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Abstract
This article discusses the idea of an ordered random variable and its basic structure.

Under the umbrella of dual generalized order statistics, the problem of Bayesian estimation
of Fréchet distribution with parameters α and λ is addressed. Both symmetric (squared
error) and asymmetric (linear exponential and general entropy) loss functions are taken into
account to enable flexibility in the outcomes. For the aim of estimation, two approximation
methods (Lindley and Markov Chain Monte Carlo) have been employed and presented.
Simulation tools have been used to elaborate the findings clearly.

Key words: Fréchet distribution; Dual generalized order statistics; Bayesian methods; Markov
chain Monte Carlo.

AMS Subject Classifications: 62C10, 62F10, 62F15, 62G30

1. Introduction

While dealing with data analysis using statistical tools and techniques, extreme value
theory is inevitable. Jenkinson (1955) described how Generalized Extreme Value (GEV) is
the most preferred distribution in this regard. The cumulative density function is given by

F (y | σ, µ, ξ) =

exp
(
−[1 + ξ(y − µ)/σ]−1/y

+

}
, for ξ ̸= 0

exp(− exp[−(y − µ)/σ]], for ξ = 0

where σ > 0, µ, ξ ∈ R. The considered distribution in this manuscript is Fréchet which is a
special cases of GEV distribution. Its name spawned from Maurice René Fréchet, a French
mathematician, who developed this distribution in 1920 as a maximum value distribution.
It is also known as the extreme value distribution of type II.

The probability density function (PDF), cumulative density function (CDF) and re-
liability function of the random variable y following Fréchet distribution are given as

f(y | λ, α) = λαy−(α+1)e−λy−α

, (1)
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F (y | λ, α) = e−λy−α

, (2)

R(t | λ, α) = 1 − e−λt−α

. (3)
where y > 0, t > 0, α > 0 is shape parameter and λ > 0 is the scale parameter. Depending
on the form of parameters, the PDF might be unimodal or declining, although the hazard
function is always unimodal. This is the only CDF that can be established on non-negative
real numbers and is also a limiting CDF for the maxima of random variables. For a range
of engineering applications, this feature is crucial for simulating the issues associated with
investigating the statistical behavior of material properties.

It was explained by Kotz and Nadarajah (2000) that how Fréchet distribution can be
used in a variety of contexts, including accelerated life testing, natural disasters, horse racing,
rainfall, grocery store lines, sea currents, wind speeds, track race records and so on. Harlow
(2002) demonstrated that the Fréchet distribution is the best option for simulating the case
where high values are crucial. The literature on Fréchet distribution is extensive. Maximum
likelihood estimation has been performed by Calabria and Pulcini (1989), and the features
of its estimator (MLE) have been studied. Maximum likelihood estimation was carried out
by Ramos et al. (2017) in the presence of the cure fraction, and Loganathan and Uma (2017)
compared the MLE, the LSE, the weighted LSE, and the method of moment estimation for
the Fréchet distribution. In order statistics, the Fréchet distribution was investigated by
Salman and AMER (2003), while generalised order statistics was researched by Maswadah
(2003). Many scholars have also addressed the issue of Bayesian estimate for the Frechet
distribution. For instance, Calabria and Pulcini (1994) and Kundu and Howlader (2010)
have performed Bayesian estimation using Gamma or other informative or arbitrary priors.
Fréchet distribution was examined using Jeffreys and reference priors in Abbas and Tang
(2015).

After carefully searching the literature, we were unable to locate any articles address-
ing its application to order statistics or lower record data. Therefore, utilizing the setup
of Dual Generalised Order Statistics (dgos ), we have addressed the Bayesian estimation of
the Fr’echet distribution. The manuscript is arranged as follows: Mathematical formulation
of dgos is thoroughly discussed in Section 2. Also, in this section, Bayesian framework for
estimation using different loss functions is given. Bayes estimators are obtained using the
Lindley approximation, a method for approximation that is detailed in Section 3. Bayes
estimators are obtained in Section 4 using Markov chain Monte Carlo approach. Simulation
analysis for dgos submodels such as order statistics and lower record values is provided in
Section 5 along with conclusions regarding the obtained results.

2. Formulation of Bayesian framework

Let us take independent and identically distributed sequence containing X1, X2, . . .
random variables having absolutely continuous distribution function F (·) and the probability
density function f(·). Let n ∈ N, (n ≥ 2), k ≥ 1 and m be the parameters such that γr = k+
(n−r)(m+1) > 0, for all r ∈ {1, 2, . . . , n−1} and Y (1, n, m, k), Y (2, n, m, k), . . . , Y (n, n, m, k)
be the n dgos. Then the joint density function of Y1, Y2, . . . , Yn is of the form

k

n−1∏
j=1

γj

(n−1∏
i=1

(F (yi))m f(yi)
)

(F (yn))k−1 f(yn), (4)
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where F −1(1) > y1 ≥ y2 ≥ · · · ≥ yn > F −1(0), Yi = Y (i, n, m, k) and y = (y1, y2, . . . , yn) is
the realization of Y = (Y1, Y2, . . . , Yn).

The dgos is a combination of many ordered random models, and we may create
different models by accounting for different dgos model characteristics. For instance, when
m = 0 and k = 1 are used, the dgos model reduces to reverse order statistics; when m = −1
is used, the dgos model reduces to the kth lower record values; and when m = −1 and k = 1
are used, the dgos model reduces to standard lower record values; etc. The following books
and articles are suggested for readers who want to learn more about ordered statistics and
record data: Ahsanullah (2004), Arnold et al. (2008), Devi et al. (2017), Arshad and Jamal
(2019a,b), Sharma et al. (2019) Arshad and Baklizi (2019), Tripathi et al. (2019), Gupta
and Jamal (2019), Anwar et al. (2020) and Azhad et al. (2021, 2022, 2023).

Now, let Y1, Y2, . . . , Yn be the n dgos drawn from Fréchet(α, λ), then by using equation
(4), equation (1) and equation (2), the likelihood function is given as

L(α, λ|y) = k(αλ)n

n−1∏
j=1

γj

( n∏
i=1

y
−(α+1)
i e−λy−α

i

)
n−1∏
i=1

(
e−λy−α

i

)m (
e−λy−α

n

)k−1
. (5)

Assuming that informative priors are independent and have a two-parameter gamma distri-
bution with the following set of hyperparameters, we now investigate informative priors for
each parameter.

π(α) = ba1
1

Γ(a1)
αa1−1e−b1α, a1, b1, α > 0,

π(λ) = ba2
2

Γ(a2)
λa2−1e−b2λ, a2, b2, λ > 0.

 (6)

We take into account symmetric and asymmetric loss functions to demonstrate the adapt-
ability of our findings and to provide a wide range of applicability for diverse real-life sce-
narios. The symmetric loss function is taken into consideration since it equally penalises
underestimation and overestimation, which are typically highly helpful. The majority of the
time, nevertheless, we observe that positive losses can sometimes be more severe than nega-
tive losses, and vice versa. Asymmetric loss functions are necessary in these circumstances.
Here, we have taken into account one symmetric loss function, the squared error loss func-
tion (SELF), as well as two asymmetric loss functions, the linear exponential (LINEX) and
general entropy (GE). For more details about these loss function, one may refer to Jaheen
(2003), Dey (2009), Ali (2015), Zhang and Gui (2020), Nagamani et al. (2020). The SELF
is defined as

L1(δ, β) = (δ − β)2, β > 0. (7)

The Bayes estimator under SELF is posterior mean (δSEL) . The LINEX loss function is
defined as

L2(δ, β) = ec(δ−β) − c(δ − β) − 1, c ̸= 0 (8)

with corresponding Bayes estimator as

δLINEX = −1
c

ln
(
E(e−cβ)

)
.
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The GE loss function is given as

L3(δ, β) ∝
(

δ

β

)c

− c ln
(

δ

β

)
− 1, c ̸= 0 (9)

with corresponding Bayes estimator as

δGE =
[
E(β)−c

]−1/c
.

Now, the joint posterior density of α and λ is obtained by using equation (5) and equation
(6), and is given as

π(α, λ|y) ∝ αn+a1−1λn+a2−1

n−1∏
j=1

γj

( n∏
i=1

y
−(α+1)
i e−λy−α

i

)
n−1∏
i=1

(
e−λy−α

i

)m (
e−λy−α

n

)k−1
(10)

e(−b1α−b2λ); α > 0, λ > 0.

Joint posterior density has a complex structure, making it difficult to construct exact Bayes
estimators. Lindley approximation and the Markov chain Monte Carlo approach are two
extensively used approximation techniques that are used to address this scenario.

3. Lindley approximation

Using the Taylor series expansion, Lindley (1980) estimated the ratio of the two
integrals. The expectation of posterior densities can be calculated using this method to a
reasonable extent. Typically, a Bayes estimator takes the following form for any loss function
of the β parameter:

E(z(β)|y) =
�

z(β)eL(β)+ρ(β)dβ�
eL(β)+ρ(β)dβ

, (11)

where L denotes the logarithm of likelihood function, logarithm of the prior distribution of
β is denoted by ρ. In present case β = (α, λ), we can transform equation (11) to

E(z(α, λ)|y) =
� �

z(α, λ)eL(α,λ)+ρ(α,λ)dαdλ� �
eL(α,λ)+ρ(α,λ)dαdλ

, (12)

The values of the quantities in above equation are L(α, λ) = ln L(α, λ|y) and ρ(α, λ) =
ln π(α) + ln π(λ). Utilizing the method by, we get (see Lindley (1980))

E(z(α, λ)|y) ≈ z(α, λ) + 1
2

2∑
i=1

2∑
j=1

zijσij +
2∑

i=1
ρiQi (13)

1
2

2∑
i=1

LiiiσiiQi + 1
2 [L112(2σ12Q1 + σ11Q2) + L122(σ22Q1 + 2σ12Q2)] ,
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where,

z1 = ∂z(α, λ)
∂α

, z2 = ∂z(α, λ)
∂λ

, z11 = ∂2z(α, λ)
∂α2 , z22 = ∂2z(α, λ)

∂λ2 , z12 = ∂2z(α, λ)
∂α∂λ

= z21,

L11 = ∂2 ln L(α, λ|y)
∂α2 , L22 = ∂2 ln L(α, λ|y)

∂λ2 , L112 = ∂3 ln L(α, λ|y)
∂α2∂λ

, L111 = ∂3 ln L(α, λ|y)
∂α3 ,

L222 = ∂3 ln L(α, λ|y)
∂λ3 , ρ1 = ∂ρ(α, λ)

∂α
, ρ2 = ∂ρ(α, λ)

∂λ
, Qr =

∑2
j=1 zjσrj


(14)

and σrj denotes (r, j)th element of the inverse of matrix [−Lij]. For obtaining Bayes estima-
tor, we have to calculate all the unknown values in equation (13) by using the MLES of α
and λ.

We have deduced the unknown quantities in equation (14) as per our problem. These
are :

L11 = − n

α2 − (k − 1)λ(ln yn)2y−α
n − mλ

∑n−1
i=0 (ln yi)2y−α

i −∑n
i=0 λ(ln yi)2y−α

i

L12 = −(k − 1)(ln yn)2y−α
n − m

∑n−1
i=0 (ln yi)2y−α

i −∑n
i=0(ln yi)2y−α

i

L22 = − n

λ2 , L222 = 2n

λ3 , L122 = 0, ρ1 = a1 − 1
α

− b1, ρ2 = a2 − 1
λ

− b2

L111 = 2n

α3 + (k − 1)λ(ln yn)3y−α
n − mλ

∑n−1
i=0 −(ln yi)3y−α

i −∑n
i=0 −λ(ln yi)3y−α

i



(15)

According to the defined loss functions, we have derived the quantities required. It is evident
that except z(α, λ) and its derivatives, all the other quantities are same.

We know that the posterior mean is the Bayes estimator in SELF. So, Bayes estimator
of α, is obtained using

z(α, λ) = α, z1 = 1, z2 = 0 = z11 = z12 = z22 = z21.

Similarly, the quantities

z(α, λ) = λ, z2 = 1, z1 = 0 = z11 = z12 = z22 = z21.

are used for Bayes estimator of λ,
and,

z(α, λ) = 1 − e−α(t−λ−1), z1 = −e−t−αλt−αλ ln t, z2 = e−t−αλt−α,

z11 = e−t−αλt−2α (tα − λ) λ(ln t)2, z22 = −e−t−αλt−2α,

z12 = −e−t−αλt−2α (tα − λ) ln t = z21.

are used for Bayes estimator of R(t).
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Under LINEX loss function, following quantities are used for the Bayes estimator of
α and λ, respectively

z(α, λ) = e−cα, z1 = −ce−cα, z11 = c2e−cα, z2 = 0 = z12 = z21 = z22.

z(α, λ) = e−cλ, z2 = −ce−cλ, z22 = c2e−cλ, z1 = 0 = z12 = z21 = z11.

and for R(t), the used quantities are:

z(α, λ) = e
−c

(
1−e−λt−α

)
, z1 = ce

−c

(
1−e−t−αλ

)
−t−αλ

t−αλ ln t

z11 = −ce
−c

(
1−e−t−αλ

)
−t−αλ

t−αλ(ln t)2 + ce
−c

(
1−e−t−αλ

)
−t−αλ

t−αλ ln t

×
(
t−αλ ln t + ce−t−αλt−αλ ln t

)
z2 = −ce

−c

(
1−e−t−αλ

)
−t−αλ

t−α

z22 = −ce
−c

(
1−e−t−αλ

)
−t−αλ

t−α
(
−t−α − ce−t−αλt−α

)
z12 = ce

−c

(
1−e−t−αλ

)
−t−αλ

t−α ln t + ce
−c

(
1−e−t−αλ

)
−t−αλ

t−α
(
−t−α − ce−t−αλt−α

)
λ ln t = z21.

Similarly, in case of GE loss function, Bayes estimator of α can be obtained by the
following quantities

z(α, λ) = α−c, z1 = −cα−c−1, z11 = c(c + 1)α−c−2, z2 = 0 = z12 = z21 = z22.

For Bayes estimator of λ, we have,

z(α, λ) = λ−c, z2 = −cλ−c−1, z22 = c(c + 1)λ−c−2, z1 = 0 = z12 = z21 = z11.

and for Bayes estimator of R(t), following quantities are used

z(α, λ) =
(
1 − e−λt−α

)−c
, z1 = ce−t−αλ

(
1 − e−t−αλ

)−1−c
t−αλ ln t

z2 = −ce−t−αλ
(
1 − e−t−αλ

)−1−c
t−α

z11 =
c
(
1 − e−t−αλ

)−c
t−2αλ

(
−
(
et−αλ − 1

)
tα +

(
c + et−αλ

)
λ
)

(ln t)2

(et−αλ − 1)2

z22 =
c
(
1 − e−t−αλ

)−c (
c + et−αλ

)
t−2α

(et−αλ − 1)2

z12 =
c
(
1 − e−t−αλ

)−c
t−2α

(
−
(
et−αλ − 1

)
tα +

(
c + et−αλ

)
λ
)

ln t

(et−αλ − 1)2 = z21.

4. Markov chain Monte Carlo

From equation (10), we see that posterior density is complex in nature and exact
Bayes estimates of parameters are not easy to compute. To tackle this situation, one of the
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most popular tools known as Markov chain Monte Carlo (MCMC) is applied here. MCMC
is is a powerful computational method used for generating samples from complex probability
distributions and obtaining approximate Bayes estimates of the unknown parameters. This
tools has significant popularity in various scientific fields, including statistics, machine learn-
ing, physics, and computational biology. To derive the approximate Bayes estimator of α, λ
and R(t), we use the MCMC technique in this part. With the use of posterior densities, the
MCMC method is utilised to generate a random samples of unknown quantities. The Bayes
estimator for the loss functions is then obtained using the generated samples. For this we
first derived the conditional posterior densities of α and λ, from equation (10) as,

π(α|λ, y) ∝ αn+a1−1
(∏n

i=1 y
−(α+1)
i e−λy−α

i

)∏n−1
i=1

(
e−λy−α

i

)m (
e−λy−α

n

)k−1
e−b1α

π(λ|α, y) ∝ λn+a2−1
(∏n

i=1 e−λy−α
i

)∏n−1
i=1

(
e−λy−α

i

)m (
e−λy−α

n

)k−1
e−b2λ

 . (16)

From equation (16), we observe that the marginal posterior densities of α and λ do not
have known form of any probability distribution. So, we adopt the technique of Metropolis
Hasting (MH) algorithm with normal distribution (see Gelman et al. (2013)) as the proposal
density to generate samples. The algorithm and steps are followed from Arshad et al. (2021).

5. Simulation study

This section comprises of studying the behavior of the derived estimators on the
simulated model. Various configurations of the parameters, sample sizes and priors have been
tested and reported in this section. Since dgos is an umbrella term containing many models
having different configurations for random variables of ordered nature, we have confined
ourselves to study the lower record data and order statistics. To assess the credibility of
Bayes estimators, risk function is taken to be the measure. The first thing is to generate the
random samples from the dgos setup. For this purpose the algorithm discussed by Azhad
et al. (2021) is considered here. Using the generated samples, for 1000 replications, all the
estimators are obtained along with the risks in their estimation. For assessing the different
possibilities, we have considered two set of priors i.e., Prior I : (ai, bi) = (2, 2), i = 1, 2
and Prior II : (ai, bi) = (0.05, 0.05), i = 1, 2, and different configurations of shape and scale
parameters. The calculation is performed using R software (R Core Team (2022)). In
addition to this, the convergence behaviour of generated Markov chain is tested with the aid
of Gelman Rubin (GR) diagnostic (See Gelman et al. (2013)). With GR diagnostic we find
that as we increase the number of iterations, the value of shrink reduction factor is getting
close to 1. Hence, we conclude that convergence is achieved. The risks of various estimators
are reported in Table [1-4] (see Appendix). From these tables, the following observations are
made.

(i) The Table [1] (see Appendix) reports risks of Bayes estimates obtained using Lindley
Approximation method for lower record values. From the table, it is observed that
risks based on asymmetric loss functions (LINEX and GELF) are much smaller than
symmetric loss function.

(ii) The Table [2] (see Appendix) reports risks of Bayes estimates obtained using MCMC
method for lower record values. From the table, it is observed that risks based on
asymmetric loss functions (LINEX and GELF) are much smaller than symmetric loss
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function. It is also observed that mostly risks of estimators based on MCMC method
smaller than risk of estimators based on Lindley method.

(iv) The Table [3 - 4] (see Appendix) report risks of Bayes estimates obtained using Lindley
and MCMC method for order statistics, respectively. Similar observations are seen for
risks of all estimators for order statistics as these were for lower record values.

(v) From all the Tables, it is observed that the risks of all estimators are decreasing as
we increase the sample size irrespective of ordered random models. Also, on average,
Prior I seems to have showm lesser risk that Prior II.

(vi) From these observations it is evident that Bayes estimators based on asymmetric loss
functions (LINEX and GELF) are performing better based on their risks. So, In prac-
tical scenarios where the underlying assumptions considered in this study are satisfied,
it is recommended to use asymmetric loss functions as it provides more flexibility to the
model. Also, estimators based on MCMC method are performing better than Lindley
estimators.

6. Discussion and conclusions

In the present manuscript Fréchet distribution is considered and Bayesian perspective
on estimation is explored under the dgos configuration. The considered distribution has many
applications like it is used in hydrology to describe severe occurrences like annual maximum
one-day rainfall and river discharges, used to depict a falling pattern in time series data of oil
or gas production rate over time for a well, employed to simulate the idiosyncratic element of
people’s preferences for various goods, places , or businesses etc. The reliability function and
Bayes estimators of unknown quantities are thoroughly addressed. For Bayesian methods,
it makes sense to take distinct loss functions into account. In addition, a discussion of the
findings for order statistics under dgos’s setup and lower record values under dgos’s setup
is given. After careful examination of the simulation results, we come to the conclusion
that, MCMC is a better choice than Lindley approximation for estimation of parameters α,
λ, and R(t) in both the cases of lower record values and order statistics for the considered
distribution.

For future studies scaled squared error loss function, precautionary loss function,
K-loss function, regression loss function, etc., may be used. This research may possibly
be expanded by assuming additional estimating techniques and applying them on censored
data.

Acknowledgment

We sincerely appreciate the Editors’ advice and support. I am also appreciative that
the conference organisers gave us the chance to present our work.

References

Abbas, K. and Tang, Y. (2015). Analysis of Frechet distribution using reference priors.
Communications in Statistics-Theory and Methods, 44, 2945–2956.

Ahsanullah, M. (2004). Record Values–Theory and Applications. University Press of America.



2023] DUAL GENERALIZED ORDER STATISTICS 101

Ali, S. (2015). On the Bayesian estimation of the weighted Lindley distribution. Journal of
Statistical Computation and Simulation, 85, 855–880.

Anwar, Z., Gupta, N., Khan, M. A. R., and Jamal, Q. A. (2020). Recurrence relations for
marginal and joint moment generating functions of topp-leone generated exponen-
tial distribution based on record values and its characterization. Journal of Modern
Applied Statistical Methods, 18, 25.

Arnold, B. C., Balakrishnan, N., and Nagaraja, H. N. (2008). A First Course in Order
Statistics. SIAM.

Arshad, M. and Baklizi, A. (2019). Estimation of common location parameter of two ex-
ponential populations based on records. Communications in Statistics-Theory and
Methods, 48, 1545–1552.

Arshad, M., J. Azhad, Q., Gupta, N., and Pathak, A. K. (2021). Bayesian inference of Unit
Gompertz distribution based on dual generalized order statistics. Communications
in Statistics-Simulation and Computation, 00, 1–19.

Arshad, M. and Jamal, Q. A. (2019a). Estimation of common scale parameter of several
heterogeneous Pareto populations based on records. Iranian Journal of Science and
Technology, Transactions A: Science, 43, 2315–2323.

Arshad, M. and Jamal, Q. A. (2019b). Statistical inference for Topp–Leone generated family
of distributions based on records. Journal of Statistical Theory and Applications, 18,
65–78.

Azhad, Q. J., Arshad, M., Devi, B., Khandelwal, N., and Ali, I. (2023). Record-based trans-
muted kumaraswamy generalized family of distributions: Properties and application
G Families of Probability Distributions. CRC Press.

Azhad, Q. J., Arshad, M., and Khandelwal, N. (2022). Statistical inference of reliability in
multicomponent stress strength model for Pareto distribution based on upper record
values. International Journal of Modelling and Simulation, 42, 319–334.

Azhad, Q. J., Arshad, M., and Misra, A. K. (2021). Estimation of common location pa-
rameter of several heterogeneous exponential populations based on generalized order
statistics. Journal of Applied Statistics, 48, 1798–1815.

Calabria, R. and Pulcini, G. (1989). Confidence limits for reliability and tolerance limits in
the inverse Weibull distribution. Reliability Engineering & System Safety, 24, 77–85.

Calabria, R. and Pulcini, G. (1994). Bayes 2-sample prediction for the inverse Weibull
distribution. Communications in Statistics-Theory and Methods, 23, 1811–1824.

Devi, B., Kumar, P., and Kour, K. (2017). Entropy of Lomax probability distribution and
its order statistic. International Journal of Statistics and System, 12, 175–181.

Dey, S. (2009). Comparison of Bayes estimators of the parameter and reliability function
for Rayleigh distribution under different loss functions. Malaysian Journal of Math-
ematical Sciences, 3, 247–264.

Gelman, A., Stern, H. S., Carlin, J. B., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013).
Bayesian Data Analysis. Chapman and Hall/CRC.

Gupta, N. and Jamal, Q. A. (2019). Inference for Weibull generalized exponential distribution
based on generalized order statistics. Journal of Applied Mathematics and Computing,
61, 573–592.

Harlow, D. G. (2002). Applications of the Fr’echet distribution function. International
Journal of Materials and Product Technology, 17, 482–495.



102 B. DEVI, Q. J. AZHAD, A. SHARMA AND A. TRIPATHI [SPL. PROC.

Jaheen, Z. F. (2003). A Bayesian analysis of record statistics from the Gompertz model.
Applied Mathematics and Computation, 145, 307–320.

Jenkinson, A. F. (1955). The frequency distribution of the annual maximum (or minimum)
values of meteorological elements. Quarterly Journal of the Royal Meteorological
Society, 81, 158–171.

Kotz, S. and Nadarajah, S. (2000). Extreme Value Distributions: Theory and Applications.
world scientific.

Kundu, D. and Howlader, H. (2010). Bayesian inference and prediction of the inverse Weibull
distribution for Type-II censored data. Computational Statistics & Data Analysis, 54,
1547–1558.

Lindley, D. V. (1980). Approximate Bayesian methods. Trabajos de estad́ıstica y de inves-
tigación operativa, 31, 223–245.

Loganathan, A. and Uma, A. (2017). Comparison of estimation methods for inverse Weibull
parameters. Global and Stochastic Analysis, 4, 83–93.

Maswadah, M. (2003). Conditional confidence interval estimation for the inverse Weibull
distribution based on censored generalized order statistics. Journal of Statistical
Computation and Simulation, 73, 887–898.

Nagamani, N., Tripathy, M. R., and Kumar, S. (2020). Estimating common scale parameter
of two logistic populations: A Bayesian study. American Journal of Mathematical
and Management Sciences, 40, 44–67.

R Core Team (2022). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria.

Ramos, P. L., Nascimento, D., and Louzada, F. (2017). The Long Term Fr\’echet dis-
tribution: Estimation, Properties and its Application. Biometrics & Biostatistics
International Journal, 6, 1–6.

Salman, M. and AMER, S. S. M. (2003). Order statistics from inverse Weibull distribution
and characterizations. Metron, 61, 389–401.

Sharma, A., Kumar, P., and Devi, B. (2019). Entropy estimation of inverse Rayleigh prob-
ability distribution and its order statistics. International Journal of Electronics En-
gineering, 11, 508–513.

Tripathi, A., Singh, U., and Singh, S. K. (2019). Inferences for the DUS-exponential distri-
bution based on upper record values. Annals of Data Science, 8, 387–403.

Zhang, F. and Gui, W. (2020). Parameter and reliability inferences of inverted exponentiated
half-logistic distribution under the progressive first-failure censoring. Mathematics,
8, 1–29.



2023] DUAL GENERALIZED ORDER STATISTICS 103

APPENDIX
Table 1: Risk of Lindley Bayes estimates based on lower record values for (c, t) =

(0.5, 0.5)

(α, λ) n
SELF Linex General Entropy

α̂risk λ̂risk
ˆR(t)risk α̂risk λ̂risk

ˆR(t)risk α̂risk λ̂risk
ˆR(t)risk

(a1, a2, b1, b2) = (2, 2, 2, 2)

(1,1)
5 0.1493 0.2405 0.2423 0.0200 0.0340 0.0304 0.0124 0.0362 0.0467
10 0.0896 0.1096 0.2209 0.0079 0.0125 0.0263 0.0033 0.0200 0.0361
15 0.0306 0.0690 0.2208 0.0017 0.0047 0.0260 0.0011 0.0103 0.0330

(1.5,1)
5 0.3810 0.3609 0.2753 0.0611 0.0358 0.0330 0.0408 0.0476 0.0562
10 0.2700 0.1910 0.2628 0.0181 0.0331 0.0330 0.0107 0.0275 0.0445
15 0.1532 0.1246 0.2595 0.0059 0.0146 0.0302 0.0041 0.0194 0.0393

(1,1.5)
5 0.1600 0.3802 0.3791 0.0211 0.0348 0.0452 0.0109 0.0633 0.0628
10 0.0912 0.3383 0.3664 0.0083 0.0252 0.0423 0.0064 0.0409 0.0537
15 0.0398 0.3117 0.3620 0.0040 0.0237 0.0416 0.0041 0.0315 0.0498

(1.5,1.5)
5 0.2758 0.3346 0.3793 0.0349 0.0271 0.0451 0.0231 0.0640 0.0640
10 0.1552 0.2322 0.3720 0.0083 0.0166 0.0432 0.0056 0.0316 0.0559
15 0.0812 0.2025 0.3599 0.0041 0.0119 0.0411 0.0035 0.0213 0.0504

(a1, a2, b1, b2) = (0.05, 0.05, 0.05, 0.05)

(1,1)
5 0.1853 0.3233 0.2036 0.0239 0.0337 0.0254 0.0221 0.0501 0.0453
10 0.1394 0.2609 0.2030 0.0167 0.0284 0.0248 0.0154 0.0415 0.0381
15 0.0849 0.2423 0.1996 0.0107 0.0272 0.0240 0.0100 0.0347 0.0342

(1.5,1)
5 0.1254 0.3322 0.2742 0.0155 0.0347 0.0335 0.0188 0.0492 0.0560
10 0.0864 0.2873 0.2716 0.0107 0.0305 0.0310 0.0119 0.0410 0.0455
15 0.0648 0.2483 0.2568 0.0082 0.0279 0.0322 0.0086 0.0366 0.0440

(1,1.5)
5 0.1919 0.5153 0.2899 0.0233 0.0537 0.0353 0.0211 0.0878 0.0575
10 0.1363 0.4065 0.2890 0.0175 0.0434 0.0345 0.0162 0.0700 0.0496
15 0.0987 0.3688 0.2732 0.0128 0.0400 0.0323 0.0120 0.0620 0.0437

(1.5,1.5)
5 0.1092 0.4841 0.3193 0.0138 0.0507 0.0387 0.0169 0.0851 0.0620
10 0.0834 0.4338 0.3143 0.0106 0.0458 0.0374 0.0115 0.0734 0.0531
15 0.0736 0.3466 0.3122 0.0096 0.0382 0.0367 0.0100 0.0601 0.0488
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Table 2: Risk of MCMC Bayes estimates based on lower record values for (c, t) =
(0.5, 0.5)

(α, λ) n
SELF Linex General Entropy

α̂risk λ̂risk
ˆR(t)risk α̂risk λ̂risk

ˆR(t)risk α̂risk λ̂risk
ˆR(t)risk

(a1, a2, b1, b2) = (2, 2, 2, 2)

(1,1)
5 0.0626 0.0314 0.1837 0.0079 0.0040 0.0214 0.0057 0.0033 0.0380
10 0.0601 0.0302 0.1832 0.0076 0.0038 0.0214 0.0056 0.0032 0.0379
15 0.0578 0.0287 0.1816 0.0073 0.0036 0.0212 0.0054 0.0030 0.0375

(1.5,1)
5 0.0646 0.2124 0.1874 0.0082 0.0247 0.0218 0.0059 0.0179 0.0390
10 0.0589 0.2060 0.1833 0.0075 0.0239 0.0214 0.0055 0.0159 0.0379
15 0.0557 0.1928 0.1801 0.0070 0.0225 0.0210 0.0052 0.0174 0.0371

(1,1.5)
5 0.0875 0.0329 0.1848 0.0106 0.0041 0.0215 0.0064 0.0035 0.0380
10 0.0839 0.0319 0.1839 0.0102 0.0040 0.0214 0.0061 0.0033 0.0383
15 0.0837 0.0289 0.1836 0.0101 0.0036 0.0214 0.0061 0.0030 0.0380

(1.5,1.5)
5 0.0873 0.2180 0.1844 0.0106 0.0253 0.0215 0.0064 0.0184 0.0382
10 0.0840 0.2139 0.1808 0.0101 0.0248 0.0211 0.0061 0.0181 0.0373
15 0.0835 0.2022 0.1816 0.0102 0.0235 0.0212 0.0061 0.0168 0.0375

(a1, a2, b1, b2) = (0.05, 0.05, 0.05, 0.05)

(1,1)
5 0.0627 0.0319 0.1851 0.0079 0.0040 0.0216 0.0058 0.0035 0.0384
10 0.0591 0.0308 0.1834 0.0075 0.0039 0.0211 0.0055 0.0032 0.0372
15 0.0560 0.0306 0.1804 0.0071 0.0039 0.0214 0.0052 0.0032 0.0379

(1.5,1)
5 0.0649 0.2036 0.1839 0.0082 0.0240 0.0215 0.0060 0.0173 0.0381
10 0.0605 0.2031 0.1821 0.0077 0.0237 0.0213 0.0056 0.0169 0.0376
15 0.0585 0.2068 0.1804 0.0074 0.0237 0.0211 0.0054 0.0168 0.0371

(1,1.5)
5 0.0863 0.0328 0.1835 0.0105 0.0041 0.0214 0.0063 0.0034 0.0380
10 0.0845 0.0299 0.1833 0.0102 0.0038 0.0214 0.0062 0.0032 0.0379
15 0.0832 0.0296 0.1833 0.0101 0.0037 0.0214 0.0061 0.0031 0.0379

(1.5,1.5)
5 0.0880 0.2113 0.1848 0.0106 0.0245 0.0215 0.0064 0.0176 0.0383
10 0.0841 0.2087 0.1820 0.0102 0.0243 0.0212 0.0061 0.0174 0.0376
15 0.0833 0.2053 0.1819 0.0101 0.0239 0.0212 0.0061 0.0172 0.0375
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Table 3: Risk of Lindley Bayes estimates based on order statistics for (c, t) =
(0.5, 0.5)

(α, λ) n
SELF Linex General Entropy

α̂risk λ̂risk
ˆR(t)risk α̂risk λ̂risk

ˆR(t)risk α̂risk λ̂risk
ˆR(t)risk

(a1, a2, b1, b2) = (2, 2, 2, 2)

(1,1)
5 0.0711 0.0632 0.6544 0.0086 0.0049 0.0718 0.0102 0.0074 0.0744
10 0.0643 0.0599 0.6168 0.0078 0.0079 0.0680 0.0078 0.0087 0.0719
15 0.0481 0.0369 0.4837 0.0059 0.0073 0.0540 0.0057 0.0074 0.0631

(1.5,1)
5 0.1965 0.0571 0.7713 0.0154 0.0045 0.0837 0.0178 0.0060 0.0864
10 0.0608 0.0562 0.7173 0.0074 0.0069 0.0782 0.0083 0.0077 0.0818
15 0.0503 0.0380 0.5412 0.0063 0.0069 0.0597 0.0067 0.0071 0.0684

(1,1.5)
5 0.0882 0.3452 0.8049 0.0112 0.0412 0.0871 0.0153 0.0420 0.0898
10 0.0640 0.0974 0.7617 0.0079 0.0106 0.0828 0.0074 0.0131 0.0869
15 0.0471 0.0711 0.6257 0.0058 0.0092 0.0690 0.0056 0.0103 0.0799

(1.5,1.5)
5 0.2417 0.2860 0.8531 0.0249 0.0417 0.0920 0.0286 0.0403 0.0947
10 0.0799 0.0996 0.7967 0.0096 0.0095 0.0863 0.0094 0.0119 0.0903
15 0.0500 0.0698 0.6197 0.0064 0.0089 0.0682 0.0067 0.0102 0.0780

(a1, a2, b1, b2) = (0.05, 0.05, 0.05, 0.05)

(1,1)
5 0.1562 0.1643 0.6613 0.0203 0.0209 0.0725 0.0194 0.0239 0.0750
10 0.1004 0.1094 0.6263 0.0130 0.0131 0.0690 0.0121 0.0136 0.0731
15 0.0653 0.0870 0.5379 0.0082 0.0108 0.0599 0.0077 0.0113 0.0694

(1.5,1)
5 0.1124 0.1681 0.7867 0.0135 0.0196 0.0853 0.0154 0.0224 0.0880
10 0.0713 0.1163 0.7492 0.0091 0.0142 0.0815 0.0097 0.0145 0.0860
15 0.0583 0.0836 0.6535 0.0071 0.0102 0.0720 0.0073 0.0100 0.0821

(1,1.5)
5 0.1566 0.2145 0.8007 0.0193 0.0250 0.0867 0.0177 0.0307 0.0895
10 0.0920 0.1135 0.7594 0.0111 0.0144 0.0826 0.0101 0.0164 0.0872
15 0.0589 0.0814 0.6712 0.0076 0.0103 0.0738 0.0073 0.0111 0.0840

(1.5,1.5)
5 0.0961 0.1915 0.8692 0.0122 0.0225 0.0936 0.0147 0.0289 0.0964
10 0.0702 0.1213 0.8295 0.0091 0.0146 0.0897 0.0096 0.0164 0.0944
15 0.0612 0.0841 0.7239 0.0076 0.0104 0.0792 0.0077 0.0112 0.0899
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Table 4: Risk of MCMC Bayes estimates based on order statistics for (c, t) =
(0.5, 0.5)

(α, λ) n
SELF Linex General Entropy

α̂risk λ̂risk
ˆR(t)risk α̂risk λ̂risk

ˆR(t)risk α̂risk λ̂risk
ˆR(t)risk

(a1, a2, b1, b2) = (2, 2, 2, 2)

(1,1)
5 0.0428 0.2054 0.2548 0.0052 0.0249 0.0294 0.0077 0.0670 0.0603
10 0.0401 0.1966 0.2512 0.0049 0.0238 0.0290 0.0072 0.0632 0.0591
15 0.0379 0.1961 0.2473 0.0047 0.0237 0.0285 0.0068 0.0629 0.0579

(1.5,1)
5 0.0457 0.8683 0.2593 0.0056 0.0952 0.0299 0.0083 0.1353 0.0618
10 0.0442 0.8594 0.2554 0.0054 0.0942 0.0294 0.0081 0.1318 0.0608
15 0.0422 0.8490 0.2549 0.0052 0.0932 0.0294 0.0077 0.1288 0.0605

(1,1.5)
5 0.4668 0.2074 0.2550 0.0525 0.0251 0.0294 0.0452 0.0671 0.0602
10 0.4553 0.2028 0.2500 0.0513 0.0245 0.0289 0.0439 0.0656 0.0588
15 0.4471 0.1914 0.2465 0.0504 0.0232 0.0285 0.0427 0.0602 0.0575

(1.5,1.5)
5 0.4587 0.8904 0.2509 0.0516 0.0975 0.0290 0.0441 0.1410 0.0573
10 0.4562 0.8883 0.2500 0.0514 0.0973 0.0288 0.0439 0.1392 0.0587
15 0.4417 0.8818 0.2454 0.0498 0.0966 0.0283 0.0422 0.1352 0.0589

(a1, a2, b1, b2) = (0.05, 0.05, 0.05, 0.05)

(1,1)
5 0.0402 0.2067 0.2564 0.0054 0.0250 0.0289 0.0080 0.0673 0.0591
10 0.0403 0.1973 0.2509 0.0049 0.0239 0.0288 0.0073 0.0635 0.0585
15 0.0438 0.1884 0.2493 0.0049 0.0229 0.0295 0.0072 0.0596 0.0609

(1.5,1)
5 0.0432 0.8842 0.2544 0.0053 0.0968 0.0293 0.0078 0.1371 0.0603
10 0.0405 0.8697 0.2527 0.0050 0.0954 0.0291 0.0073 0.1357 0.0596
15 0.0378 0.8654 0.2477 0.0046 0.0949 0.0286 0.0067 0.1345 0.0579

(1,1.5)
5 0.4582 0.2015 0.2515 0.0516 0.0244 0.0290 0.0443 0.0651 0.0591
10 0.4582 0.2014 0.2510 0.0516 0.0244 0.0290 0.0442 0.0641 0.0590
15 0.4562 0.1980 0.2505 0.0514 0.0240 0.0289 0.0442 0.0634 0.0592

(1.5,1.5)
5 0.4581 0.8825 0.2517 0.0516 0.0967 0.0290 0.0442 0.1380 0.0593
10 0.4557 0.8772 0.2507 0.0511 0.0961 0.0288 0.0438 0.1368 0.0589
15 0.4535 0.8746 0.2496 0.0513 0.0958 0.0289 0.0436 0.1353 0.0585
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