and some selected
values of (s, t) and r for k = 2 and k = 3. We can see that the prediction coefficient improves
when the intervals are constructed upper and lower k-record values jointly. It is also observed
that for fixed n, r and k, the prediction coefficient α3(k) (s, t; r, n) is non-decreasing in s and
t.

3. Prediction of future k-record values based on order statistics

Suppose we are interested in obtaining an interval for the rth future k-record value Rr(k)
(upper or lower) based on the observed order statistics of size n of the form (Xs:n, Xt:n) , 1 ≤
s < t ≤ n, such that

P
(
Xs:n ≤ Rr(k) ≤ Xt:n

)
= 1 − α.

Then we refer the interval (Xs:n, Xt:n) as a 100 (1 − α) % prediction interval with prediction
coefficient (1 − α) for the rth future k- record value Rr(k). In this section, we derive such two-
sided prediction intervals with coverage probabilities being free of the parent distribution.
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3.1. Prediction of upper k- record values based on order statistics

In this subsection, we wish to predict the rth future upper k-record value Ur(k) based
on the observed order statistics.

Theorem 4: Let Y1:n ≤ Y2:n ≤ · · · ≤ Yn:n be the observed order statstics arising from a
random sample of size n from a population with absolutely continuous cdf G and pdf g
respectively. Then (Ys:n, Yt:n), for 1 ≤ s < t ≤ n, is a prediction interval for the rth future
upper k-record value Ur(k) arising from the same population whose coverage probability is
free of G and is given by

α4(k) (s, t; r, n) =
t−1∑
i=s

i∑
j=0

(
n

i

)(
i

j

)
(−1)j kr

(n+ j + k − i)r . (15)

Proof: For any real number v and 1 ≤ s < t ≤ n, by using (1), we obtain the following

P (Ys:n ≤ v ≤ Yt:n) =
t−1∑
i=s

(
n

i

)
[G(v)]i

[
Ḡ(v)

]n−i
. (16)

Now for 1 ≤ s < t ≤ n, and using the conditioning arguments, we can write
α4(k) (s, t; r, n) = P

(
Ys:n ≤ Ur(k) ≤ Yt:n

)
=

∞�
−∞

P
(
Xs:n ≤ v ≤ Xt:n|Ur(k) = v

)
fr(k)(v)dv

=
∞�

−∞

P (Xs:n ≤ v ≤ Xt:n) fr(k)(v)dv

=
t−1∑
i=s

(
n

i

)
kr

(r − 1)!

∞�
−∞

[
− log Ḡ(v)

]r−1 [
Ḡ(v)

]n+k−i−1
[G(v)]i g(v)dv

=
t−1∑
i=s

i∑
j=0

(
n

i

)(
i

j

)
kr (−1)j

(r − 1)!

∞�
−∞

yr−1 exp [− (n+ j + k − i) y] dy

=
t−1∑
i=s

i∑
j=0

(
n

i

)(
i

j

)
(−1)j kr

(n+ j + k − i)r .

Hence the proof.

For a given confidence level α0 and specified r, we would like to construct prediction
interval whose expected length as short as possible among all prediction intervals with the
same confidence level. First observe that, for a given α0 and r, the two-sided prediction
interval exists if and only if

P
(
X1:n ≤ Ur(k) ≤ Xn:n

)
≥ α0.

Table 3 represents the values of α4(k) (s, n; r, n) for n = 10, 20, 30, 35 and 40 and some selected
values of s and r for k = 2 and k = 3. We can observe that α4(k) (s, n; r, n) is decreasing in
r and s but improves with n and k.



2023] NONPARAMETRIC PREDICTION INTERVALS 89

3.2. Prediction of lower k-record values based on order statistics

For predicting lower k-record values, we consider an interval (Xs:n, Xt:n), for 1 ≤ s <
t ≤ n, based on the observed order statistics. Analogous to the result presented for upper
k-record values, we obtain the following theorem.

Theorem 5: Suppose the conditions of Theorem 4 hold; then (Ys:n, Yt:n), for 1 ≤ s < t ≤ n,
is a prediction interval for the rth future lower k-record value Lr(k) arising from the same
population whose coverage probability is free of G and is given by

α5(k) (s, t; r, n) =
t−1∑
i=s

n−i∑
j=0

(
n

i

)(
n− i

j

)
(−1)j kr

(i+ j + k)r . (17)

Proof: Proof is similar to that of Theorem 4 and hence omitted.

Remark 2: Note that if

α4(k) (s, t; r, n) =
t−1∑
i=s

(
n

i

)
ψk (i, j, r;n)

then
α5(k) (s, t; r, n) =

t−1∑
i=s

(
n

i

)
ψk (n− i, j, r;n) ,

where
ψk (i, j, r;n) =

i∑
j=0

(
i

j

)
(−1)j kr

(n+ j + k − i)r . (18)

Thus we can use Table 3 for evaluating (17) by making a simple modification.

4. Prediction of future record values based on k-record values

Let
{
Ri(k), i ≥ 1

}
be a sequence of observed k-record values arising from a population

with absolutely continuous cdf G(x). Suppose we are interested in obtaining an interval for
the rth future record value Rr of the form

(
Rm(k), Rn(k)

)
, 1 ≤ m < n, such that

P
(
Rn(k) ≤ Rr ≤ Rn(k)

)
= 1 − α.

Then we refer the interval
(
Rm(k), Rn(k)

)
as a 100 (1 − α) % prediction interval with pre-

diction coefficient (1 − α) for the future record value Rr. In this section, we derive such
two-sided prediction intervals for Rr with coverage probabilities being free of the parent
distribution G.

4.1. Prediction of future upper record values based on upper k-record values

In this subsection, we wish to predict the rth future upper record value based on the
observed sequence of upper k-record values.
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Theorem 6: Let
{
Ui(k), i ≥ 1

}
be a sequence of observed upper k- record values arising

from a population with absolutely continuous cdf G. Then
(
Us(k), Ut(k)

)
, for 1 ≤ s < t, is a

prediction interval for the rth future upper record value Ur arising from the same population
with the corresponding prediction coefficient is given by

α6(k) (s, t; r) =
t−1∑
j=s

(
j + r − 1

j

)
kj

(1 + k)j+r . (19)

Proof: For a given real number v and for 1 ≤ s < t, we can express

P
(
Us(k) ≤ v ≤ Ut(k)

)
=
[
Ḡ(v)

]k t−1∑
j=s

[
−k log Ḡ(v)

]j
j! . (20)

Now for s < t, and using the conditioning arguments, we can write (20) as

α6(k) (s, t; r) = P
(
Us(k) ≤ Ur ≤ Ut(k)

)
=

∞�
−∞

P
(
Us(k) ≤ Ur ≤ Ut(k)|Ur = v

)
fr(1)(v)dv

=
∞�

−∞

P
(
Us(k) ≤ v ≤ Ut(k)

)
fr(1)(v)dv

=
t−1∑
j=s

1
j! (r − 1)!

∞�
−∞

[
−k log Ḡ(v)

]j [
− log Ḡ(v)

]r−1 [
Ḡ(v)

]k
g(v)dv

=
t−1∑
j=s

(
j + r − 1

j

)
kj

(1 + k)j+r .

Hence the proof.

LetW denote a negative binomial random variable counting the number of trials needed
to get rth success where the success probability p = 1/ (k + 1). Then, the expression in (19)
can be viewed as the probability that the rth success occurs between sth and t − 1 trials;
that is, it represents P (s ≤ W < t), and hence α6(k) (s, t; r) can be directly computed from
negative binomial cdf using common statistical packages.

4.2. Prediction of future lower record values based on lower k-record values

In this section, we construct the prediction intervals for future lower record value based
on the observed sequence lower k- record values. Analogous to the result presented for upper
record values, we obtain the following theorem.

Theorem 7: Suppose the conditions of Theorem 6 hold, let
{
Ln(k), n ≥ 1

}
be a sequence of

observed lower k-record values arising from a population. Then
(
Lt(k), Ls(k)

)
, for 1 ≤ s < t, is

a prediction interval for the rth future lower record value Lr arising from the same population
with the corresponding prediction coefficient is given by (19).
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Proof: Proof is similar to that of Theorem 6 and hence omitted.

4.3. Prediction of upper record value based on lower and upper k-record values
jointly

There are some situations wherein upper and lower k-record values are observed jointly,
just as in the case of weather data. In these cases, it would be better to consider the upper
and lower k-record values jointly to predict the future upper record value of a future sample.

Theorem 8: Let
{
Li(k), i ≥ 1

}
and

{
Ui(k), i ≥ 1

}
respectively denote the observed sequences

of lower and upper k-record values arising from a population with absolutely continuous cdf
G. Then

(
Ls(k), Ut(k)

)
, for 1 ≤ s < t, is a prediction interval for the rth future upper

record value Ur of the future random sample arising from the same population with the
corresponding prediction coefficient, denoted by α7(k) (s, t; r, n) being free of G; it can be
expressed as

α7(k) (s, t; r) =
s−1∑
j=1

θk (j, r)
j! (r − 1)! + α6(k) (0, t; r) − 1, (21)

where

θk (j, r) =
1�

0

yk (−k log y)j [− log (1 − y)]r−1 dy (22)

and α6(k) (0, t, r) is defined by (19).

Proof: For a given real number v and for 1 ≤ s < t, we obtain
P
(
Ls(k) ≤ v ≤ Ut(k)

)
= P

(
Ls(k) ≤ v

)
− P

(
Ut(k) ≤ v

)
=

s−1∑
j=0

[−k logG(v)]j

j! [G(v)]k +
t−1∑
j=0

[
−k log Ḡ(v)

]j
j!

[
Ḡ(v)

]k
− 1.

(23)
Now for 1 ≤ s < t, and using the conditioning arguments, we can write (23) as

α7(k) (s, t; r) = P
(
Ls(k) ≤ Ur ≤ Ut(k)

)
=

∞�
−∞

P
(
Ls(k) ≤ Ur ≤ Ut(k)|Ur = v

)
gr(v)dv

=
∞�

−∞

P
(
Ls(k) ≤ v ≤ Ut(k)

)
gr(v)dv

=
s−1∑
j=0

1
j! (r − 1)!

∞�
−∞

[−k logG(v)]j
[
− log Ḡ(v)

]r−1
[G(v)]k g(v)dv

+
t−1∑
j=0

1
j! (r − 1)!

∞�
−∞

[
−k log Ḡ(v)

]j [
− log Ḡ

]r−1 [
Ḡ(v)

]k
g(v)dv − 1. (24)
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Taking y = G(v) in the first integral and z = −k log Ḡ(v) in the second integral of (24) and
then evaluating, we obtain

α7(k) (s, t; r) =
s−1∑
j=0

θk (j, r)
j! (r − 1)! +

t−1∑
j=0

kj

(1 + k)j+r

(
j + r − 1

j

)
− 1, (25)

where θk (j, r) is defined in (22). Therefore the prediction interval for the rth upper record
value Ur from the future sequence is

(
Ls(k), Ut(k)

)
whose prediction coefficient is free of the

parent distribution G and is given by

α7(k) (s, t; r) =
s−1∑
j=1

θk (j, r)
j! (r − 1)! + α6(k) (0, t; r) − 1. (26)

Hence the proof.

Tables 4 and 5 represent the values of α7(k) (s, t; r) when r = 1 and r = 2 for k = 2 and
k = 3 with 1 ≤ s ≤ 7 and 4 ≤ t ≤ 7.

5. Illustration using real data

Example 1: We use the data set given in Arnold et al.(1998, pp.49-50) which represent
the average July temparatures (in degrees centigrade) of Neuenberg, Switzerland, during
the period 1864-1993, and extract the 2 - record values to illustrate the prediction methods
described for predicting future order statistics. Ahmadi and Balakrishnan (2011) used the
same data set for predicting future order statistics based on observed ordinary record values.
The first order autocorrelation for the data set at the first three lags are 0.022, -0.007 and
-0.076 respectively. This small amount of autocorrelation shows that the data is independent
in nature. The upper and lower 2 - record values extracted from the data set are obtained
as given below.

m 1 2 3 4 5 6 7 8 9 10
Um(2) 19.0 19.7 20.1 21.0 21.4 21.7 22 22.1 22.3 22
Lm(2) 20.1 19 18.4 17.4 17.2 16.2 15.8 15.6 - -

Based on the observed upper and lower 2-record values and by using Table 2, we obtain
the prediction intervals of future order statistics with prediction coefficient at least 90% for
n = 10, 20 and 30 are presented in the following table.

(n, r) (s, t) (Ls, Ut) α3(2) (s, t; r, n) (n, r) (s, t) (Ls, Ut) α3(2) (s, t; r, n)
(10, 6) (5, 7) (17.2, 22) 0.9705 (20, 15) (4, 5) (17.4, 21.4) 0.9456
(10, 8) (3, 8) (18.4, 22.1) 0.9279 (30, 10) (7, 4) (15.8, 21) 0.9726
(20, 5) (7, 4) (15.8, 21) 0.9433 (30, 20) (8, 7) (15.6, 22) 0.9900

When comparing the results in Table 2 to those of Ahmadi and Balakrishnan (2010),
we see that when upper and lower record values are evaluated jointly, the interval prediction
coefficient increases with lower values of k.
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Example 2: Consider the amount of annual rainfall at Los Angeles Civic Centre (LACC)
during 1900-2000. Then by Ahmadi and Balakrishnan (2011), the order statistics corre-
sponding to the data set is given by

r 1 2 3 4 5 6 7 8 9 10
Y ear 1960 1958 1923 1971 1975 1947 1989 1986 1969 1963
Yr:n 4.85 5.58 6.67 7.17 7.21 7.22 7.35 7.66 7.74 7.93
r 20 30 50 70 80 90 95 98 99 100
Y ear 1980 1941 1928 1926 1921 1937 1992 1982 1940 1977
Yr:n 8.96 11.10 12.66 18.03 19.66 23.43 27.36 31.28 32.76 33.44

By using Table 3, we obtain the prediction intervals of future k-record values with prediction
coefficient at least 90% for k = 2 and k = 3 are presented in the following table.

(n, r) s (Ys:n, Yn:n) α4(2) (s, n; r, n) (n, r) s (Ys:n, Yn:n) α4(3) (s, n; r, n)
(35, 4) 6 (7.21, 33.44) 0.9204 (20, 4) 6 (7.21, 33.44) 0.9331
(35, 4) 8 (7.66, 33.44) 0.9185 (40, 5) 10 (7.93, 33.44) 0.9733
(40, 4) 10 (7.93, 33.44) 0.9288 (40, 6) 20 (8.96, 33.44) 0.9273

Ahmadi and Balakrishnan (2010) also used the same data set for constructing prediction
intervals for future ordinary record values.

6. Conclusion

In this paper, we derived the distribution-free prediction intervals for order statistics
and record values based on observed k-record values, as well as for future k-record values
based on observed order statistics. The coverage probabilities of these intervals are exact and
independent of the parent distribution. The proposed method can be extended to develop
outer and inner prediction intervals for future k-record intervals.
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Table 1: The values of α1(k) (s, t; r, n) for n = 20 and 30 and some selected
values of s, t and r when k = 2 and k = 3

n r s
k = 2 k = 3
t t

4 6 8 10 4 6 8 10

20

5
1 0.4061 0.4111 0.4113 0.4113 0.5208 0.5381 0.5392 0.5392
2 0.1103 0.1152 0.1154 0.1154 0.1902 0.2075 0.2086 0.2086
3 0.0210 0.0260 0.0261 0.0261 0.0478 0.0651 0.0661 0.0662

10
1 0.6562 0.7089 0.7139 0.7143 0.6789 0.8104 0.8349 0.8381
2 0.3204 0.3732 0.3782 0.3785 0.4104 0.5419 0.5664 0.5697
3 0.1028 0.1556 0.1606 0.1609 0.1644 0.2958 0.3203 0.3236

12
1 0.6895 0.7894 0.8036 0.8051 0.6274 0.8358 0.8936 0.9049
2 0.3927 0.4926 0.5068 0.5083 0.4277 0.6362 0.6939 0.7052
3 0.1468 0.2467 0.2609 0.2624 0.1951 0.4036 0.4613 0.4726

15
1 0.6327 0.8414 0.8971 0.9074 0.4378 0.7435 0.8969 0.9501
2 0.4331 0.6418 0.6975 0.7078 0.3413 0.6471 0.8004 0.8537
3 0.1978 0.4065 0.4622 0.4725 0.1837 0.4894 0.6428 0.6960

17
1 0.5013 0.7894 0.9112 0.9468 0.2635 0.5639 0.7937 0.9152
2 0.3794 0.6676 0.7893 0.8249 0.2199 0.5204 0.7502 0.8717
3 0.1961 0.4842 0.6059 0.6415 0.1305 0.4309 0.6607 0.7822

19
1 0.2795 0.5792 0.8001 0.9151 0.0959 0.2817 0.5125 0.7129
2 0.2313 0.5309 0.7518 0.8668 0.0847 0.2705 0.5014 0.7017
3 0.1354 0.4351 0.6560 0.7710 0.0552 0.2410 0.4718 0.6722

20
1 0.1384 0.3555 0.5859 0.7633 0.0342 0.1238 0.2729 0.4487
2 0.1195 0.3365 0.5669 0.7443 0.0309 0.1206 0.2697 0.4455
3 0.0749 0.2919 0.5223 0.6998 0.0211 0.1108 0.2599 0.4357

30

20
1 0.6908 0.8379 0.8637 0.8667 0.5546 0.8264 0.9214 0.9433
2 0.4366 0.5836 0.6095 0.6124 0.4117 0.6835 0.7785 0.8004
3 0.1806 0.3277 0.3535 0.3565 0.2065 0.4783 0.5733 0.5952

22
1 0.6498 0.8527 0.9008 0.9083 0.4523 0.7661 0.9125 0.9574
2 0.4449 0.6477 0.6959 0.7034 0.3553 0.6691 0.8155 0.8604
3 0.2017 0.4045 0.4527 0.4602 0.1920 0.5059 0.6523 0.6972

24
1 0.5727 0.8359 0.9219 0.9402 0.3323 0.6591 0.8652 0.9505
2 0.4213 0.6846 0.7705 0.7889 0.2741 0.6009 0.8070 0.8923
3 0.2086 0.4718 0.5578 0.5762 0.1590 0.4858 0.6918 0.7771

26
1 0.4538 0.7676 0.9131 0.9575 0.2069 0.4992 0.7545 0.9013
2 0.3565 0.6703 0.8158 0.8602 0.1781 0.4704 0.7257 0.8725
3 0.1926 0.5064 0.6519 0.6963 0.1105 0.4029 0.6581 0.8049

28
1 0.2900 0.6077 0.8312 0.9363 0.0936 0.2907 0.5402 0.7506
2 0.2423 0.5599 0.7834 0.8885 0.0837 0.2807 0.5303 0.7407
3 0.1433 0.4609 0.6844 0.7895 0.0556 0.2526 0.5022 0.7126

29
1 0.1930 0.4699 0.7216 0.8770 0.0489 0.1777 0.3804 0.5949
2 0.1661 0.4429 0.6947 0.8501 0.0445 0.1733 0.3760 0.5905
3 0.1031 0.3800 0.6317 0.7872 0.0306 0.1594 0.3621 0.5766

30
1 0.0911 0.2718 0.4982 0.6964 0.0166 0.0730 0.1877 0.3465
2 0.0808 0.2615 0.4879 0.6861 0.0154 0.0718 0.1864 0.3452
3 0.0529 0.2336 0.4601 0.6582 0.0109 0.0674 0.1820 0.3408
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Table 2: The values of α3(k) (s, t; r, n) for n = 10, 20 and 30 and some selected
values of s, t and r when k = 2 and k = 3

n r s
k = 2 k = 3
t t

4 5 6 7 8 4 5 6 7 8

10

2
2 0.1569 0.1601 0.1607 0.1609 0.1609 0.0060 0.0156 0.0184 0.0192 0.0194
3 0.3220 0.3252 0.3259 0.3260 0.3260 0.0296 0.0392 0.0420 0.0428 0.0430
5 0.6527 0.6559 0.6565 0.6567 0.6567 0.0861 0.0957 0.0985 0.0993 0.0995

4
2 0.3701 0.3909 0.3974 0.3992 0.3998 0.0192 0.0693 0.0905 0.0990 0.1022
3 0.6046 0.6253 0.6318 0.6337 0.6342 0.0976 0.1477 0.1689 0.1774 0.1806
5 0.8715 0.8922 0.8987 0.9006 0.9011 0.2125 0.2625 0.2838 0.2922 0.2955

6
2 0.5279 0.5942 0.6237 0.6357 0.6403 0.0215 0.1390 0.2090 0.2475 0.2674
3 0.7275 0.7938 0.8232 0.8353 0.8399 0.1432 0.2606 0.3307 0.3692 0.3891
5 0.8627 0.9290 0.9585 0.9705 0.9752 0.2525 0.3699 0.4400 0.4785 0.4983

8
2 0.5219 0.6563 0.7419 0.7915 0.8183 0.4357 0.1488 0.2772 0.3743 0.4427
3 0.6315 0.7659 0.8514 0.9010 0.9279 0.1007 0.2551 0.3835 0.4806 0.5490
5 0.6742 0.8086 0.8941 0.9437 0.9705 0.1562 0.3106 0.4389 0.5361 0.6044

20

2
2 0.0609 0.0612 0.0612 0.0612 0.0612 0.0012 0.0024 0.0025 0.0026 0.0026
3 0.1571 0.1571 0.1571 0.1571 0.1571 0.0062 0.0074 0.0076 0.0076 0.0076
4 0.2921 0.2925 0.2925 0.2925 0.2925 0.0146 0.0158 0.0158 0.0160 0.0160

5
3 0.4351 0.4393 0.4400 0.4402 0.4402 0.0446 0.0583 0.0619 0.0627 0.0629
5 0.7902 0.7944 0.7952 0.7953 0.7954 0.1282 0.1419 0.1455 0.1463 0.1465
7 0.9433 0.9475 0.9483 0.9484 0.9485 0.1851 0.1989 0.2035 0.2033 0.2035

7
3 0.5882 0.6006 0.6035 0.6041 0.6043 0.0865 0.1218 0.1336 0.1372 0.1382
5 0.8847 0.8970 0.9000 0.9006 0.9007 0.2058 0.2411 0.2529 0.2565 0.2575
9 0.9818 0.9942 0.9971 0.9977 0.9979 0.2770 0.3123 0.3241 0.3277 0.3288

12
5 0.8730 0.9437 0.9729 0.9836 0.9871 0.2707 0.4027 0.4792 0.5185 0.5369
7 0.8836 0.9543 0.9835 0.9942 0.9977 0.2896 0.4216 0.4981 0.5374 0.5558

10 0.8843 0.9550 0.9842 0.9949 0.9984 0.2919 0.4239 0.5004 0.5397 0.5581

15
4 0.8749 0.9456 0.9747 0.9854 0.9890 0.1641 0.3349 0.4699 0.5639 0.6232
8 0.8843 0.9550 0.9842 0.9949 0.9984 0.1836 0.3544 0.4894 0.5834 0.6427

12 0.8843 0.9550 0.9842 0.9949 0.9985 0.1837 0.3545 0.4894 0.5835 0.6428

18
5 0.4278 0.5981 0.7388 0.8414 0.9091 0.0376 0.1602 0.2960 0.4284 0.5450

10 0.4279 0.5982 0.7389 0.8415 0.9093 0.0381 0.1608 0.2966 0.4289 0.5455
17 0.4279 0.5982 0.7389 0.8415 0.9093 0.0381 0.1608 0.2966 0.4289 0.5455

30

10
2 0.3290 0.3388 0.3408 0.3412 0.3413 0.0170 0.0469 0.0558 0.0582 0.0588
5 0.8889 0.8987 0.9007 0.9011 0.9011 0.2015 0.2314 0.2403 0.2427 0.2433
7 0.9726 0.9824 0.9844 0.9848 0.9848 0.2598 0.2897 0.2986 0.3010 0.3016

15
5 0.9200 0.9594 0.9718 0.9753 0.9761 0.2872 0.3792 0.4210 0.4377 0.4438

10 0.9435 0.9829 0.9954 0.9988 0.9997 0.3243 0.4163 0.4581 0.4748 0.4809
12 0.9435 0.9829 0.9954 0.9988 0.9997 0.3245 0.4165 0.4583 0.4750 0.4810

20
8 0.8240 0.9243 0.9710 0.9900 0.9968 0.2520 0.4155 0.5239 0.5865 0.6188

15 0.8240 0.9243 0.9710 0.9900 0.9969 0.2522 0.4156 0.5240 0.5867 0.6190
18 0.8240 0.9243 0.9710 0.9900 0.9969 0.2522 0.4156 0.5240 0.5867 0.6190

25 10 0.5611 0.7324 0.8524 0.9254 0.9651 0.0860 0.2460 0.4026 0.5357 0.6366
15 0.5611 0.7324 0.8524 0.9254 0.9651 0.0860 0.2460 0.4026 0.5357 0.6366
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Table 3: The values of α4(k) (s, n; r, n) for n = 10, 20, 30, 35 and 40 and some selected
values of s and r when k = 2 and k = 3

n s
k = 2 k = 3
r r

4 5 6 7 8 4 5 6 7 8

10
2 0.7280 0.6016 0.4758 0.3633 0.2696 0.8841 0.8211 0.7369 0.6432 0.5481
4 0.7022 0.5934 0.4734 0.3626 0.2694 0.8128 0.7902 0.7245 0.6384 0.5464
6 0.6169 0.5537 0.4567 0.3561 0.2670 0.6337 0.6785 0.6616 0.6056 0.5302
8 0.4093 0.4141 0.3732 0.3102 0.2433 0.3332 0.4150 0.4564 0.4590 0.4321

20

2 0.8569 0.7563 0.6402 0.5212 0.4098 0.9639 0.9286 0.8756 0.8070 0.7265
4 0.8547 0.7560 0.6401 0.5212 0.4098 0.9558 0.9268 0.8752 0.8069 0.7265
6 0.8478 0.7545 0.6398 0.5211 0.4098 0.9331 0.9196 0.8732 0.8064 0.7264
8 0.8315 0.7497 0.6386 0.5209 0.4097 0.8860 0.9003 0.8663 0.8041 0.7257
10 0.7992 0.7379 0.6349 0.5158 0.4094 0.8057 0.8587 0.8475 0.7965 0.7229
15 0.5808 0.6128 0.5725 0.4918 0.3978 0.4346 0.5691 0.6508 0.6761 0.6550
18 0.2852 0.3546 0.3791 0.3627 0.3191 0.1463 0.2325 0.3151 0.3787 0.4149

30

2 0.9068 0.8272 0.7262 0.6135 0.4998 0.9829 0.9618 0.9268 0.8766 0.8122
4 0.9063 0.8272 0.7262 0.6135 0.4998 0.9809 0.9615 0.9267 0.8766 0.8122
6 0.9048 0.8270 0.7262 0.6135 0.4998 0.9753 0.9603 0.9265 0.8766 0.8122
8 0.9013 0.8263 0.7261 0.6134 0.4997 0.9631 0.9570 0.9257 0.8764 0.8121
10 0.8946 0.8248 0.7257 0.6134 0.4997 0.9413 0.9498 0.9236 0.8759 0.8120
15 0.8504 0.8102 0.7216 0.6123 0.4995 0.8239 0.8945 0.9012 0.8677 0.8093
20 0.7307 0.7515 0.6971 0.6033 0.4965 0.5902 0.7323 0.8056 0.8181 0.7860
25 0.4680 0.5596 0.5786 0.5389 0.4649 0.2628 0.4014 0.5230 0.6059 0.6423

35

2 0.9215 0.8499 0.7556 0.6470 0.5341 0.9873 0.9704 0.9411 0.8976 0.8397
4 0.9213 0.8499 0.7556 0.6470 0.5341 0.9862 0.9702 0.9411 0.8976 0.8397
6 0.9204 0.8498 0.7556 0.6470 0.5341 0.9829 0.9696 0.9410 0.8976 0.8397
8 0.9185 0.8495 0.7556 0.6470 0.5341 0.9758 0.9680 0.9407 0.8975 0.8397
10 0.9148 0.8488 0.7555 0.6469 0.5341 0.9630 0.9644 0.9398 0.8973 0.8397
15 0.8909 0.8422 0.7539 0.6466 0.5341 0.8920 0.9364 0.9303 0.8945 0.8389
25 0.6871 0.7394 0.7093 0.6294 0.5280 0.5020 0.6622 0.7642 0.8047 0.7946
30 0.4219 0.5289 0.5689 0.5476 0.4852 0.2107 0.3405 0.4663 0.5639 0.6202

40

2 0.9327 0.8679 0.7795 0.6750 0.5636 0.9998 0.9767 0.9515 0.9135 0.8613
4 0.9323 0.8679 0.7795 0.6750 0.5636 0.9998 0.9767 0.9514 0.9135 0.8613
6 0.9318 0.8678 0.7795 0.6750 0.5636 0.9998 0.9762 0.9514 0.9135 0.8613
8 0.9308 0.8676 0.7795 0.6750 0.5636 0.9965 0.9753 0.9512 0.9135 0.8613
10 0.9288 0.8672 0.7795 0.6750 0.5636 0.9887 0.9733 0.9508 0.9134 0.8612
15 0.9142 0.8639 0.7788 0.6748 0.5636 0.9458 0.9582 0.9464 0.9122 0.8610
20 0.8771 0.8516 0.7754 0.6740 0.5634 0.8442 0.9108 0.9273 0.9055 0.8588
25 0.7965 0.8152 0.7615 0.6694 0.5621 0.6762 0.8014 0.8677 0.8772 0.8468
30 0.6437 0.7216 0.7137 0.6482 0.5537 0.4360 0.5966 0.7189 0.7830 0.7937
35 0.3823 0.4991 0.5557 0.5506 0.4999 0.1718 0.2916 0.4166 0.5231 0.5943
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Table 4: Values of α7(k) (s, t; 1) for 1 ≤ s ≤ 7 and 4 ≤ t ≤ 7

s
k = 2 k = 3
t t

4 5 6 7 4 5 6 7
1 0.1358 0.2016 0.2455 0.2748 0.0035 0.0527 0.1121 0.1565
2 0.3580 0.4239 0.4678 0.4970 0.1911 0.2402 0.2995 0.3440
3 0.5062 0.5720 0.6159 0.6452 0.3317 0.3808 0.4401 0.4846
4 0.6049 0.6707 0.7146 0.7339 0.4372 0.4862 0.5456 0.5901
5 0.6708 0.7366 0.7805 0.8098 0.5163 0.5654 0.6247 0.6692
6 0.7147 0.7805 0.8244 0.8537 0.5756 0.6247 0.6840 0.7285
7 0.7439 0.8098 0.8537 0.8829 0.6201 0.6692 0.7285 0.7730

Table 5: Values of α7(k) (s, t; 2) for 1 ≤ s ≤ 7 and 4 ≤ t ≤ 7

s
k = 2 k = 3
t t

4 5 6 7 4 5 6 7
1 0.1502 0.2599 0.3477 0.4160 0.0011 0.0018 0.0759 0.1538
2 0.3684 0.4781 0.5659 0.6342 0.1126 0.2115 0.3005 0.3784
3 0.4605 0.5702 0.6580 0.7263 0.2262 0.3251 0.4141 0.4919
4 0.5019 0.6117 0.6994 0.7678 0.2873 0.3862 0.4752 0.5530
5 0.5213 0.6310 0.7188 0.7871 0.3213 0.4201 0.5091 0.5870
6 0.5304 0.6401 0.7279 0.7963 0.3405 0.4393 0.5284 0.6062
7 0.5349 0.6446 0.7323 0.8006 0.3516 0.4505 0.5395 0.6173
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