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Abstract and Prologue
In the later part of my professional life in the Indian Statistical Institute (I.S.I.), when

I left Delhi to take up the position of the Director of I.S.I. in Kolkata, Aloke was my pillar
of support, my person-to-go-to in any crisis; his was the shoulder to cry on. Those were,
in many ways, difficult times for me and often I reflect and wonder how those times would
have been without Aloke. In fact, from the mid-nineties, Aloke, in his extremely pleasant,
shy and humble way, slowly but surely entered into a very close friendship in my life, which I
will cherish forever. My frequent travels to Delhi, well after my retirement from I.S.I., would
bring me to I.S.I., Delhi and to me that meant spending time with Aloke, long discussions
inevitably ending with a very pleasant lunch with him in the chinese restaurant, opposite the
gate of I.S.I. All these will remain only memories now and my next visit to Delhi (delayed
by Covid-19) will be empty, “Aloke-heen” (in Bengali), and will make me miss him all the
more. The following article, a brief introduction (by a non-expert) to the decision theory
in a non-commutative (quantum-) background, is my humble tribute to Aloke and to his
friendship for me.
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1. Introduction

The statistical decision-theory or the idea of founding Statistics on a theory of decisions
is due to Abraham Wald, enunciated in its originality, in his famous book, “Statistical De-
cision Functions” (Wald (1950), for a more recent account see the book of Ferguson (1967).
There have been attempts, mainly by Holevo (see for example the books of Holevo (2011)
and Hayashi (2017)), to recast these ideas in the context of non-commutative probabilis-
tic background. As is well-known (see the first half of the book of Parthasarathy (1992)
for an elegant account), the mathematical Quantum Theory represents a model of a non-
Kolmogoroffian (or non-commutative) probability theory and hence there should be good
reason to explore the possibility of studying an extension of the (classical) decision-theory
to this domain. To give a brief account of this is the aim here.
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2. The Mathematical Description of The (Classical) Decision-Theory

As Ferguson (1967) observes in his book, the theory of games, as introduced by von
Neumann in the 1940’s, has a great deal of similarity with many aspects of decision theory.
Both of these two theories start with three basic objects:
(i) a non-empty set of parameter, Θ, parametrizing the possible states of the system;
(ii) a non-empty set, Ω, of decisions (or actions) available to the statistician;
(iii) a function L : Θ× Ω→ R, called the loss function (the negative values of L needs to
be interpreted as gain).

This triplet (Θ,Ω, L) defines a statistical decision problem or a game with the following
interpretation. The nature (or providence!) chooses a point θ in Θ and the statistician, with
no knowledge of the choice nature has made, makes a decision (or chooses an action) ω in
Ω. As a consequence of these decisions, the statistician loses an amount L(θ, ω). While in
game-theoretic context, the players are trying simultaneously to minimize their losses, since
the nature chooses the state without any such bias (hopefully!), this presents a dilemma for
the decision-statistician and she tries to resolve this dilemma by gathering more information
on the state by “sampling or by performing many experiments”.

Thus for the decision-statistician, there is also a sample space X (here taken to be a
Borel subset of Rd, the d-dimensional Euclidean space) with a family of probability measures
{µθ}θ∈Θ on F(X ), the Borel σ-algebra of X . The statistical decision problem, given by the
triple (Θ,Ω, L) along with the sample space X of experiments, next chooses a (behavourial)
decision map D : X × F(Ω) → R+ such that D(x, ·) is a probability measure on the Borel
σ-algebra F(Ω). Next one writes down the risk function R : Θ× {D} → R by

R(θ,D) =
�

Ω

L(θ, ω)
�

X

µθ(dx)D(x, dω). (1)

An instructive way to rewrite (1) is to define the measure µθ ◦ D : F(Ω) 7→ R+ for every
θ ∈ Θ and ∆ ∈ F(Ω) by

(µθ ◦D)(∆) =
�

X

µθ(dx)D(x,∆) (2)

and replacing (1) by

R(θ,D) =
�

Ω

L(θ, ω)(µθ ·D)(dω), (3)

whenever the integral exists. Here we have noted that if X 3 x 7→ D(x,∆) is measurable,
then ∀ θ, µθ ◦D is a probability measure on Ω and one can give a meaning to the integral
in (3). The risk function R represents the average loss to the statistician when the nature
has chosen the state parametrized by θ and the decision made is represented by the decision
map D.

At this stage, one is still left with the problem of the “choice of parametrization”
θ ∈ Θ of the state and of the several avenues adopted by a statistician, we shall restrict our
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discussions here to the use of the “Bayes Principle”. This involves putting a structure of a
measure space on Θ and assigning a “prior probability measure”π on the σ-algebra F (Θ).
This leads naturally to the definition of the Bayes risk of a (behavourial-)decision rule
D with respect to the prior π as

R(π,D) =
�

Θ

π(dθ)R(θ,D)

=
�

Θ

π(dθ)
�

Ω

L(θ, ω)(µθ ◦D)(dω). (4)

With regard to the definition (4), there are a few technical issues, e.g. the sense of
measurability of the map θ 7→ µθ ◦D etc., but these can be easily treated; for example in the
above mentioned case one can have the assumption that θ 7→ µθ(·) is measurable and refer to
[Dunford and Schwarz (1988), pages 156-162]. It is also worth mentioning that often authors
(e.g. in Wald (1950)) consider the parameter space Θ to be finite or countably infinite. Also
note, since all the 3 set-functions are non-negative, one can define a conditional probability
measure of the random variable θ̂ on Θ, given the random variable X on X (called the
posterior probability measure of θ̂ given the observation of X) on the product σ-algebra
F (Θ)×F(X ) by

(π · µ)(δ ×∆) =
�

δ

π(dθ)µθ(∆) (5)

for δ ∈ F (Θ) ,∆ ∈ F(X ). In fact, in Ferguson (1967) the possibility of these two defini-
tions (4) and (5) are pre-conditions for speaking about the “Bayes decision principle”. This
definition (5) sets up a linear ordering on the set D(·, ·) of decision functions and a Bayes
decision rule is one that has the smallest Bayes risk, R.

A decision function D0 is said to be Bayes with respect to the prior measure π if

R(π,D0) = inf
D
R(π,D). (6)

It may happen that even if the right hand side of (6) exists, that value may not be attained
for any D0 and in such a case, one has to be satisfied with a decision D0; which is “close” to
the infimum. Let ε > 0. A decision function D0 = D0(ε) is said to be ε-Bayes if

R(π,D0) ≤ inf
D
R(π,D) + ε. (7)

There are many other questions that arise naturally in the context of the above discussions;
however, we shall take a break with the (classical) decision-theory and the rest of this article
will be devoted to an attempt to “transport” the theory to the non-commutative (quantum)
domain.

The definition (3) sets up a linear ordering (inherited from that of the real line) and
the rule that is most preferred by that ordering is called the minimax decision rule: a
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decision map D0 ∈ D ≡ the set {D : X ×F(Ω)→ R+ | D(x, ·) is a probability measure with
variation norm uniformly bounded w.r.t. x ∈ X} is said to be minimax if

sup
θ∈Θ

R(θ,D0) = inf
D∈D

sup
θ∈Θ

R(θ,D). (8)

If one assumes that (i) Θ and Ω are topological spaces such that Θ is compact, and
L : Θ×Ω→ R+ is continuous, (ii) Θ 3 θ 7→ µθ(·) is continuous in w∗-topology of probability
measures, then it can be seen that Θ×D 3 (θ,D) 7→ R(θ,D) is continuous w.r.t the natural
w∗-topology of D, uniformly in θ. Therefore sup

θ
R(θ,D) exists and D 7→ sup

θ
R(θ,D) is

continuous w.r.t the w∗-topology of D in which D is compact. Thus the infimum exists and
is attained since D is compact, i.e., there exists a decision map D0 with the property that

inf
D∈D

sup
θ∈Θ

R(θ,D) = sup
θ∈Θ

R(θ,D0).

A very similar proof for the partial quantum statistical decision rules can be constructed
with (µθ ◦D)(·) replaced by TrS(ρθD(·)) and very similar results can be obtained with same
set of assumptions, as explained below.

3. Quantum Theory of Bayes’ Decision-rules

If one thinks of the Quantum Theory as one possible model for non-Kolmogoroffian
probability (see Partasarthy (1992) for an elaboration of this point of view), then the pair
(sample space X , real-valued random variable X) goes over to the relevant pair (Hilbert
space hS, a self-adjoint operator X̂ on it). Furthermore, the probability measure on F(X),
associated with the random variable X is replaced by a density matrix ρ, a positive trace-
class operator (B1+(hS)) of trace 1, on hS. In the present context of theory of decisions,
there are two distinct possibilities:
(i) following Holevo’s work (see Partasarthy (1992) and Holevo (1974)), one may have a kind
of partial quantum (or non-commutative) statistical decision theory in which the sample
space metamorphoses into its corresponding quantum structure, leaving the parameter-set
Θ, a classical measure space with a prior probability measure π on it or (ii) a further or fully
quantum statistical decision theory, in which the Bayesian part also undergoes a quantum
metamorphosis. What turns out to be a remarkable coincidence (at least to the present
author) that this second route has all the aspects of “quantum entanglement” (see. e.g.
Petz (2008) and Parthasarthy (2013)) built in the mathematical structure.

For implementing the route (i), we first note that the sample space X is replaced
by a (separable) Hilbert space hS, the corresponding real-valued random variable X by a
(possibly unbounded) self-adjoint operator X̂ in hS and the family of probability measures
{µθ(·)}θ∈Θ by a family of density matrices ρ ≡ {ρθ}θ∈Θ ∈ B1+(hS) with TrS(ρθ) = 1 for
every θ, where TrS stands for the trace taken in the Hilbert space hS. Furthermore, the
triple (Θ,Ω, L) are given as before with Θ and Ω as two measure spaces and L : Θ × Ω →
R+ measurable loss function. The most important change that takes place here is the
replacement of the (behavourial) decision-function D(x,∆) (for x ∈ X ,∆ ∈ F(Ω)) by a map
D : F(Ω) → B+(hS), the set of non-negative bounded operators on hS such that it is
countably additive: {∆j}∞j=1 of disjoint subsets in F(Ω) such that ∆ = ⋃

j=1
∆j implies that
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D(∆) =
∞∑
j=1

D(∆j) (the infinite sum converging in strong operator topology), and D(Ω) =

I ∈ B(hS). This kind of family is called a POVM (positive operator-valued measures) on Ω
(see Holevo (2011) and Davies (1976) for some applications of POVM). We can now define
the partial quantum risk function (p.q.r.f) as:

R(θ,D) =
�
L(θ, ω)TrS(ρθD(dω)). (9)

The right hand side makes sense since the map ρ ◦D : Θ×F(Ω) 7→ R+ given by

(ρ ◦D)(θ,∆) = TrS(ρθD(∆)) = TrS(ρ1/2
θ D(∆)ρ1/2

θ ), (10)

is a non-negative countably additive set-function with (ρ ◦D)(θ,Ω) = 1 and hence defines a
probability measure on Ω for every θ ∈ Θ. Thus (9) makes sense as a Lebesgue integral and
(9) can be rewritten as

R(θ,D) =
�
L(θ, ω)(ρ ·D)(θ, dω). (11)

Finally, with the prior probability measure π on F (Θ), one has as in (4), the partial quantum
Bayes’ risk (p.q.B.r) of a (behaviourial) decision rule D:

R(π,D) =
�

Θ

π(dθ)R(θ,D)

=
�

Θ

π(dθ)
�

Ω

L(θ, ω)(ρ ·D)(θ, dω). (12)

As in the classical case, one can define a (partially quantum) conditional density matrix of
the random variable θ̂ on Θ, given the (quantum) observation of the operator X̂ in hS (we
shall call it as posterior density matrix of θ̂ given X̂ in hS):

(π · ρ)(δ) =
�

δ

π(dθ)ρθ, ∀ δ ∈ F (Θ) , (13)

where the integral on the right hand side is the strong Bochner integral in the Banach space
B1(hS). It is easy to see that this B1+(hS)-valued set function on F (Θ) is countably additive
and TrS(π · ρ) (Θ) = 1. In fact, the Bayes risk p.q.B.r can be rewritten in terms of the
posterior density matrix (π ◦ ρ)(·) as

R(π,D) =
�

Θ×Ω

L(θ, ω)TrS((π · ρ)(dθ)D(dω)). (14)

In analogy, given a prior π, the partially quantum Bayes decision rule is the D which gives
the smallest p.q.B.r and a decision D0 (in B+(hS)-valued POVM’s on F(Ω)) is said to be
Bayes with respect to prior π if

R(π,D0) = inf
D∈hS−povm(Ω)

R(π,D). (15)



112 KALYAN B. SINHA [Vol. 19, No. 1

In the rest of this article, we consider fully quantum decision theory in which the
sample space X as well as parameter space Θ metamorphoses into two (separable) Hilbert
space hS and hB, respectively, and π · µ(·) or π · ρ are replaced by one density matrix Φ on
h̃ = hS ⊗ hB. This structure, in conjunction with the following assumptions constitute the
present new proposal.

A1. Ω is a compact Borel space and the loss operator L : Ω → B+(hB) is continuous
w.r.t the ω∗-topology of B(hB);

A2. D : F(Ω) 7→ B+(hS) is a POVM, as mentioned earlier and as in Holevo’s theory.

Then we lift these two operator-families to the Hilbert space h̃ by setting

L̃(ω) = IS ⊗ L(ω) for ω ∈ Ω and
D̃(∆) = D(∆)⊗ IB for ∆ ∈ F(Ω). (16)

Note that L̃(ω) commutes with D̃(∆) in h̃ and we define the fully quantum risk function

R(Φ, D) =
�

Ω

Trh̃(ΦL̃(ω)D̃(dω)), (17)

which is

=
�

Ω

Trh̃{(L̃(ω)1/2ΦL̃(ω)1/2)D̃(dω)},

showing that R(Φ, D) ≥ 0, if it exists. The issue of the sense in which the integral in (17)
can be defined is not a simple one and it is left unresolved in this article, to be dealt with
later. However, it should be mentioned that Holevo (see e.g. Holevo (1974)) gave a theory
to study such integrals. Here we shall restrict ourselves to the simpler case when the density
matrix Φ on h̃ is a finite linear combination of tensors of density matrices on hS and hB:

Φ =
n∑
j=1

ρj ⊗ πj; ρj ∈ B1+(hS), πj ∈ B1+(hB). (18)

In such a case,

ΦL̃(ω)D̃(dω) =
n∑
j=1

(ρjD(dω)⊗ (πjL(ω))

and thus we shall be looking at the “integral”
�

Ω

TrB(πjL(ω)) · TrS(ρjD(dω)), (19)

which exists as a Lebesgue-type integral since the function TrS(πjL(·)) is bounded continuous
on compact Ω and since the second factor in (19) is clearly a (non-negative) finite measure
with total variation = TrS(ρj). For the rest of the discussion, viz. the one on a kind of
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minimax theorem, we shall assume that the integral in (17) exists for all density matrices Φ
on hS ⊗ hB.

As we have observed before, by virtue of the assumption A1,
the map: density matrices on h̃ 3 Φ 7→ R(Φ, D) ∈ R+ is continuous w.r.t. the w∗-topology
on density matrices induced by B(h̃) after applications of Mazur’s theorem. Also note that
Alaoglu’s theorem implies that in the same topology, the set of density matrices is a (convex)
compact set and therefore, there exists a density matrix Φ0 such that

sup
Φ
R(Φ, D) = R(Φ0, D). (20)

On the other hand, it is easy to see that

sup
Φ

inf
D
R(Φ, D) ≤ inf

D
sup

Φ
R(Φ, D)

= inf
D
R(Φ0, D)

≤ sup
Φ

inf
D
R(Φ, D)

and therefore one has

sup
Φ

inf
D
R(Φ, D) = inf

D
sup

Φ
R(Φ, D). (21)

The left hand side is called the lower value and the right hand side the upper value and
equality of these two constitutes the minimax decision rule.

The procedure and results, indicated above can be strengthened more, in line with the
classical case, if instead we ask the following:

Given σ ∈ B1+(hB), let Sσ = {Φ ∈ B1+(hS ⊗ hB) | TrSΦ = σ}.

Then does there exist a POVM D0 such that sup
Φ∈Sσ

inf
D
R(Φ, D) = sup

Φ∈Sσ
R(Φ, D0) ?
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