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Abstract

In discrete choice experiments, a choice design involves n attributes (factors) with i-th at-
tribute at li levels, and there are N choice sets each of size m. Demirkale, Donovan and Street
(2013) considered the setup of symmetric factorials (li = l) and obtainedD-optimal choice designs
under main effects model in the absence of two or higher order interaction effects. They provide
some sufficient conditions for a design to be D-optimal. In this paper, we first derive a modified
Information matrix of a choice design for estimating the factorial effects of a l1 × l2 × · · · × ln
choice experiment. For a 2n choice experiment, following Singh, Chai and Das (2015), under the
broader main effects model (both in the presence and in the absence of two-factor interactions)
we give a simple necessary and sufficient condition for the Information matrix to be diagonal.
Furthermore, we characterize the structure of the choice sets which gives maximum trace of the
Information matrix. Our characterization of such an Information matrix facilitates construction
of universally optimal choice designs for estimating main effects, both in the presence and in the
absence of two-factor interactions but, in the absence of three or higher order interaction effects.

Key words: Choice sets; Choice design; Factorial design; Resolution; Main effects; Hadamard
matrix.

1 Introduction

Discrete choice experiments are widely used in various areas including marketing, transport,
environmental resource economics and public welfare analysis. A choice experiment consists
of a number of choice sets, each containing several options (alternatives, profiles or treatment
combinations). Respondents are shown each choice set in turn and are asked which option they
prefer, as per their perceived utility, in each of the choice sets presented. Each option in a choice set
is described by a set of attributes (factors), each with some number of levels. We assume that there
are no repeated options in a choice set. We describe the options which are being compared, by n
attributes with i-th attribute at li levels (li ≥ 2), and that all the choice sets in a l1×l2×· · ·×ln choice
experiment have m options. It is ensured that respondents choose one of the options in each choice
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set (termed forced choice experiment in the literature). A choice design is a collection of choice
sets employed in a choice experiment. A choice design comprises N such choice sets. Recently,
Großmann and Schwabe (2015) present a review of designs for discrete choice experiments.

Earlier, Street and Burgess (2007) presented a comprehensive exposition of designs for
choice experiments under multinomial logit (MNL) model. MNL model specifies the probabil-
ity that an individual will choose one of the m alternatives, say si, from a choice set S (say). The
probability is given as the exponential of the expected utility of that alternative si, divided by the
sum of all the exponentiated expected utilities. Mathematically,

P (si|S) =
eVi∑m
j=1 e

Vj
, (1.1)

where Vi is the utility measure represented by the treatment combination effect for a l1×l2×· · ·×ln
factorial. For more detailed discussion on MNL model and choice experiments, see Train (2009)
and Street and Burgess (2007).

Demirkale, Donovan and Street (2013) considered the setup of symmetric factorials (li = l)
and obtained D-optimal choice designs under main effects in the absence of two or higher order
interaction effects. They provide some sufficient conditions for a designs to be D-optimal.

In this paper, we first derive a modified Information matrix of a choice design for estimating
the factorial effects. Such a modification is fundamental to the study of optimal choice designs
since the modification provides the desired additive property to the Information matrix. It over-
comes the existing shortcoming of situations where with addition of a choice set the information
content of the design decreases. For a 2n choice experiment, under the broader main effects model
(both in the presence and in the absence of two-factor interactions) we give a simple necessary and
sufficient condition for the Information matrix to be diagonal. Furthermore, we characterize the
structure of the choice sets which gives maximum trace of the Information matrix. Our character-
ization of such an Information matrix facilitates construction of universally optimal choice designs
giving more flexibility for choosing m. Finally, we provide universally optimal choice designs
(optimal in the class of all designs with given N , n and m) for estimating main effects, both in the
presence and in the absence of two-factor interactions but, in the absence of three or higher order
interaction effects.

2 Information Matrix

In choice experiment we deal with multiple independent populations which have common
parameters. In a choice experiment, each choice set represent a different population. We call
this set of populations as associated populations. When sampling from such associated popula-
tions, Bradley and Gart (1962) have presented related assumptions and asymptotic properties of
the ML estimators. Under these assumptions, EI-Helbawy and Bradley (1978) have derived large
sample results for paired choice experiments when each choice item is coming from a factorial
setup. Later Street and Burgess (2007)generalized the setup for choice set size m and obtained the
Information matrix on similar lines. It is seen that their Information matrix is derived using the
averaging principle leading to situations where adding more choice sets to a design leads to infor-
mation matrix with less information content than the information matrix of the original design. In
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what follows, we adopt an approach different from Bradley and Gart (1962) and EI-Helbawy and
Bradley (1978). We derive a slightly modified Information matrix of a choice design for estimating
the factorial effects. Such a modification gives the Information matrix the desired additive prop-
erty. Our approach addresses a possible lacuna in the current non-additive form of the Information
matrix.

Let Xi be a random variable over the region Ri, independent of θ = (θ1, θ2, . . . , θk)
′, an

unknown parameter vector lying on a k-dimensional interval Ω. Furthermore let fi(xi; θ), i =
1, 2, . . . , n∗; be the pdf or pmf of Xi from n∗ different associated populations. It is not necessary
that each fi depends on all θ1, θ2, . . . , θk. Let Xi = (Xi1 , Xi2 , . . . , Xini

) be a random sample of
size ni, from fi. Then the likelihood function corresponding to it is

Li =

ni∏
j=1

fi(Xij ; θ) = fi(Xi; θ). (2.1)

According to Fisher (for more details see Rao (1973)), the Information contained in the sample Xi

is denoted by the information matrix Ii = ((Ii(rs)(θ)))k×k, where

Ii(rs)(θ) =

∫
Ri

∂ ln fi
∂θr

∂ ln fi
∂θs

fidxi = E

(
∂ ln fi
∂θr

∂ ln fi
∂θs

)
(2.2)

is non-negative definite.

Now if we take random sample Xi of size ni, from each of the n∗ associated populations fi,
then the likelihood function of θ for all the samples X1,X2, . . . ,Xn∗ ; can be written as

L =
n∗∏
i=1

fi(Xi; θ). (2.3)

We define the information for θ contained in all the samples X1,X2, . . . ,Xn∗; from n∗ associated
populations by the Information matrix I = ((Irs(θ)))k×k with

Irs(θ) =
n∗∑
i=1

Ii(rs)(θ), (2.4)

which is also non-negative definite.

We now derive the expression for the information matrix of a choice design with choice set

size m. Consider a l1 × l2 × · · · × ln choice experiment with L =
n∏
i=1

li. Let the L treatments

in the choice experiment be denoted by T1, T2, . . . , TL where, Ti = (i1i2 . . . ih . . . ik . . . in), ir =
0, 1, . . . , lr − 1; r = 1, 2, . . . , n; is a typical treatment combination. In order to ensure that Ti’s are

arranged in a lexicographic order, let i = i1

n∏
i=2

li + i2

n∏
i=3

li + · · ·+ in−1ln + in + 1. In other words,

i is the lexicographic order number of the treatment combination Ti.

Let πi = eVi be the parameter associated to the treatment Ti. Our aim is to find the informa-
tion matrix of certain parametric contrasts involving the parameters Vi, i = 1, 2, . . . , L. A choice
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set of size m is denoted by Sm = (Tj1 , Tj2 , . . . , Tjm), where no two ji’s are equal. For a choice set
Sm, we represent (Tji > {Tj1 , Tj2 , . . . , Tjm}) to mean Tji is chosen over Tj1 , . . . , Tji−1

, Tji+1
, . . . , Tjm ,

by the respondent.

Consider an experiment in which there are N choice sets of size m. We define a set At as

At = {(j1, j2, . . . , jm) : if (Tj1 , Tj2 , . . . , Tjm) is a choice set in the experiment} .

Let us consider an indicator function Nj1j2...jm as

Nj1j2...jm =

{
1 if (j1, j2, . . . , jm) ∈ At
0 if (j1, j2, . . . , jm) /∈ At.

Therefore,
N =

∑
j1<j2<···<jm

Nj1j2...jm . (2.5)

For any (j1, j2, . . . , jm) ∈ At, we can write from (1.1) that

P (Tji > {Tj1 , Tj2 , . . . , Tjm}) =
πji∑m
i=1 πji

(2.6)

for i = 1, 2, . . . ,m. Let, π = (π1, π2, . . . , πL)′. Here each choice set (Tj1 , Tj2 , . . . , Tjm) represent
an associate population with parameters πj1 , πj2 , . . . , πjm . Therefore, the pmf fj1j2...jm of the multi-
nomial random variable (xj1 , xj2 , . . . , xjm) corresponding to the choice set (Tj1 , Tj2 , . . . , Tjm), is

fj1j2...jm(xj1 , xj2 , . . . , xjm ; π) =
m∏
i=1

(
πji∑m
i=1 πji

)xji
, (2.7)

where for i = 1, 2, . . . ,m, we define xji = 1 if (Tji > {Tj1 , Tj2 , . . . , Tjm}); and 0 otherwise.
To be more precise xji can be written as x(j1,j2,...,jm)

ji
, but for notational convenience we retain the

notation xji corresponding to the choice set (Tj1 , Tj2 , . . . , Tjm). Note that
m∑
i=1

xji = 1. Therefore

from equation (2.3), the likelihood function can be written as

L =
L∏

j1<j2<···<jm

{fj1j2...jm(xj1 , xj2 , . . . , xjm ; π)}Nj1j2...jm . (2.8)

Let V = (V1, V2, . . . , VL)′ be the vector of treatment effects that the researcher can capture
for a l1 × l2 × · · · × ln choice experiment. Furthermore, let Λ = ((λkl)) be a L × L matrix
representing the information matrix of V . Then, since Vi = lnπi, it follows from (2.2) and (2.4)
that

λkl =
L∑

j1<j2<···<jm

Nj1j2...jmE

[
∂ ln fj1j2...jm

∂Vk

∂ ln fj1j2...jm
∂Vl

]

=
L∑

j1<j2<···<jm

Nj1j2...jmE

[
∂ ln fj1j2...jm

∂πk

∂ ln fj1j2...jm
∂πl

]
πkπl. (2.9)
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It is clear from (2.9) that if (k, l) does not belong to any element of At, then

λkl = 0. (2.10)

From (2.7) we note that (xj1 , xj2 , . . . , xjm) is a multinomial random variable with parameters
πji∑m
i=1 πji

, i = 1, 2, . . . ,m and E(xji) = E(x2ji) =
πji∑m
i=1 πji

; i = 1, 2, . . . ,m. Also, from (2.7),

we get

ln(fj1j2...jm(xj1 , xj2 , . . . , xjm ; π)) =
m∑
i=1

xji ln(πji)− ln

(
m∑
i=1

πji

)
,

and therefore,
∂ ln fj1j2...jm

∂πji
=
xji
πji
− 1∑m

i=1 πji
; i = 1, 2, . . . ,m.

If (k, l) belongs to an element (j1, j2, . . . , jm) of At, then from (2.9), both the partial deriva-
tives are non-zero for the choice sets (Tj1 , Tj2 , . . . , Tjm), which contains Tk and Tl as options.
Thus, without loss of generality, when (k, l) = (j1, j2) such that (j1, j2, . . . , jm) ∈ At, we have
λkl = λj1j2 which is

=
L∑

j3<j4<···<jm

Nj1j2...jmE

[(
xj1
πj1
− 1∑m

i=1 πji

)(
xj2
πj2
− 1∑m

i=1 πji

)]
πj1πj2

=
L∑

j3<j4<···<jm

Nj1j2...jmE

[
xj1xj2
πj1πj2

− xj1
πj1
∑m

i=1 πji
− xj2
πj2
∑m

i=1 πji
+

1

(
∑m

i=1 πji)
2

]
πj1πj2

=
L∑

j3<j4<···<jm

Nj1j2...jm

[
0− 1

(
∑m

i=1 πji)
2
− 1

(
∑m

i=1 πji)
2

+
1

(
∑m

i=1 πji)
2

]
πj1πj2

= −
L∑

j3<j4<···<jm

Nj1j2...jm

πj1πj2
(
∑m

i=1 πji)
2
. (2.11)

Also, when k = l = j1, λkk = λj1j1 which is

=
∑

j2<j3<···<jm

Nj1j2...jmE

[(
xj1
πj1
− 1∑m

i=1 πji

)2
]
πj1πj1

=
∑

j2<j3<···<jm

Nj1j2...jmE

[
x2j1
π2
j1

− 2xj1
πj1
∑m

i=1 πji
+

1

(
∑m

i=1 πji)
2

]
πj1πj1

=
∑

j2<j3<···<jm

Nj1j2...jm

[
1

πj1
∑m

i=1 πji
− 2

(
∑m

i=1 πji)
2

+
1

(
∑m

i=1 πji)
2

]
πj1πj1

=
∑

j2<j3<···<jm

Nj1j2...jm

πj1
∑m

i=2 πji
(
∑m

i=1 πji)
2
. (2.12)
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Therefore, in terms of πi’s, Λ can be rewritten as

λkl =



L∑
j2<j3<···<jm

Nj1j2...jm

πj1(
∑m

i=2 πji)

(
∑m

i=1 πji)
2

if k = l = j1

−
L∑

j3<j4<···<jm

Nj1j2...jm

πj1πj2
(
∑m

i=1 πji)
2

if k = j1, l = j2

0 otherwise.

(2.13)

Since P (Tji > {Tj1 , Tj2 , . . . , Tjm}) =
πji∑m
i=1 πji

is not dependent on parameter scale, we

assume a convenient scale determining constraint

L∑
i=1

Vi = 0. (2.14)

Let

B(p+q) =

(
B(p)

B(q)

)
(2.15)

be a partition of the orthonormal contrast matrix of order (L−1)×L, with p+q = L−1. Here, our
interest lies in finding the information matrix of Θ1 = B(p)V , while Θ0 = B(q)V are the nuisance
parameters. Now, with

B(q) =

(
B(q1)

B(q2)

)
, (2.16)

the nuisance parameters Θ0 can be partitioned as Θ0 = (Θ′01 Θ′02)
′ where Θ01 = B(q1)V , Θ02 =

B(q2)V and q1 + q2 = q. Under the assumption

Θ02 = B(q2)V = 0q2 , (2.17)

and with

B(p+q1) =

(
B(p)

B(q1)

)
, (2.18)

we first find the information matrix of Θ = B(p+q1)V , where Θ = (Θ′1 Θ′01)
′, Θ1 = (θ1, θ2, . . . , θp)

′

and Θ01 = (θp+1, θp+2, . . . , θp+q1)
′.

Let Ip denote an identity matrix of order p. Also, let G′ =
[
L−

1
2 1 B′(p+q1) B

′
(q2)

]
, where 1 is

a column vector of all ones. ThenG is an orthogonal matrix of order L×L, andGG′ = G′G = IL.
Therefore,

B′(p+q1)B(p+q1) = IL −
11′

L
−B′(q2)B(q2). (2.19)
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Now, since Θ = B(p+q1)V , using (2.14), (2.17) and (2.19), we have

B′(p+q1)Θ = B′(p+q1)B(p+q1)V

⇒ B′(p+q1)Θ = [IL −
11′

L
−B′(q2)B(q2)]V

⇒ B′(p+q1)Θ = ILV = V. (2.20)

Let B(p+q1) = ((br1r2)). Also, let the (p+ q1)× (p+ q1) information matrix of Θ be denoted
by C{p+q1} = ((crs)). Then from (2.2) and (2.4), and using (2.20), we have

crs =
L∑

j1<j2<···<jm

Nj1j2...jmE

[
∂ ln fj1j2...jm

∂θr

∂ ln fj1j2...jm
∂θs

]

=
L∑
k

L∑
l

{
L∑

j1<j2<···<jm

Nj1j2...jmE

[
∂ ln fj1j2...jm

∂Vk

∂ ln fj1j2...jm
∂Vl

]}
brkbsl

=
L∑
k

L∑
l

λklbrkbsl

= B(p+q1)ΛB
′
(p+q1)

. (2.21)

Thus, the partitioned form of the information matrix of Θ is

C{p+q1} =

[
B(p)ΛB

′
(p) B(p)ΛB

′
(q1)

B(q1)ΛB
′
(p) B(q1)ΛB

′
(q1)

]
, (2.22)

and the information matrix of Θ1 is

C{p} = B(p)ΛB
′
(p) −B(p)ΛB

′
(q1)

[B(q1)ΛB
′
(q1)

]−B(q1)ΛB
′
(p), (2.23)

where B(p)ΛB
′
(p) and B(p)ΛB

′
(q1)

[B(q1)ΛB
′
(q1)

]−B(q1)ΛB
′
(p) are both non-negative definite matrices

and Y − represents a g-inverse of Y . Furthermore, the second term does not arise if q1 = 0. For
notational convenience we denote C{p} by C. A choice design for estimating Θ1 is said to be
connected if rank(C) = p. We restrict ourselves to the class of all connected designs. When a
design is connected, it ensures the estimability of Θ1. In general Θ1 is estimable if and only if
rank(C) = p.

Following the concept of Resolution (see e.g., Dey and Mukerjee 1999) in fractional factorial
plans, we define Resolution (f, t) choice designs as ones which ensure estimability of the complete
sets of contrasts belonging to factorial effects involving at most f factors under the absence of
factorial effects involving t+ 1 or more factors (1 ≤ f ≤ t ≤ n− 1). Thus, the information matrix
of Θ1 = B(p)V , under a Resolution (f, t) model setup (henceforth calledR(f, t) model) is

C = B(f)ΛB
′
(f) −B(f)ΛB

′
(t)[B(t)ΛB

′
(t)]
−B(t)ΛB

′
(f), (2.24)

where B(f) is the contrast matrix corresponding to the complete set of factorial effects involving at
most f factors and B(t) is the contrast matrix corresponding to the complete set of factorial effects
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involving more than f factors but less than t + 1 factors. Furthermore, the second term does not
arise if f = t. Thus, under the usual nomenclature, in what follows we consider the modelR(1, 2)
corresponding to Resolution (1, 2) choice designs, i.e, designs which ensure estimability of all the
main effects under the absence of three or higher order interaction effects. We also consider the
main effects modelR(1, 1).

3 C-matrix underR(1, 2) andR(1, 1)

For the purpose of optimal choice design, as in the literature, we assume that the options are
equally attractive i.e., π1 = π2 = · · · = πL (= π0, say).

Then from (2.13), Λ turns out to be

λkl =



m− 1

m2

L∑
j2<j3<···<jm

Nj1j2...jm if k = l = j1

− 1

m2

L∑
j3<j4<···<jm

Nj1j2...jm if k = j1, l = j2

0 otherwise,

(3.1)

LetM (j1j2...jm) = ((mst)) be aL×Lmatrix corresponding to a choice set (Tj1 , Tj2 , . . . , Tjm),
where

mst =


m− 1 if s = t, t ∈ {j1, j2, . . . , jm}
−1 if s 6= t, (s, t) ∈ {j1, j2, . . . , jm}
0 otherwise.

Then for any choice experiment with N choice sets, we can write

Λ =
1

m2

L∑
j1<j2<···<jm

Nj1j2...jmM
(j1j2...jm). (3.2)

We can consider the matrix M (j1j2...jm) as the contribution of the choice set (Tj1 , Tj2 , . . . , Tjm) to
Λ. The definition of M (j1j2...jm) suggests that we can write

M (j1j2...jm) =
∑
jr<jr′

M (jrjr′ ) (3.3)

where, jr, jr′ ∈ {j1, j2, . . . , jm}. This means, the contribution of the choice set (Tj1 , Tj2 , . . . , Tjm)

to the Λ is equal to the sum of the individual contributions of the
(
m

2

)
different component pairs

that it contains. Therefore, Λ corresponding to choice sets of size m can be translated in terms of
Λ corresponding to component pairs.
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We now concentrate on 2n choice experiments (li = 2, i = 1, 2, . . . , n) under the models
R(1, 2) andR(1, 1). WithB(1) (henceforth denoted asB) being the n×2n matrix of±1s with rows
representing the orthogonal contrast vectors corresponding to the nmain effects andB(2) being the(
n

2

)
× 2n matrix of ±1s with rows representing the orthogonal contrast vectors corresponding to

the
(
n

2

)
two-factor interaction effects, from (2.24),(3.2) and (3.3), the C-matrix, C = ((chk)), for

estimating the main effects under the modelsR(1, 2) andR(1, 1) are, respectively,

2nC = BΛB′ −BΛB′(2)[B(2)ΛB
′
(2)]
−B(2)ΛB

′, (3.4)

and
2nC = BΛB′. (3.5)

Singh, Chai and Das (2015) obtained the information matrix under a broader main effects model,
which is same as model R(1, 2) described here. Also, from (3.2), (3.3) and (3.5), we can express
BΛB′ as

BΛB′ = B

(
1

m2

∑
j1<j2<···<jm

Nj1j2...jmM
(j1j2...jm)

)
B′

=
1

m2

∑
j1<j2<···<jm

Nj1j2...jm

{
BM (j1j2...jm)B′

}
=

1

m2

∑
j1<j2<···<jm

Nj1j2...jm

B
∑
jr<jr′

M (jrjr′ )

B′

 . (3.6)

4 Characterization of C-matrix underR(1, 2) andR(1, 1)

In what follows, we find conditions under which the C-matrix has off-diagonal elements
zero. First we have the following Lemma due to Manna and Das (2016).

Lemma 4.1. LetBh = (xh1, . . . , xhjr , . . . , xhjr′ , . . . , xh2n) andBk = (xk1, . . . , xkjr , . . . , xkjr′ , . . . ,
xk2n) be row vectors with 2n real elements. Then for a given component pair (Tjr , Tjr′ ), the value
of BhM

(jrjr′ )B′k = (xhjr − xhjr′ )(xkjr − xkjr′ ).

From Lemma 4.1, it follows that for a component pair (Tjr , Tjr′ ), the possible realized values
of BhM

(jrjr′ )B′k are:

(P1) If xhjr = xhjr′ or/and xkjr = xkjr′ , then BhM
(jrjr′ )B′k = 0. (4.1)

(P2) If xhjr = −xhjr′ = ±1 and xkjr = −xkjr′ = ±1, then BhM
(jrjr′ )B′k = 4. (4.2)

(P3) If xhjr = −xhjr′ = ±1 and xkjr = −xkjr′ = ∓1, then BhM
(jrjr′ )B′k = −4. (4.3)
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Let f1, f2, . . . , fn be the factors corresponding to the 2n choice experiment with treatment
combination Ti = (i1i2 . . . ir . . . in), ir = 0, 1; r = 1, 2, . . . , n. Let Fh represents the h-th factorial

effect. Thus for h = 1, . . . , n, Fh represent the main effects and for h = n + 1, . . . , n +

(
n

2

)
, Fh

represent the two-factor interaction effects. For h = 1, . . . , n, we define the h-th positional value

of Fh corresponding to the treatment Ti as ih. Similarly, for h = n+1, . . . , n+

(
n

2

)
, we define the

h-th positional value of Fh corresponding to the treatment Ti as ir + ir′ (mod 2) (= i∗h, say) where
Fh is the two factor interaction effect corresponding to the factors fr and fr′ , 1 ≤ r < r′ ≤ n.
Here one can use the combinatorial number system to have the correspondence between natural

numbers h = n+ 1, . . . , n+

(
n

2

)
, and the 2-combinations (r, r′). For h 6= k; (h, k) ∈ {1, . . . , n},

the h-th and k-th positional value of the treatment Ti is denoted by (ihik)hk and for the component
pair (Ti, Tj), the h-th and k-th positional value is denoted by (ihik, jhjk)hk. Similarly, for h 6=

k; (h, k) ∈ {n+ 1, . . . , n+

(
n

2

)
}, the h-th and k-th positional value of the treatment Ti is denoted

by (i∗hi
∗
k)hk and for the component pair (Ti, Tj), the h-th and k-th positional value is denoted by

(i∗hi
∗
k, j
∗
hj
∗
k)hk. Finally, for h ∈ {1, . . . , n} and k ∈ {n + 1, . . . , n +

(
n

2

)
}, the h-th and k-th

positional value of the treatment Ti is denoted by (ihi
∗
k)hk and for the component pair (Ti, Tj), the

h-th and k-th positional value is denoted by (ihi
∗
k, jhj

∗
k)hk.

The following Lemma on lines similar to Manna and Das (2016) provides a converse result
of Lemma 4.1 in the sense that it establishes possible component pairs (Ti, Tj) that gives rise to
specific values of BhM

(ij)B′k.

Lemma 4.2. Given that the h-th row (h = 1, 2, . . . , n) of B is

Bh = ⊗h−1i=1 (1 1)⊗ (−1 1)⊗ni=h+1 (1 1) , (4.4)

and the h-th row (h = n+ 1, . . . , n+

(
n

2

)
) of B(2) is

Bh = ⊗r−1i=1 (1 1)⊗ (−1 1)⊗r′−1i=r+1 (1 1)⊗ (−1 1)⊗ni=r′+1 (1 1) , (4.5)

the exhaustive cases leading to possible values of BhM
(ij)B′k and its associated component pairs

(Ti, Tj), are

• Case 1: h 6= k, (h, k) ∈ {1, . . . , n}
a) BhM

(ij)B′k = −4 when (ihik, jhjk)hk ≡ (01, 10)hk
b) BhM

(ij)B′k = 4 when (ihik, jhjk)hk ≡ (00, 11)hk
c) BhM

(ij)B′k = 0 for all other situations.

• Case 2: h ∈ {1, . . . , n}, k ∈ {n+ 1, . . . , n+

(
n

2

)
}

a) BhM
(ij)B′k = 4 when (ihi

∗
k, jhj

∗
k)hk ≡ (01, 10)hk

b) BhM
(ij)B′k = −4 when (ihi

∗
k, jhj

∗
k)hk ≡ (00, 11)hk

c) BhM
(ij)B′k = 0 for all other situations.
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• Case 3: h 6= k, (h, k) ∈ {n+ 1, . . . , n+

(
n

2

)
}

a) BhM
(ij)B′k = −4 when (i∗hi

∗
k, j
∗
hj
∗
k)hk ≡ (01, 10)hk

b) BhM
(ij)B′k = 4 when (i∗hi

∗
k, j
∗
hj
∗
k)hk ≡ (00, 11)hk

c) BhM
(ij)B′k = 0 for all other situations.

Proof. LetBh = (xh1, . . . , xhjr , . . . , xhjr′ , . . . , xh2n) andBk = (xk1, . . . , xkjr , . . . , xkjr′ , . . . , xk2n).
Note that M (jrjr′ ) is a 2n × 2n matrix with all elements 0 except M (jrjr′ )

jrjr
= M

(jrjr′ )
jr′jr′

= 1 and

M
(jrjr′ )
jrjr′

= M
(jrjr′ )
jr′jr

= −1. Then

BhM
(jrjr′ )B′k =

(
0, . . . , (xhjr − xhjr′ ), . . . ,−(xhjr − xhjr′ ), . . . , 0

)
B′k

= (xhjr − xhjr′ )xkjr − (xhjr − xhjr′ )xkjr′
= (xhjr − xhjr′ )(xkjr − xkjr′ ). (4.6)

From (4.4), (4.5) and the fact that Ti’s are arranged in a lexicographic order, for any treatment
combination Tj ,
xhj = −1, 1 if and only if jh = 0, 1 respectively (h = 1, . . . , n), and

xhj = −1, 1 if and only if j∗h = 1, 0 respectively (h = n+ 1, . . . , n+

(
n

2

)
).

The proof then follows from (4.6).

With Fh and Fk being any two effects, we now define two quantitiesN+
hk andN−hk as follows:

• N+
hk = Total number of component pairs of the type (00, 11)hk corresponding to h-th and

k-th positional values across all
(
m

2

)
possible pairs of a choice set of size m and among all

such sets in the choice design.

• N−hk = Total number of component pairs of the type (01, 10)hk corresponding to h-th and

k-th positional values across all
(
m

2

)
possible pairs of a choice set of size m and among all

such sets in the choice design.

Lemma 4.3. For h 6= k, (h, k) ∈ {1, . . . , n}, the (h, k)-th element of BΛB′ will be zero if and
only if N+

hk = N−hk.

Proof. The proof follows from (3.6) and Lemma 4.2 on noting the contribution towards the (h, k)-

th element of BΛB′ by N choice sets through its
(
m

2

)
possible component pairs. The Case 1 of

Lemma 4.2 leads to

• N−hk = Total number of component pairs falling under Case 1a.

• N+
hk = Total number of component pairs falling under Case 1b.
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• N − (N+
hk +N−hk) = Total number of choice pairs falling under Case 1c.

Let c′hk denote the (h, k)-th element of m2BΛB′. Then, it follows from (3.6) and Case 1 of
Lemma 4.2 that

c′hk =
∑

j1<j2<···<jm

Nj1j2...jm

∑
jr<jr′

{BhM
(jrjr′ )B′k}

=
{

(4N+
hk − 4N−hk) + 0(N − (N+

hk +N−hk))
}
.

Thus c′hk = 0 if and only if N+
hk = N−hk.

Lemma 4.4. For h ∈ {1, . . . , n}, k ∈ {n+ 1, . . . , n+

(
n

2

)
}, the (h, k)-th element of BΛB′(2) will

be zero if and only if N+
hk = N−hk.

Proof. The proof follows on lines similar to Lemma 4.3, since

BΛB′(2) =
1

m2

∑
j1<j2<···<jm

Nj1j2...jm

B
∑
jr<jr′

M (jrjr′ )

B′(2)

 . (4.7)

The Case 2 of Lemma 4.2 leads to

• N−hk = Total number of component pairs falling under Case 2a.

• N+
hk = Total number of component pairs falling under Case 2b.

• N − (N+
hk +N−hk) = Total number of choice pairs falling under Case 2c.

Let c′′hk denote the (h, k)-th element of m2BΛB′(2). Then, it follows from (4.7) and Case 2 of
Lemma 4.2 that

c′′hk =
∑

j1<j2<···<jm

Nj1j2...jm

∑
jr<jr′

{BhM
(jrjr′ )B′k}

=
{

(−4N+
hk + 4N−hk) + 0(N − (N+

hk +N−hk))
}
.

Thus c′′hk = 0 if and only if N+
hk = N−hk.

Theorem 4.5. For h 6= k, (h, k) ∈ {1, . . . , n}, under the model R(1, 1), the (h, k)-th element of
C-matrix will be zero if and only if N+

hk = N−hk. Furthermore, for h 6= k, (h, k) ∈ {1, . . . , n},
under the model R(1, 2), the (h, k)-th element of C-matrix will be zero, if additionally, BΛB′(2) is

a null matrix, i.e., N+
hk′ = N−hk′ , for h ∈ {1, . . . , n}, k′ ∈ {n+ 1, . . . , n+

(
n

2

)
}.
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Proof. The proof follows from (3.4), (3.5), Lemma 4.3 and Lemma 4.4.

We will now find the contribution of each choice set Sm of size m to the diagonal positions
of m2BΛB′.

Lemma 4.6. Every component pair adds a value 4 in the (h, h)-th element of the m2BΛB′, if and
only if the pair has a change of level at the h-th position of its treatment combinations.

Proof. Every component pair (Tjr , Tjr′ ) is adding a value BhM
(jrjr′ )B′h at c′hh. From (P2) in (4.2)

it follows that this value will be 4 if and only if there is a change of level in the h-th position of the
component pair.

Let nh ∈ {0, 1, 2, . . . ,m} be the number of treatment combinations which have zero at the
h-th position in the choice set Sm.

Lemma 4.7. Every Sm adds a value 4nh(m− nh) to the (h, h)-th element of m2BΛB′.

Proof. Lemma 4.6 says that every component pair adds a value 4 to c′hh, if and only if the pair
has a change of level at the h-th position of its treatment combinations. There are a total of(
m

2

)
component pairs possible from Sm. The contribution of Sm to c′hh is same as the sum of

contributions of all the
(
m

2

)
component pairs corresponding to Sm. Now there are nh treatment

combinations in Sm which have a 0 at the h-th position. We call this subset as A. Therefore the set
Ā contains all treatment combinations which have a 1 at the h-th position. Every component pair
which have one treatment from A and another treatment from Ā, adds a value 4 to c′hh. There are
a total of nh(m− nh) such pairs and they all together add a value 4nh(m− nh) to c′hh.

Corollary 4.8. Every Sm adds a 4
n∑
h=1

nh(m− nh) value to the trace(m2BΛB′).

We will now find out the expression of trace(m2BΛB′) when there are N choice sets. For
this purpose we will use the following notations.

• Smi
= the i-th choice set, i = 1, 2, . . . , N.

• nhi = number of treatment combinations which have zero at the h-th position in the choice
set Smi

.

Lemma 4.9. For N choice sets Sm1 , . . . , SmN
, trace(m2BΛB′) = 4

N∑
i=1

n∑
h=1

nhi(m− nhi).

Proof. From Corollary (4.8), every choice set Smi
adds a value 4

n∑
h=1

nhi(m−nhi) to trace(m2BΛB′).

Therefore, for N choice sets trace(m2BΛB′) = 4
N∑
i=1

n∑
h=1

nhi(m− nhi).



98 CHAI ET AL. [Vol. 17, No. 1

Lemma 4.10. Maximum of trace(m2BΛB′) is attained when

nhi =


m

2
if m even

m− 1

2
or
m+ 1

2
if m odd

for every position h and for every choice set Smi
.

Proof. Maximum of trace(m2BΛB′) is attained when every choice set Smi
in the experiment

contributes maximum value towards trace(m2BΛB′). Each choice set Smi
will contribute max-

imum value if and only if every h-th position of its treatments contribute maximum value to
c′hh. Lemma 4.7 says that if Smi

has nhi zeros at the hi-th position of its treatments then it
will add a value 4nhi(m − nhi) to trace(m2BΛB′). We want to maximize 4nhi(m − nhi) for
nhi . Let f(nhi) = 4nhi(m − nhi) and let k0 be the point at which the function attains its
maximum. Then, f(k0 − 1) ≤ f(k0) implies 4(k0 − 1){m − (k0 − 1)} ≤ 4k0(m − k0), or
m(k0 − 1)− k0(k0 − 1) + (k0 − 1) ≤ mk0 − k20 , or 2k0 −m− 1 ≤ 0. Thus,

k0 ≤
m+ 1

2
. (4.8)

Also, f(k0) ≥ f(k0 + 1) implies

k0 ≥
m− 1

2
(4.9)

Since k0 only takes integer value, therefore from (4.8) and (4.9) we conclude that f(nhi) is

maximum when (i) nhi =
m− 1

2
or nhi =

m+ 1

2
(for m odd) and (ii) nhi =

m

2
(for m even).

Hence the proof.

Lemma 4.11. For N choice sets of size m, the upper bound to trace(m2BΛB′) is

trace(m2BΛB′) ≤
{
Nnm2 for m even
Nn(m2 − 1) for m odd .

Proof. From Lemma 4.9 and Theorem 4.10 we can say that trace(m2BΛB′) will be maximum
if and only if each nhi = k0 for every h and every i. Therefore, for m even, k0 =

m

2
and

trace(m2BΛB′) ≤ 4
N∑
i=1

n∑
h=1

(m
2

)(
m− m

2

)
= 4

N∑
i=1

n∑
h=1

m2

4
= Nnm2. Also, for m odd, k0 =

m− 1

2
or
m+ 1

2
and trace(m2BΛB′) ≤ 4

N∑
i=1

n∑
h=1

(
m± 1

2

)(
m− m± 1

2

)
= 4

N∑
i=1

n∑
h=1

m2 − 1

4

= Nn(m2 − 1).
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Thus an upper bound of trace(C) is established under bothR(1, 2) andR(1, 1) models and
is summarized as

Theorem 4.12. Under model R(1, 2), with N choice sets of size m, an upper bound to trace(C)
is

trace(C) ≤ 1

2n
trace(BΛB′) ≤


Nn

2n
for m even

Nn(m2 − 1)

2nm2
for m odd

,

with equality attaining when the following two conditions are satisfied:

i) nhi =


m

2
if m even

m− 1

2
or
m+ 1

2
if m odd

for every position h and for every choice set Smi
and

ii) BΛB′(2) is null matrix, i.e., for h ∈ {1, . . . , n}, k ∈ {n+ 1, . . . , n+

(
n

2

)
}, N+

hk = N−hk.

Proof. From (3.4), trace(2nC) = trace(BΛB′) − trace(BΛB′(2)[B(2)ΛB
′
(2)]
−B(2)ΛB

′). Thus,
noting that BΛB′(2)[B(2)ΛB

′
(2)]
−B(2)ΛB

′ is a non-negative definite matrix, the proof follows from
Lemma 4.4, Lemma 4.10 and Lemma 4.11.

Theorem 4.13. Under model R(1, 1), with N choice sets of size m, an upper bound to trace(C)
is

trace(C) =
1

2n
trace(BΛB′) ≤


Nn

2n
for m even

Nn(m2 − 1)

2nm2
for m odd

,

with equality attaining when

nhi =


m

2
if m even

m− 1

2
or
m+ 1

2
if m odd

for every position h and for every choice set Smi
.

For m = 2, it follows from the following Theorem that the maximization of trace(C) under
modelR(1, 1) implies BΛB′(2) is a null matrix.

Theorem 4.14. For m = 2, let Fh be a main effect and Fk a two-factor interaction effect. Then,
BΛB′(2) is a null matrix if for every choice set S2i , i = 1, . . . , N , either (a) nhi = 1 for every
position h or (b) nhi ∈ {0, 2} for every position h.
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Proof. Note that for any pair (Ti, Tj), since for every position h and for every choice set S2i , we
have nhi = 1 or nhi ∈ {0, 2}, the h-th and k-th positional value, corresponding to main effect Fh
and two-factor interaction effect Fk, is either (ih0, jh0)hk or (ih1, jh1)hk. The result then follows
from Case 2c of Lemma 4.2 and Lemma 4.4 since N+

hk = N−hk = 0.

Remark 4.1. For given N and n, with respect to maximum of trace(C), (i) all designs with m
even are equivalent and (ii) a design with m odd is always inferior to a design with m even.

5 Construction of Universally Optimal Designs

The criteria of universal optimality was introduced by Kiefer (1975) and is a strong family
of optimality criteria which includes A−, D−, and E− criteria as particular cases.

Let Wp denote the class of positive definite symmetric matrices of order p. A design d∗ ∈ D
is universally optimal overD if d∗ minimizes φ(Cd), d ∈ D for any φ : Wp → (−∞,∞] satisfying

1. φ is matrix convex, i.e., φ{aC1 +(1−a)C2} ≤ aφ(C1)+(1−a)φ(C2) for Ci ∈ Wp, i = 1, 2
and 0 ≤ a ≤ 1,

2. φ(bC) is non increasing in the scalar b ≥ 0 for each C ∈ Wp,

3. φ is invariant under each simultaneous permutation of rows and columns of C in Wp.

Kiefer (1975) obtained the following sufficient condition for universal optimality.

Suppose d∗ ∈ D and C∗d satisfies (a) Cd∗ is scalar multiple of Ip i.e., Cd∗ = αIp, and (b)
trace(Cd∗) = maxd∈D trace(Cd), then d∗ is universally optimal in D.

We now provide few simple methods for constructing universally optimal designs for a 2n

choice experiment with choice set size m under modelsR(1, 2) andR(1, 1). Our characterization
of the Information matrix facilitates construction of universally optimal choice designs giving more
flexibility for choosing m. Let DN,n,m be the class of all connected 2n choice designs involving
N choice sets of size m each. In view of Remark 4.1, for m = 2, we first provide a simple
construction of universally optimal designs under the modelR(1, 2).

Theorem 5.1. Let n = 4t − j, where t is a positive integer and j = 0, 1, 2, 3. Also, given a
Hadamard matrix H of order 4t, let Z1 = H and Z2 = −H . For w = 1, 2, let Aw be respective
matrices obtained by replacing −1’s by 0 and deleting rightmost j columns from Zw, where j =
4t − n, j ∈ {0, 1, 2, 3}. Consider each row of Aw as treatment combination. Then under R(1, 2),
the design D1 = (A1, A2) is universally optimal 2n choice design in D4t,n,2.

Proof. To prove that this construction gives universally optimal choice design, we will show that
the C-matrix of the design is of the form αIn, where α is a constant and trace(C) is maximum.
Therefore, first we show that every (h, k)-th element of the C-matrix is zero, where h < k and
(h, k) ∈ {1, 2, . . . , n}. For design D1, we first calculate N+

hk and N−hk; (h, k) ∈ {1, 2, . . . , n}.
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Since H is a Hadamard matrix of order 4t, for any two columns h and k of Aw, the com-
binations from the set {(00)hk, (11)hk} and from the set {(10)hk, (01)hk} occurs equally often.
Therefore, it is easy to see that for the design D1, N+

hk = N−hk for (h, k) ∈ {1, 2, . . . , n}.
The construction of design D1 also ensures that nhi = 1 for every position h and for every

choice set. Therefore, using Theorem 4.5 and Theorem 4.14 it follows that the C-matrix has off-
diagonal elements zero. Also, using Theorem 4.12 and Theorem 4.14 we can say that the diagonal
elements of C-matrix are equal and trace(C) is maximum for the design. Thus the designs D1 is
universally optimal 2n choice experiment.

Next, not restricting to m = 2, we give a construction of universally optimal designs under
the modelR(1, 1).

Theorem 5.2. Let n = 4t − j, where t is a positive integer and j = 0, 1, 2, 3. Also, given a
Hadamard matrix H of order 4t, let for u = 1, 2, . . . , 4t, Hu be the Hadamard matrix derived from
H by multiplying the u-th column of H by −1. Let Z1 = H,Z2 = −H,Z2u+1 = Hu, Z2u+2 =
−Hu. For w = 1, 2, . . . , 2n + 2, let Aw be respective matrices obtained by replacing −1’s by 0
and deleting rightmost j columns from Zw, where j = 4t− n, j ∈ {0, 1, 2, 3}. Consider each row
of Aw as treatment combination. Then under R(1, 1), D2 = (A1, A2), D3 = (A1, A2, A3), D4 =
(A1, A2, A3, A4), . . . , D2n+2 = (A1, A2, A3, A4, . . . , A2n+2) are universally optimal 2n choice de-
sign in D4t,n,m for m = 2, 3, 4, . . . , 2n+ 2, respectively.

Proof. To prove that this construction gives universally optimal choice design, we will show that
the C-matrix of the design is of the form αIn, where α is a constant and trace(C) is maximum.
Therefore, first we show that every (h, k)-th element of the C-matrix is zero, where h < k
and (h, k) ∈ {1, 2, . . . , n}. Note that the design Dw consists of the component pair designs
{(Aδ, Aδ′), 1 ≤ δ < δ′ ≤ w}. We denote the component pair designs of Dw by Dδδ′

w , 1 ≤ δ < δ′ ≤
w. We will now calculate N+

hk and N−hk for the design Dw, w = 2, . . . , 2n+ 2.

Since H is a Hadamard matrix of order 4t, for any two columns h and k of Aw, the combina-
tions from the set {(00)hk, (11)hk} and from the set {(10)hk, (01)hk} occurs equally often. There-
fore, in every component pair designDδδ′

w , it is easy to see thatN+
(δδ′)hk = N−(δδ′)hk, 1 ≤ δ < δ′ ≤ w,

whereN+
(δδ′)hk is the total number of pairs of the type (00, 11)hk corresponding to h-th and k-th po-

sitional values inDδδ′

w , andN−(δδ′)hk is the total number of pairs of the type (01, 10)hk corresponding
to h-th and k-th positional values in Dδδ′

w . In other words, for the design Dw, N+
hk = N−hk.

Using the result of Theorem 4.5 it thus follows that the C-matrix has off-diagonal elements
zero for the design Dw, w = 2, . . . , 2n+ 2.

The construction also ensures that nhi = m/2 for Dw’s with m even, and nhi = (m − 1)/2
or (m + 1)/2 for Dw’s with m odd, for every position h and for every choice set. Therefore
using Theorem 4.13 we can say that the diagonal elements of C-matrix are equal and trace(C) is
maximum for the design. Thus the designs Dw, w = 2, . . . , 2n + 2 are universally optimal design
for m = 2, 3, . . . , 2n+ 2 respectively for a 2n choice experiment.

Remark 5.1. The construction as provided in Theorem 5.2 can be extended to allow further in-
crease in the choice set size by considering distinct Hadamard matrices Hu derived from H by
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multiplying any s columns of H by −1, s = 1, 2, . . . , 2t. Though such a flexibly may allow having
m large, it is desirable to select those Hu which minimizes repetitive sets of options within the
constructed choice sets.

Remark 5.2. For m = 4, the construction as provided in Theorem 5.2 is also universally optimal-
ity under the modelR(1, 2). Starting with the Hadamard matrix H in normal form, corresponding
to (Z1 = H,Z2 = −H,Z3 = H1, Z4 = −H1), the choice design is D∗4 = (A1, A2, A3, A4). Then,

for h ∈ {1, . . . , n}, k ∈ {n+1, . . . , n+

(
n

2

)
}, because of Theorem 4.14 and the Hadamard prop-

erty ofH , it is seen that eitherN+
(δδ′)hk = N−(δδ′)hk = 0 or 2t for (δ, δ′) = (1, 2), (1, 3), (2, 4), (3, 4),

i.e., for each of the component pair designs (A1, A2), (A1, A3), (A2, A4), (A3, A4). Furthermore,
for (δ, δ′) = (1, 4), (2, 3), the respective component pair designs (A1, A4) and (A2, A3) have

N+
(δδ′)hk = N−(δδ′)hk = 0 or 2t for all h ∈ {1, . . . , n}, k ∈ {n + 1, . . . , n +

(
n

2

)
} except (h, k)

corresponding to Fh, the h-th main effect, and Fk, the two factor interaction involving the first fac-
tor and the h-th main effect factor, h = 2, 3, . . . , n. For such (h, k)’s, N−(14)hk = N+

(23)hk = 4t, and
N+

(14)hk = N−(23)hk = 0. Therefore, from Lemma 4.4 it follows that BΛB′(2) is a null matrix. The
rest follows from Theorem 5.2 in establishing that the design D∗4 is universally optimal in D4t,n,4

under the modelR(1, 2).

Remark 5.3. In view of Remark 4.1, for given N and n, it follows that a universally optimal
choice design in DN,n,2 is also universally optimal in a more broader class of all connected 2n

choice designs involving N choice sets and arbitrary m.

Example 5.1. Consider a 28−j choice experiment (j = 0, 1, 2, 3) conducted through 8 choice sets
of size 4 each. The 28 (j = 0) choice design D∗4 (as below), under the model R(1, 2) (as well as
under the modelR(1, 1)), is universally optimal in D8,8,4.

D4 =

(11111111, 00000000, 01111111, 10000000)
(10101010, 01010101, 00101010, 11010101)
(11001100, 00110011, 01001100, 10110011)
(10011001, 01100110, 00011001, 11100110)
(11110000, 00001111, 01110000, 10001111)
(10100101, 01011010, 00100101, 11011010)
(11000011, 00111100, 01000011, 10111100)
(10010110, 01101001, 00010110, 11101001)

Deleting the last j factors we get the corresponding universally optimal design in D8,8−j,4,
under both R(1, 2) and R(1, 1). Also, taking the first 2 elements from each choice set we get the
design D2 which is universally optimal in D8,8−j,2 (j = 0, 1, 2, 3), under bothR(1, 2) andR(1, 1).
Finally, taking the first 3 elements from each choice set, under the modelR(1, 1) we get the design
D3 which is universally optimal in D8,8−j,3 (j = 0, 1, 2, 3).
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