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Abstract
Over the last two decades, the advancement in computing power has led to a significant

rise in the usage of computer simulators (or simulation models) for real-life applications where
data collection via physical observation or experimentation is infeasible or too expensive. For
complex real-life processes, realistic accurate simulation models are also time-consuming to
run, and subsequently, statistical surrogate models are often used to emulate the simulator
outputs. In this article, we will discuss a surrogate model for emulating dynamic simulator
outputs (i.e., a simulator which yields time series response).

For a scalar-valued deterministic simulator, Gaussian process model was first intro-
duced as a statistical surrogate, which is till date the most popular emulator in the computer
experiment literature. For a dynamic simulator, this article presents a singular value decom-
position (SVD) based Gaussian process (GP) model for the emulation. We will also present
an efficient approach for estimating the inverse solution from a dynamic computer model,
where the objective is to find the optimal set of inputs that produces outputs matching the
target response as close as possible. This is also referred to as the calibration of the computer
simulation model. The performance of this innovative approach will be demonstrated via
several simulated examples and a real-life application.

Key words: Computer experiments; Expected improvement; Gaussian process regression;
Inverse problem; Saddlepoint approximation.

1. Introduction

When the physical processes are too expensive to observe and experiment with, math-
ematical models are often used to mimic the underlying phenomena. These mathematical
models are coded/implemented via some software programming language like C, C++, Java,
R, Python, etc. The experimentation with such computer codes are referred to as computer
experiments. There is a plethora of real-life examples of computer simulators that range
from pharmaceutical industry, aviation sector, cosmology, manufacturing, agriculture, re-
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newable energy, etc. We start with briefly presenting a few real-life applications of computer
simulators.

Application 1. The data collection for the impact assessment of a car crash due to
different types of collision on passengers sitting in the front and back row is really expensive.
Though crash testing is a must in some countries, it is not done everywhere and certainly
not thoroughly. A popular cheaper alternative is to use simulation models for detailed
experimentation. Figure 1 depicts a car-crash experimentation process.

Figure 1: Impact assessment of a car-crash via both physical and computer
experiments.

Application 2. Harnessing tidal energy by putting in-stream turbines is an exciting and
yet a challenging problem for a variety of researchers around the globe. The Bay of Fundy,
located between New Brunswick and Nova Scotia, Canada is world famous for its high tides.
In some regions of the Bay of Fundy, the difference in the water level between high tide and
low tide can be as much as 17 meters (see Figure 2). The incredible energy in these tides
has significant potential for extracting tidal power (Karsten et al., 2008).

Figure 2: The map of Nova Scotia focussing on the Bay of Fundy. Hopewell
Rocks and a port near Wolfville with high tide and low tide.

Preliminary analyses revealed that one can safely extract gigawatts of power by putting
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a host of in-stream tidal turbines in the Minas Passage - a narrow passage in the Bay of
Fundy where the tidal currents are strongest (see Figure 3). One of the interesting research
questions is where exactly should the turbines be placed. Identification of the optimal
locations cannot be done via physical experimentation, and we must rely of good computer
model based experiments. Currently, researchers have been studying different aspects of the
problem using versions of the Finite-Volume Coastal Ocean Model (FVCOM). Details of
FVCOM can be found in Chen et al. (2006).

Figure 3: Turbine placement in the Minas Passage.

Application 3. European red mites (ERM) infests on apple leaves and diminish the
quality of crop, which inflicts heavy financial loss in the apple industry (see Figure 4).
Therefore, the monitoring and subsequent intervention of ERM population dynamics is of
vital importance for apple orchards management.

Figure 4: European Red Mites (ERM) infesting on apple leaves.

It is worth noting that data collection for different stages of ERM population, eggs,
juveniles and adults, would require counting the number of mites, on randomly sampled
orchards, trees, branches and leaves, using a magnifying glass over a period of time. This is
undoubtedly expensive (see black solid curve in Figure 5 for a field data). Alternatively, one
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can use a computer simulator to mimic the population growth of the three stages. The two-
delay blowfly (TDB) model (Teismann et al. (2009)) simulates ERM population dynamics
under predator-prey interactions via numerically solving the Nicholson’s blowfly differential
equation (Gurney et al. (1980)). One of the prime objectives here includes the calibration of
this simulator to mimic the reality as much as possible. The TDB model takes eleven input
variables (e.g., death rates for different stages, fecundity, hatching time, survival rates, and
so on) and returns the time series (at 28 time points) of ERM population evolution at three
stages, i.e., eggs, juveniles and adults (see Ranjan et al. (2016) for details). Figure 5 shows
the model output at five randomly chosen input points.
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Figure 5: TDB outputs for a few randomly chosen inputs (coloured curved), and
the field data (in solid black).

In this article, we first review the popular statistical surrogate called the GP model for
emulating the simulator response (Sacks et al., 1989). Subsequently, we discuss the singular
value decomposition (SVD) based GP surrogate for emulating the dynamic computer simu-
lator outputs (Higdon et al., 2008; Zhang et al., 2018). Then we focus on the inverse problem
for dynamic computer models - which was the key objective of our motivating application
from the apple farming industry. This part of the methodology requires a quick recap of
the popular expected improvement (EI) based sequential design approach for calibrating
the deterministic, expensive to evaluate, scalar-valued simulator outputs (Jones et al., 1998;
Ranjan et al., 2008; Bingham et al., 2014), and then present a generalization for dynamic
simulators (Zhang et al., 2019). Finally, we compare the performance of this innovative
method with the naive approach for several test functions and the TDB model.

2. Statistical Surrogates

The choice of statistical metamodel varies with the characteristics of the computer sim-
ulator. For instance, if the output is scalar/vector/functional, the process is stationary/non-
stationary, deterministic/stochastic, input space is convex/non-convex, inputs are continu-
ous/discrete, etc. We first present the most popular surrogate model called GP model for
scalar-valued deterministic simulator, and then outline an extension of this GP model for
dynamic simulators.
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2.1. Scalar-valued simulator

Let the training data consist of d-dimensional input and 1-dimensional output, denoted
by xi = (xi1, xi2, . . . , xid) and yi = y(xi), respectively. Then, the GP model is written as

yi = µ+ z(xi), i = 1, 2, . . . , n, (1)

where µ is the overall mean, and {z(x), x ∈ [0, 1]d} ∼ GP (0, σ2
zR(, )) with E(z(x)) = 0,

V ar(z(x)) = σ2
z , and Cov(z(xi), z(xj)) = σ2

zR(xi, xj) where R(, ) is a positive definite cor-
relation function. That is, Y = (y1, y2, . . . , yn)T ∼ MVN(µ1n, σ2

zRn), where 1n is an n × 1
vector of all 1’s, and Rn is an n × n correlation matrix with (i, j)-th element given by
R(xi, xj) (see Sacks et al. (1989); Santner et al. (2003); Rasmussen and Williams (2006) for
more details).

The model described in (1) is typically fitted by either maximizing the likelihood or
via Bayesian algorithms like Markov chain Monte Carlo (MCMC). As a result, the predicted
response ŷ(x0) is the same as the conditional mean:

E(y(x0)|Y ) = µ+ r(x0)TR−1
n (Y − 1nµ), (2)

and the associate prediction uncertainty estimate (denoted by s2(x0)) can be quantified by
the conditional variance:

V ar(y(x0)|Y ) = σ2
z(1− rT (x0)R−1

n r(x0)). (3)

The most crucial component of such a GP model is the spatial correlation structure,
R(, ), which dictates the ‘smoothness’ of the interpolator that passes through the observa-
tions. By definition, any positive definite correlation structure would suffice, but the most
popular choice is the power-exponential correlation family given by

R(xi, xj) =
d∏

k=1
exp{−θk|xik − xjk|pk}, (4)

where θk and pk controls the wiggliness of the surrogate in the k-th coordinate. A special
case with pk = 2 for all k = 1, 2, ..., d, represents the most popular Gaussian correlation also
known as radial basis kernel in Machine Learning literature.

The parameter estimation for µ, σ2
z and θ is often a computationally intensive optimiza-

tion problem. There are a number of R packages that can provide the GP model fitting, for
example, mlegp, GPfit, DiceKriging, tgp, RobustGaSP and SAVE (Dancik, 2013; MacDon-
ald et al., 2015; Roustant et al., 2012; Gramacy, 2007; Gu et al., 2016; Palomo et al., 2015).
These R packages are somewhat different in terms of computational efficiency and stability.
For the reason of stability, we use the R package GPfit in this article. The GP model can
be fitted using the following code:

GPmodel = GPfit::GP_fit(X, Y, corr = list(type="exponential", power=2))
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The GPfit object GPmodel contains the parameter estimates, which can be further
passed on for generating the predictions along with uncertainty estimates on a test set.
For example, suppose the simulator output is generated by a one-dimensional test function
f(x) = log(x + 0.1) + sin(5πx), and the input points {x1, ..., x7} are randomly generated
as per a space-filling Latin hypercube design method (McKay et al., 1979). Then, Figure 6
shows the fitted surrogate, prediction uncertainty and the true simulator response curves.
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Figure 6: GP regression: The response is generated using the one-dimensional
test function f(x) = log(x + 0.1) + sin(5πx). black solid curve shows the true
simulator response, blue dashed curve presents the fitted surrogate and the gray
region depicts the uncertainty band.

2.2. Dynamic simulator

A simulator that produces time-series/functional response is referred to as the dynamic
computer model. Experimentation via dynamic simulators arise in various applications, for
example, rainfall-runoff model (Conti et al., 2009), vehicle suspension system (Bayarri et al.,
2007), and the population growth model for European red mites (Zhang et al., 2018) briefly
outlined in Section 1.

The time-series structure in the response makes the emulation substantially more chal-
lenging as compared to the standard GP model. Recently, a few attempts have been made
in this regard. For example, Liu and West (2009) and Farah et al. (2014) proposed time
varying autoregressive (TVAR) models. Another clever approach is to represent the time
series outputs as linear combinations of a fixed set of basis such as singular vectors (Higdon
et al., 2008) and wavelet basis (Bayarri et al., 2007). Zhang et al. (2018) developed an empir-
ical Bayesian approach for the singular value decomposition (SVD) based methodology and
generalized it further for large-scale data. We briefly discuss the basic version of SVD-based
GP model by Higdon et al. (2008).
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Let the simulator inputs and outputs be stored in the N×q matrix X = [x1, . . . ,xN ]T ,
and L×N matrix and Y = [y(x1), . . . ,y(xN)], respectively. Then the SVD of Y gives

Y = UDV T ,

where U = [u1, . . . ,uk] is an L × k column-orthogonal matrix, D = diag(d1, . . . , dk) is a
k × k diagonal matrix of singular values sorted in decreasing order, V is an N × k column-
orthogonal matrix of right singular vectors, and k = min{N,L}. Then the simulator response
is modelled as

y(x) =
p∑
i=1

ci(x)bi + ε, (5)

where x ∈ Rq, and bi = diui ∈ RL, for i = 1, . . . , p represent the orthogonal basis.
The coefficients ci’s in (5) are assumed to be independent Gaussian processes, i.e., ci ∼
GP(0, σ2

iKi(·, ·;θi)) for i = 1, . . . , p, where Ki’s are correlation functions. We use the popu-
lar Gaussian correlation (4) for K(x1,x2;θi). The residual term ε in (5) is assumed to be
independent N (0, σ2

L). The number of significant singular values, p, in (5), is determined
empirically by the cumulative percentage criterion p = min{m : (∑m

i=1 di)/(
∑k
i=1 di) > γ},

where γ is a threshold of the explained variation. With carefully chosen priors, the maximum
a posteriori (MAP) method gives closed form predictor along with the uncertainty estimates.
We follow the empirical Bayesian implementation by Zhang et al. (2018).

R library called DynamicGP (Zhang et al., 2020) provides user-friendly functions for
quick usage. The most important function is svdGP, and its usage is illustrated as follows:

svdGP(design, resp, frac=0.95, nthread=1, clutype="PSOCK", ...)

where design is the input design matrix, resp is the output response matrix, frac specifies
γ = 95%, and nthread and clutype controls the parallelization of the implementation. See
Zhang et al. (2020) for details on the implementation.

Suppose the time-series valued response is generated using the following test function
(Forrester et al., 2008) with three-dimensional inputs,

f(x, t) = (x1t− 2)2 sin(x2t− x3), (6)

where x = (x1, x2, x3)T ∈ [4, 10]× [4, 20]× [1, 7], and t ∈ [1, 2] is on a 200-point equidistant
time-grid. Figure 7 illustrates the implementation, by first fitting the svdGP model to a
training set of 20 input points randomly generated via maximin Latin hypercube design
in the three-dimensional hyper-rectangle [4, 10] × [4, 20] × [1, 7], and then predicting the
time-series valued simulator output using svdGP() function.

From Figure 7, it is clear that the fitted surrogate model predictions are reasonable
approximations of the simulator outputs at the design points. We fitted svdGP model using
the default settings of DynamicGP package. Of course, one can play around with other
arguments to obtain better (more accurate) predictions.
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Figure 7: Model prediction for six randomly chosen inputs. Each panel shows
the true simulator response (black solid curve), the mean predicted svdGP fit
(dashed red curve), and the uncertainty bounds (blue dotted curves).

3. Calibration / Inverse Problem

Calibration of computer simulation models is typically one of the key objectives of
computer experiments. For instance, the overall intent of the TDB model application was to
ensure that the simulator outputs were as realistic as the observed physical response. This
notion of calibration is also referred to as the inverse problem, i.e., the estimation of the
set of inputs that yield a pre-specified process value (also called the contour / iso-surface /
threshold estimation). Mathematically, the objective is to

find x ∈ χ, s.t. y(x) ≈ ξ, or, equivalently, minimize
x∈χ

‖ξ − y(x)‖,

where y(x) is the simulator response, ξ is pre-defined target to be estimated, and the objective
is to estimate S(ξ) = {x ∈ χ : y(x) ≈ ξ}.

Since realistic simulators of complex processes are often computationally expensive,
the number of evaluations of the computer simulator is limited which subsequently makes
the inverse problem a lot more challenging. A popular efficient strategy in such a situation
is to use sequential design approach which starts with an initial design and adds one point
or a batch of points at-a-time iteratively until a tolerance based stopping criterion is met or
a pre-specified budget is exhausted. The steps are summarized as follows.

• Step 1. Choose an initial design of run size n0. Let n = n0.

• Step 2. Build a statistical surrogate model with {(xi, yi), i = 1, . . . , n}.

• Step 3. Choose the next design point xn+1 by optimizing a merit-based criterion. Run
the simulator at xn+1 and obtain yn+1.
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• Step 4. Let n = n + 1 and repeat Steps 2 and 3 until it reaches the budget (N) or
satisfies the stopping criterion.

3.1. Calibration of a scalar-valued simulator

Obviously, c = 1 is a terrible choice for the player. For then, she must also choose
k = 1 toss (since there is no opportunity to toss after capturing one node with the first toss);
and she will earn 10, 2, 1, 11 nickels with probability 1/4 each. Therefore, per play she will
pay 51 cents; she will earn, on average, 5(10 + 2 + 1 + 11)/4 = 30 cents; and lose 21 cents—a
whopping 41.2% loss!

Suppose that the simulator produces a scalar-valued response, and the objective is to
estimate ξ = a. Ranjan et al. (2008) developed an expected improvement (EI) criterion (for
Step 3) under the GP model in Step 2. The idea is to choose xn+1 by maximizing

E(I(x)) =
∫ v2(x)

v1(x)
[ε2(x)− (t− a)2]φ

(
t− ŷ(x)
s(x)

)
dt

= [ε(x)2 − (ŷ(x)− a)2 − s2(x)](Φ(u2)− Φ(u1)) + s2(x)(u2φ(u2)− u1φ(u1))
+2(ŷ(x)− a)s(x)(φ(u2)− φ(u1)), (7)

where u1 = [a − ε(x) − ŷ(x)]/s(x), u2 = [a + ε(x) − ŷ(x)]/s(x), φ(·) and Φ(·) are the
probability density function and the cumulative distribution function of a standard normal
random variable, respectively, and ε(x) = αs(x) for a positive constant α. Ranjan et al.
(2008) used α = 1.96 which is in-sync with 95% confidence interval under the normality
assumption of the responses. This criterion is simply obtained by computing the expectation
of a carefully designed improvement function I(x) = ε2(x) −min

{
(y(x) − a)2, ε2(x)

}
with

respect to the predictive distribution y(x) ∼ N(ŷ(x), s2(x)).

Figure 8 depicts a quick illustration of the contour estimation procedure via the EI
criterion for a simulator response generated by a two-dimensional test function.

Figure 8: Contour estimation for a two-dimensional test function, y(x1, x2) =
(1 + (x1 + x2 + 1))(3 + 12x1x2) at the target a = 300, with n0 = 20 and N = 30.
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3.2. Calibration of a dynamic simulator

When we discuss the estimation of the inverse solution for a dynamic computer model,
the problem becomes lot more complicated. Note that the target is now a time series,
ξ = {ξ1, ..., ξL}, and the equality or approximation of y(x) and ξ have to be formulated more
carefully. For a quick reference, the objective of the TDB model application is to find the
set of inputs that would produce model outputs closer to the black solid curve shown in
Figure 5. An intuitive definition of the inverse problem is to find

x∗ = argmin
x∈χ

δ(x), where δ(x) = ‖ξ − y(x)‖2
2.

3.2.1. A naive approach

Ranjan et al. (2016) suggested treating the mean discrepancy between the model out-
put and the target, ω(x) =

√
δ(x)/L, as the scalarized simulator output, then use a GP

to emulate ω(x), and adopt the EI-criterion in Jones et al. (1998) for finding the global
minimum.

Suppose we consider the following three-dimensional test function with inputs x =
(x1, x2, x3) ∈ [0, 1]3 to generate the time-series response,

g(x, t) =
sin

(
10πt(2x3)

)
(1 + 2x1)t + |t− 1|(2+4x2), (8)

where the true field data correspond to x0 = (0.5, 0.5, 0.5). Figure 9 shows the true field
data (solid red curve) and a few simulator outputs (blue dotted curves).

Figure 9: A few computer model outputs and the true data for a three-
dimensional test function based dynamic simulator.

Figure 10 shows the implementation of this naive approach for finding the inverse
solution using n0 = 20 and N = 50.

It turns out that the final estimate of xopt is (0.4827, 0.4979, 0.4991). Though the in-
verse solution obtained is quite good, there are several theoretical oversights. For instance,
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(a) Running estimate of ωmin (b) Final inverse solution

Figure 10: Naive approach for solving the inverse problem for a 3-dimensional
test function based dynamic simulator.

no efforts are made in Ranjan et al. (2016) for modeling the dynamic computer simulators.

3.2.2. Zhang et al. (2019) approach

Given that the main objective is to efficiently minimize δ(x) = ‖ξ − y(x)‖2
2, Zhang

et al. (2019) follows the sequential design framework in Jones et al. (1998) for finding the
global minimum, and define the improvement function as

I(x) =
(
δmin − δ(x)

)
+
, (9)

where (u)+ = max{0, u} for u ∈ R and δmin = min{δ(xi), i = 1, 2, ..., n}. The corresponding
EI criterion would look like

E[I(x)] = E
[(
δmin − δ(x)

)
+

∣∣∣∣Y ], (10)

where the expectation is taken with respect to the predictive distribution of δ(x) given
Y . The distribution of δ(x) is not GP, which differentiates this EI with the standard
minimization problem in Jones et al. (1998).

The SVD-based GP surrogate model in Section 2.2 presents the distribution of y(x)
given Y , but not the distribution of δ(x) given Y . Zhang et al. (2019) used the saddlepoint
approximation method to evaluate (10). The method begins by finding a solution of the
derivative equation,

κ
(1)
δ (s) = δmin, (11)

where κ(1)
δ (s) is the first order derivative of the cumulant generating function of δ(x) with

respect to s. Of course there is no closed form solution of (11)), and they used Broyden’s
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method (Broyden, 1965) implemented in the R package nleqslv (Hasselman, 2010) for nu-
merically solving (11). Let s0 be the solution of (11), then, for s0 > 0, s0 < 0, s0 = 0, Zhang
et al. (2019) derived three expressions of saEI (saddlepoint approximation of the expected
improvement) which require numerical calculations. The R package DynamicGP (Zhang
et al., 2020) contains built-in function called saEI which facilitates easy computation of this
criterion for choosing follow-up design points.

4. Examples and Applications

In this section, we present a few examples to illustrate the performance comparison
of saEI approach with other competitors like the naive method outlined in Section 3.2.1.
We used a realistic example (TDB model) and some test functions for generating dynamic
computer simulator outputs. The performance is measured via ‖x∗ − x̂∗‖ and

Dξ = ‖ξ − y(x̂∗)‖2
2

‖ξ − ξ̄1L‖2
2
,

where x∗ is the truth corresponding to the target response ξ, x̂∗ is the estimated optimal
inverse solution, ξ̄ = ∑L

i=1 ξti/L, and 1L is an L-dimensional vector of ones.

Example 4 of Zhang et al. (2019): Suppose the outputs of the dynamic simulator obey

yt(x) = exp(3x1t+ t) cos(6x2t+ 2t− 8x3 − 6), (12)

where x = (x1, x2, x3)T ∈ [0, 1]3 and t ∈ [0, 1] is on a 200-point equidistant time-grid
(Harari and Steinberg, 2014). The input producing the target (or, equivalently, the field
observation) is randomly generated as x∗ = [0.522, 0.950, 0.427]T . Here, the initial design
is of size n0 = 18, and N − n0 = 36 points were chosen sequentially one at-a-time as per
the individual design criterion (e.g., using saEI(x)). Figure 11 summarizes the simulation
results over 50 replications.

Example 5 of Zhang et al. (2019): The environmental model by Bliznyuk et al. (2008)
simulates a pollutant spill at two locations (0 and L) caused by a chemical accident. The
simulator outputs are generated using the following model that captures concentration at
space-time point (s, t),

yt(x) = C(s, t;M,D,L, τ)

= M√
Dt

exp
(
−s2

4Dt

)
+ M√

D(t− τ)
exp

(
− (s− L)2

4D(t− τ)

)
I(τ < t), (13)

where x = (M,D,L, τ, s)T , M denotes the mass of pollutant spilled at each location, D is
the diffusion rate in the chemical channel, and 0 and τ are the time of the two spills. The
input domain is x ∈ [7, 13]× [0.02, 0.12]× [0.01, 3]× [30.01, 30.304]× [0, 3], and t ∈ [35.3, 95]
lies on a regular 200-point equidistant time-grid. In this example, the randomly chosen input
that produces the field observation is x∗ = [9.640, 0.059, 1.445, 30.277, 2.520]T . Zhang et al.
(2019) used a 30-point initial design and 60 follow-up points to estimate the inverse solution.
Figure 12 summarizes the results of 50 simulations.
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Figure 11: Performance comparison of saEI with SL2 (discussed in Section 3.2.1)
and LR method (Pratola et al., 2013). The dynamic responses are generated
using a test function from Harari and Steinberg (2014). See Example 4 of Zhang
et al. (2019) for details.
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Figure 12: Performance comparison of saEI with SL2 (discussed in Section 3.2.1)
and LR method (Pratola et al., 2013). The dynamic responses are generated
using a test function from Bliznyuk et al. (2008). See Example 5 of Zhang et al.
(2019) for details.

TDB example (Section 4.3 of Zhang et al. (2019)): The target response corresponds
to the average count of juvenile population over a 28-day sample during 156-th to 257-th
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Julian days (the period during which the apple farming takes place in the Annapolis Valley,
Canada). The data was collected twice a week at regular intervals. The version of TDB
model used here assumed the following six input variables:

• µ4 – adult death rate,

• β – maximum fecundity (eggs laid per day),

• ν – non-linear crowding parameter,

• τ1 – first delay - hatching time of summer eggs,

• τ2 – second delay - time to maturation of recently hatched eggs,

• Season – average number of days on which adults switch to laying winter eggs.

The performance comparison of the three methods in solving the inverse problem are
illustrated in Figure 13. Zhang et al. (2019) used n0 = 36 and nnew = 72 for finding the
inverse solution.
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Figure 13: TDB example (Section 4.3 of Zhang et al. (2019)): (a) The field
observation of the juvenile ERM population evolution and the located simulator
outputs that match the field observation produced by the three sequential design
methods. (b) The traces of the log(Dξ) criterion values of the 72 iterations for
the three methods.

On average, the saEI approach clearly outperforms both the competitors (LR by Pra-
tola et al. (2013) and SL2 by Ranjan et al. (2016)) at least with respect to the examples
applications considered here.
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5. Concluding Remarks

In this article, we presented the popular statistical metamodel called the GP model
for emulating scalar-valued deterministic simulator outputs. This was further generalized to
SVD-based GP model for efficient emulation of the dynamic computer simulator response.
We also discussed the inverse problem for both scalar and dynamic response simulators that
are expensive to evaluate. Several test functions and real-life examples are presented to
demonstrate the performance of the methodologies. We also highlight the freely available
R libraries for easy implementation of these methodologies. This is particularly helpful for
practitioners and young researchers in this area.

There are numerous active research problems in this area such as uncertainty quan-
tification, design and analysis of spatio-temporal simulator data, stochastic simulator data,
and in particular how to analyze BIG data coming from computer simulation models.
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