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Abstract
The issue of eliciting truthful answers from survey respondents on sensitive questions

has always been a challenge. Survey statisticians have developed various techniques to ad-
dress this issue. Randomized response technique (RRT), originating in 1965 due to Warner,
is a popular method in this area.

Block total response technique (BTRT), due to Raghavrao and Federer in 1979, is a
method that incorporates experimental design features into RRT with the goal of increas-
ing respondents’ anonymity, in addition to producing unbiased estimators of parameters
involving sensitive features. In this paper, we have developed an innovative estimator of
the population mean of a sensitive feature using a permutation mechanism in the BTRT
framework. This enables us also to compute an unbiased estimate of the variance of the
proposed estimator.

Key words: Sensitive qualitative feature(s); Sensitive quantitative feature(s); Randomized
response; Block total response technique; Random permutations.

1. Measuring Sensitive Characteristics Through Surveys: A Brief Review

Eliciting truthful responses on sensitive issues/characteristics from survey respondents
has always been a challenge. During the latter half of the twentieth century, survey statis-
ticians have proposed various methods of conducting surveys that provide anonymity to
respondents and encourage them to answer truthfully to such sensitive issues. This enables
gauging the level of the sensitive issue in the population, overcoming the biases that arise
from false reporting. At the head of these survey methods is the popular randomized re-
sponse technique (RRT) of interviewing, proposed by Warner in 1965. At the heart of this
technique is a randomizing device, which is used to direct the respondent to provide answer
to either a random (non-sensitive) question or to the sensitive question. It is of paramount
importance that only the respondent knows how the randomization device directed him to
respond and he provides only his answer to the interviewer without letting on how the device
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directed him to respond. The underlying assumption is that since the respondent provides
an answer to the interviewer without exposing his personal situation, any stigma associated
with the sensitive question will be abated and the respondent will feel encouraged to respond
truthfully. Warner showed that the responses obtained from this process will enable obtain-
ing reliable estimates of the population parameter without direct knowledge of the responses
obtained from individual respondents.

The RRT literature has focused on developing innovative randomization devices for
both qualitative and quantitative characteristics. Examples of sensitive qualitative charac-
teristics, particularly in the realm of public health, are use of contraceptive methods during
sexual activity (yes/no), illicit substance use (yes/no), ever had an induced abortion (yes/no),
ever had suicidal thoughts (yes/no) etc. Examples of sensitive quantitative features are the
number of sexual partners one has, the number of times a person used illicit substance in the
last month, the amount of time spent in a correctional facility etc. In addition to Warner’s
seminal work, we refer to a few book chapters and journal publications on RRT for details:
Chaudhuri and Mukerjee (1987, 1988), Hedayat and Sinha (1991), Chaudhuri (2011) and
Chaudhuri and Christofides (2013). Fifty years since it was first introduced, a celebratory
Golden Jubilee Volume on RRT was compiled by Chaudhuri et al. in 2016 in a volume of
the Handbook of Statistics.

In this paper, we are interested in quantitative sensitive characteristics; so we will focus
our discussion henceforth for such sensitive characteristics only.

Greensberg et al. (1971) presented the first work involving RRT for continuous sensi-
tive characteristics. Several others followed since, such as Eriksson (1973), Pollock and Bek
(1976), Anderson (1977), etc. In recent years, Diana and Perri (2011) showcased the use of
auxiliary information for estimating the mean of quantitative sensitive data and compared
different models from both the perspectives of gaining efficient estimators as well as protect-
ing respondents’ anonymity. In 2015, Bose’s work dealt with estimating the population mean
of a sensitive feature wherein it is assumed that the true population values are captured by
possibly a superset of M known quantities [T1, T2, . . . , TM ].

In the various approaches to extracting truthful responses on sensitive issues in surveys,
an alternative method was proposed by Raghavarao and Federer (1979) where the idea was
to incorporate basic experimental design elements in this framework. Block total response
technique (BTRT) was suggested, based on the use of supplemented block designs / balanced
incomplete block designs / spring balance weighing designs. In the context of a survey design,
a “block” may be thought of as a questionnaire, containing a subset of the total number of
questions, selected from a pool of questions which includes the sensitive question(s) as well.
Of course, a given block may or may not contain the sensitive question(s).

Henceforth, we will closely follow the methodology suggested by Raghavarao and Fed-
erer (1979) and adopted in Nandy et al. (2016) and elsewhere. We shall use the BTRT
framework to develop an estimator of the population mean for a quantitative sensitive char-
acteristic. The entire exercise of sampling and estimation is geared towards unbiased esti-
mation of the parameter under consideration. Layout of the rest of the paper is as follow. In
section 2, we present some of the BTRT literature on quantitative sensitive characteristics.
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In section 3, we introduce a BTRT version for estimating the mean for a sensitive quantita-
tive item, similar to the methodology presented in Nandy et al. (2016) for qualitative items.
In section 4, we provide an extension of our methodology that may potentially provide in-
creased protection of respondents’ privacy. Finally in section 5, we present some concluding
remarks.

2. Methods to Obtain Truthful Responses for Sensitive Quantitative Items
Through Survey

2.1. The development of BTRTS for sensitive quantitative items

As mentioned in the introduction, the BTRT method was suggested by Raghavarao
and Federer (1979) as an alternative to the RRT. What stands out about this method is the
increased protection of respondents’ privacy when answering to sensitive questions. In fact,
Coutts and Jann (2011) compared various RRT methods to BTR and showed that BTR
outperformed the RRTs in terms of increased respondents’ trust, better understanding of
the interview instructions, lesser time to answer as well as lower non-response rates.

After its introduction, subsequent works in BTR focused on how to incorporate multiple
sensitive questions into the design as well as development of various scoring mechanisms, i.e.,
how to score questions, other than in a binary fashion, so as to further increase respondents’
privacy. The latter is rooted in the idea that a total score could be incriminating if that score
could only be achieved by answering “yes” to at least one sensitive question. The works of
Smith and Street (2003) and Smith (2005) are some examples of these. In 2016, we undertook
various meaningful versions/generalizations of the BTRT and introduced empirical Bayes
estimators.

All advancements in this area, however, have been for qualitative sensitive character-
istics. In this work, we propose to present BTRT for quantitative sensitive characteristics.
For this, our starting points are our own work in Nandy et al. (2016), Bose (2015) and
Mukherjee et al. (2018). We present some details related to the latter two in the following
subsection.

2.2. Study of a sensitive quantitative item under general sampling scheme

According to Bose (2015), we assume that truthful unknown responses [Y1, Y2, . . . , YN ]
are captured by possibly a superset of M known quantities [T1, T2, . . . , TM ]. Therefore,
quantitative nature of the sensitive feature is only to the extent of being discrete-valued.
In effect, therefore, a finite population Y -distribution refers to a frequency distribution of
the T ’s such as [N1, N2, . . . , NM ; ∑

i Ni = N ] or, in other words, it refers to a probability
distribution [w1, w2, . . . , wM ] where wi = Ni/N ; i = 1, 2, . . . ,M. An RRT is now geared
towards unbiased estimation of the w’s - using a suitable randomization device as described
below.

Choose a fraction δ and a total of R chips such that R0 = δR chips [among the R chips]
read as “Report T” in case the respondent happens to choose any of these R0 chips. Further
to this, a set of Ri = (1− δ)R/M chips reads as “Report Ti”, if the respondent happens to
choose any one of these Ri chips (i = 1, 2, . . . ,M). It is now clear that each respondent is
supposed to select at random one chip and act accordingly by responding truthfully - without
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divulging the type of chip selected. The chosen chip is returned back to the collection each
time. That is how we generate the data under RRT.

The observed proportions of the T s, say p1, p2, . . . , pM are random and it turns out
that

E(pi) = δwi + (1− δ)/M ; i = 1, 2, . . . ,M.

This suggests that we can unbiasedly estimate wi as [pi − (1− δ)/M ]/δ for i = 1, 2, . . . ,M .
Therefore, the population mean [=∑

i wiTi] is unbiasedly estimated. It can be seen that
SRSWR sampling of respondents entails us to regard the responses as being independently
and identically distributed (iid). This simplifies the data analysis significantly.

Bose also gave an expression for variance of the estimate of the population mean.
Variance estimation is not considered there. It follows that this method has an inherent
limitation in that it does not address the estimation problem in case the sampling design is
fixed size (N, n) sampling design such as SRSWOR (N, n) or any arbitrary sampling design.
The iid nature of the responses is highly restrictive to do away with.

Next, Mukherjee et al.. (2018) undertook this study in its most general form. They
provided formulae for mean estimation, expression for variance of the estimate and a method
for variance estimation as well.

The idea is to provide an unbiased estimate of Y ∗
i - the true Y -value on the sensitive

feature, associated with the i-th respondent - for every selected respondent i in the sample.
Once the respondent i has been selected and has been asked to provide RR [Ri] by making
a random choice of one chip and acting accordingly, it turns out that

E(Ri) = δY ∗
i + (1− δ)

∑
i

Ti/M.

Therefore,
Ŷ ∗

i = [Ri − (1− δ)
∑

i

Ti/M ]/δ.

It is now simple to obtain the Horvitz Thomson Estimator (HTE) ∑
i Ŷ

∗
i /Nπi for the popu-

lation mean for any arbitrary fixed size (N, n) sampling design - the choice of the sampling
design being subject to providing positive first and second order inclusion probabilities etc.
For the proof of unbiasedness, deduction of the expression for variance as well as estimated
variance, we may refer to Mukherjee et al. (2018).

It must, however, be noted that the discrete nature of the quantitative feature is still
maintained. That is a major limitation of the study so far described.

3. Introducing Block Total Response Technique for Quantitative Sensitive
Feature

We now proceed to discuss BTR Technique for unbiased estimation of the population
mean for a sensitive quantitative feature Q∗ with true values Y (Q∗), apriori known to the
respondents. Also are apriori known values of each of a set of v other quantitative ordinary
[non-sensitive] features Q1, Q2, . . . , Qv to the respondents. We draw a random sample of n
respondents, following SRSWOR(N, n) sampling. We no longer require that the Y-values be
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discrete. At best, it may be convenient to make a choice of the ordinary features Qs such
that their ranges broadly cover the range of values of the sentitive feature Q∗.

We employ BTR technique in the following manner. We start with a Binary Proper
Equireplicate Block Design [BPEBD] involving b blocks, each of size k, with equal replication
number r of each of the v non-sensitive Qs. We then supplement each such block with one
additional question, viz., the sensitive question Q∗. Thus each of the b blocks of size k
is ‘extended’ to one of size (k + 1). We also introduce an additional block B0 of size v -
incorporating all the v non-sensitive Qs.

The respondents in the sample are randomly split into (b+1) sets of sizes n∗, n∗, . . . , n∗, n0.
We assume that the sample size n has a convenient integer decomposition n = (bn∗ + n0)
for suitably chosen integers n∗, n0. The b blocks each receive n∗ respondents and each re-
spondent provides only the sum total of responses to (k + 1) questions, the k non-sensitive
questions included in the specific block in which the respondent belongs, along with the
sensitive feature Q∗. The same is also true of the last block B0 - although all the v features
in this block are non-sensitive in nature. Our goal is to obtain an estimate of Ȳ (Q∗).

In this context, we are tempted to quote Raghavarao and Federer (1979): ”One early
anonymous-direct-question method that was used successfully (e.g. by A. J. King and others
at Iowa State University) was to have the respondent complete an unmarked questionnaire in
secret and to deposit the questionnaire in a large locked box in which other questionnaires had
been deposited; then, the respondent observed that the contents of the box were thoroughly
mixed. We shall call this method the ‘black box’ (BB) method.”

In our context, we may refer to (b+ 1) such black boxes in a meaningful manner.

3.1. Estimation of Ȳ (Q∗)

At this stage, let us consider an illustrative example with b = 5, v = 10, r = 2, k =
4, n = 350, n∗ = 50, n0 = 100. Let further the blocks of the BPEBD be formed as seen in
Table 1 below.

Table 1: Blocks in the BPEBD

Block Non-sensitive Features Sensitive Feature
B1 Q1, Q2, Q3, Q4 Q∗

B2 Q5, Q6, Q7, Q8 Q∗

B3 Q9, Q10, Q1, Q2 Q∗

B4 Q3, Q4, Q5, Q6 Q∗

B5 Q7, Q8, Q9, Q10 Q∗

In the first block, let us now compute the average of Block Total Responses - averaged
over all the n∗ respondents’ BTR scores. Let us denote it by ¯BTR(B1). It follows that its
expectation is given by E[ ¯BTR(B1)] = Ȳ (Q1) + Ȳ (Q2) + Ȳ (Q3) + Ȳ (Q4) + Ȳ (Q∗) where
Ȳ (Q) refers to the population average of true values for the feature identified through Q.
Likewise, we carry out the same for all blocks B1 to B5. Additionally, we work it out for the
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last block B0 as well.

Adding the results for the first 5 blocks, we obtain

E[
∑

i

¯BTR(Bi)] = 2[Ȳ (Q1) + Ȳ (Q2) + . . .+ Ȳ (Q10)] + 5Ȳ (Q∗)

while
E[ ¯BTR(B0)] = Ȳ (Q1) + Ȳ (Q2) + . . .+ Ȳ (Q10).

From the above, we deduce

ˆ̄Y (Q∗) = [∑i
¯BTR(Bi)]− 2[ ¯BTR(B0)]

5 .

3.2. Estimation of V ( ˆ̄Y ))

In order to work out variance estimate of this estimate of the population average of
the sensitive feature Q∗, we propose to develop an important representation of the estimate
derived above. For this, we assume that the respondents’ responses are not associated with
others’ responses and that, to most extent, the respondents behave independently - so far as
the responses are concerned.

We provide below an extensive use of permutation groups. Let P1 denote a random
permutation of size n∗ of the integers 1, 2, . . . , n∗ associated with the labels of the respondents
in Block 1. Likewise, we develop independently all other permutations P2 to Pb and lastly,
P0 of size n0 for the block B0.

Now we group the responses across the b + 1 blocks in sets of b + 1 - taking one from
each of the b blocks and 2 from the last block B0. Once more we illustrate this feature by
referring to the above example. We choose, for example, n∗ = 50 and n0 = 100 so that
n = 350.

P1 =[44 18 17 14 26 38 19 34 30 37 7 1 20 39 11 3 31 22 46 23 9 28 10 8 12
4 16 27 32 40 29 49 21 48 5 13 15 43 50 2 41 25 35 45 33 36 47 42 6 24];

P2 =[4 30 16 14 38 46 21 39 32 13 49 19 20 2 48 47 17 31 9 50 27 44 35 6 40
3 10 12 37 11 8 29 1 22 26 24 33 7 34 18 45 23 42 36 43 5 28 15 25 41];

P3 =[7 8 44 21 39 38 4 43 19 11 45 48 26 3 10 31 15 49 30 25 16 17 46 14 2
5 28 32 1 41 47 40 20 34 27 18 9 13 24 50 36 37 23 33 42 22 12 29 35 6];

P4 =[13 29 41 11 36 40 46 31 3 48 50 30 7 14 23 21 25 8 9 32 2 37 28 1 42 33
20 45 49 19 12 16 44 43 38 15 39 24 26 4 22 10 17 27 34 6 18 35 5 47];

P5 =[2 37 13 47 27 21 32 1 22 43 20 33 36 24 28 16 9 35 19 15 31 44 23 41
30 29 5 14 4 49 34 42 48 12 18 6 10 46 17 26 39 7 3 45 25 38 50 11 8 40];
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P0 =[9 10 95 26 18 61 21 60 57 8 67 70 73 2 46 54 100 80 17 40 5 4 77 19 87 52
76 25 81 35 55 14 50 37 29 69 38 89 98 90 59 12 68 7 53 16 75 39 94 48 42
32 56 36 41 96 82 65 78 62 74 93 86 3 97 13 47 49 63 88 85 43 51 30 91 15
58 22 64 71 33 1 27 45 28 20 84 11 23 44 99 34 24 6 31 66 79 92 72 83];

According to the above permutations applied to different blocks, Set 1 comprises of
responses of 7 respondents labeled (1) 44 in B1, (2) 4 in B2, (3) 7 in B3, (4) 13 in B4, (5) 2
in B5 and (6,7) 9, 10 in B0. An estimator for Ȳ (Q∗) based on this data Set 1 is given by

1/5× [{Y (44;Q1) + Y (44;Q2) + Y (44;Q3) + Y (44;Q4)}
+ {Y (4;Q5) + Y (4;Q6) + Y (4;Q7) + Y (4;Q8)}
+ {Y (7;Q9) + Y (7;Q10) + Y (7;Q1) + Y (7;Q2)}
+ {Y (13;Q3) + Y (13;Q4) + Y (13;Q5) + Y (13;Q6)}
+ {Y (2;Q7) + Y (2;Q8) + Y (2;Q9) + Y (2;Q10)}
− {Y (9;Q1) + Y (9;Q2) + . . .+ Y (9;Q10)}
− {Y (10;Q1) + Y (10;Q2) + . . .+ Y (10;Q10)}].

We proceed in this manner and obtain 50 estimates of Ȳ (Q∗) based on the 50 sets as defined
above. Because of the underlying permutation principle, these estimates are also exchange-
able in nature. This characterization of the individual estimates lends itself to easy com-
putation of their average, which is the estimate of the population mean. Further, variance
estimation becomes a trivial task: ∑

i(ei − ē)2/n(n− 1) is an unbiased variance estimate of
ē based on iid estimates es.

Even though the respondents are selected according to SRSWOR(N, n), use of permut-
ations within blocks enables us to justify the assumption of iid nature of the estimates based
on different sets of data. It is not however clear if the same holds true for any arbitrary fixed
size (n) sampling design.

In the above, we assumed the condition: n = bn∗ + n0 for suitably chosen integers
n∗, n0. It is possible to relax this condition and instead work with another representation.
We reconsider the above example to illustrate this point.

Once again, we start with n = 350 but assume the representation: 350 = 30+40+50+
60 + 70 + 100. Note that there is a common divisor of 10 among all the respondent group
sizes. This time we can assemble the sets so that we have 10 iid estimates of the parameter
of interest, e.g., mean of the sensitive feature Q∗. Once these formations are done, the rest
is routine in terms of computation of mean and variance of iid estimates.

We describe the essential step below with reference to the first of the 10 sets of esti-
mates. The sizes of the blocks will be the highest common factor, which is 10 in this case.
This suggests (i) deriving random permutations of the respondent labels within each block;
(ii) forming 10 subsets of equal size within each block. Note that subset sizes will vary across
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the blocks; (iii) forming unbiased estimates for the mean of the sensitive feature [Q∗] from
subsets collected serially across all the blocks; (iv) using iid sample estimates to arrive at
the over-all average etc.

We carry out the exercise below. The subsets within each block, after random permu-
tation, are shown within parenthesis. Also the block sizes are indicated in parenthesis.
P1(1− 30) =[(30 7 1 ); (20 11 3); (22 23 9); (28 10 8); (12 4 16);

(27 29 21); (5 13 15); (2 25 6); (24 18 17); (14 26 19)];
P2(1− 40) =[(13 19 20 2); (17 31 9 27); (35 6 40 3); (10 12 37 11); (8 29 1 22);

(26 24 33 7); (34 18 23 36); (5 28 15 25); (4 30 16 14); (38 21 39 32)];
P3(1− 50) =[(7 8 44 21 39); (38 4 43 19 11); (45 48 26 3 10); (31 15 49 30 25);

(16 17 46 14 2); (5 28 32 1 41); (47 40 20 34 27); (18 9 13 24 50);
(36 37 23 33 42); (22 12 29 35 6)];

P4(1− 60) =[(16 39 48 42 32 56); (36 41 3 13 47 49); (43 51 30 15 58 22);
(33 1 27 45 28 20); (11 23 44 34 24 6 31); (35 55 14 50 37 29);
(38 59 12 7 53 9); (10 26 18 21 60 57); (8 2 46 54 17 40); (5 4 77 19 52 25)]

P5(1− 70) =[(3 13 47 49 63 43 51); (30 15 58 22 64 35 55); (14 50 37 29 69 38 59);
(12 68 7 53 33 1 27); (45 28 20 11 23 44 34); (24 6 31 66 9 10 26);
(18 61 21 60 57 8 67); (70 2 46 54 17 40 5); (4 62 19 52 25 16 39);
(48 42 32 56 36 41 65)].

P0(1− 100) is the 10 subsets formed taking 10 permutations at a time and serially - starting
from the left corner.

We display the result based on data analysis for Set 1 across all the 6 blocks. For
B1, we consider the first set of 3 respondents labeled (1, 7, 30) and average out the BTRs
collected from them. So,

E(Set1) = Ȳ (Q1) + Ȳ (Q2) + Ȳ (Q3) + Ȳ (Q4) + Ȳ (Q∗).

Likewise, we have similar results from the first set of all other blocks. We denote these
averaged responses by R(B1;S1), R(B2 : S1), . . . , R(B6;S1). It now follows that

ˆ̄Y (Q∗;S1) = [R(B1;S1) +R(B2;S1) + . . .+R(B5;S1)− 2R(B6;S1)]/5.

We will be referring to 10 such sample estimates and proceed to compute the combined
estimate of the population mean of Q∗ and its estimated standard error.

So,
ˆ̄Y (Q∗;S2) = [R(B1;S2) +R(B2;S2) + . . .+R(B5;S2)− 2R(B6;S2)]/5,
ˆ̄Y (Q∗;Si) = . . . .

ˆ̄Y (Q∗;S10) = [R(B1;S10) +R(B2;S10) + . . .+R(B5;S10)− 2R(B6;S10)]/5.
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Therefore,

ˆ̄Y (Q∗) = 1/10[ ˆ̄Y (Q∗;S1) + ˆ̄Y (Q∗;S2) + . . .+ ˆ̄Y (Q∗;S10)].

Further, estimated standard error is computed as usual by taking square root of
∑

( ˆ̄Y (Q∗;Si)− ˆ̄Y (Q∗))2/10× 9.

4. An Extention of the BTRT Method

In the technique presented above, in every block [B1 to Bb], we are utilizing some k of
the v Qs - leaving the rest unutilized. When k is small, respondents may not feel comfortable
responding truthfully since responding to Q∗ is mandatory. In this section, we provide an
extension of the above technique, as follows.

For every block out of B1 to Bb, we bring a variation in the block composition as: 1. List
of k “must respond” Q’s - these are kept in Part A. This is the same as before. 2. Remaining
(v−k) Q’s and Q∗ are kept in Part B. From Part B, a respondent is to make a random choice
of exactly one question from the total (v − k + 1) questions; next the respondent will blend
the selected question with those in Part A and provide BTR - without divulging the nature
of the question selected from Part B. To simplify the data analysis, it may be assumed that
selection from Part B is governed by the rule: Select Q∗ with probability δ and any one
of the remaining Q’s with probability (1 − δ)/(v − k). Further, we use the same selection
mechanism in each such block.

Once more, we can study the formation of estimates based on the sets separately and
then combine them. We display the result for Set 1 below for the example considered above
and with the choice δ = 0.4. Accrued Block Totals provide for the first 5 blocks, the following
expressions for their expectations under random choice of the question selected from Part B:

[{Y (44; Q1)+Y (44; Q2)+Y (44; Q3)+Y (44; Q4)}+0.1{Y (44; Q5)+. . .+Y (44; Q10)}+0.4Y (44; Q∗);

{Y (4; Q5) + Y (4; Q6) + Y (4; Q7) + Y (4; Q8)}+ 0.1{Y (4; Q9) + . . . + Y (4; Q4)}+ 0.4Y (4; Q∗);

{Y (7; Q9) + Y (7; Q10) + Y (7; Q1) + Y (7; Q2)}+ 0.1{Y (7; Q3) + . . . + Y (7, Q8)}+ 0.4Y (7; Q∗);

{Y (13; Q3)+Y (13; Q4)+Y (13; Q5)+Y (13; Q6)}+0.1{Y (13; Q7)+ . . .+Y (13; Q2)}+0.4Y (13; Q∗);

{Y (2; Q7) + Y (2; Q8) + Y (2; Q9) + Y (2; Q10)}] + 0.1{Y (2; Q1) + . . . + Y (2; Q6)}+ 0.4Y (2; Q∗)

As for block B0, we obtain [Y (9;Q1) + Y (9;Q2) + . . .+ Y (9;Q10) + Y (10;Q1) + Y (10;Q2) +
. . .+ Y (10;Q10)].

From the above, it is routine to obtain an estimate for the average Y (Q∗). Once such
estimates are computed from each set, they may be treated as iid sample estimates and
hence mean estimation and variance estimation are immediate.
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5. Concluding Remarks

In the context of sensitive quantitative features, we have proposed a version of block
total response technique which has flexibility in terms of implementation. We expect that
the scheme in section 4 will likely provide increased privacy protection to respondents, com-
pared to the BPEBD scheme in Section 3 which involves only the sensitive item Q∗ in the
supplementary part. We plan to quantify this increase in future work. It may be noted that
in most practical surveys, collection of data is on several variables, which are then used to
estimate not just marginal distributions but also joint distributions, correlations, regressions
etc. Deriving joint inferences from data gathered using BTRT would be interesting. We
plan to explore this in future study. The innovativeness of the method studied here lies
in procuring an estimate as well as estimated standard error by exploiting a permutation
method to generate exchangable observations. The results have been deduced under SR-
SWOR sampling. For a general fixed size sampling design, we have yet to develop a version
of BTRT. This is true for both qualitative and quantitative sensitive features.
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