Some Aspects of Optimal Covariate Designs in Factorial Experiments

Bikas K. Sinha and P S S N V P Rao
Former Professors, Indian Statistical Institute, Kolkata, India

Received: May 04, 2019; Revised: October 03, 2019; Accepted: October 10, 2019

Abstract

Following Sinha et al. (2014), we initiate a study in the context of 2^{n}-factorial experiments involving the question of optimal allocation of covariate values. There is one controllable quantitative covariate and it is assumed to 'cover' two experimental units at a time. Earlier we dealt with block design set-up [Sinha et al. (2014)]. Here we take up 2^{n}-factorial set-up and address the question of optimal allocation of the covariate values. Results are illustrated for 2^{2} - or 2^{3}-factorial experiments.

Key words: Factorial experiments; Models with covariates; Optimal placement of covariate values.

1. Introduction

The key reference to this article is Sinha et al. (2014) dealing with a varietal design set-up. Here we start with a factorial experiment with the level-combinations having standard representations such as $[(0,0),(0,1),(1,0),(1,1)]$ for a 2^{2} experiment. There is a controllable covariate x attached to every experimental unit and x assumes values in the closed interval $[-1,1]$. However, every attempt towards choice and application of x necessarily 'covers' a pair of experimental units each time. Thus, for example, we may choose 2 units and apply the level combinations $(0,0)$ and $(0,1)$ and attach a value $x=x_{1}$ to each of these two units. The mean responses for the two underlying outputs $Y\left[(0,0) ; x_{1}\right]$ and $Y\left[(0,1) ; x_{1}\right]$ are assumed to be of the form $\tau(00)+\beta x_{1}$ and $\tau(01)+\beta x_{1}$ respectively. Naturally, the contrast $\tau(01)-\tau(00)$ is readily estimated.

Based on the $2^{2}=4$ level combinations, we may form 6 pairs of the above form and make use of $6 \times 2=12$ experimental units in pairs and thereby use 6 covariate values. All 'levelcombination contrasts' are trivially estimated and hence Main Effects and the 2-factor Interaction are unbiasedly estimated. We wish to provide unbiased estimate of the β-coefficient with utmost precision by suitable choice of the covariate values x 's.

Corresponding Author: Bikas Kumar Sinha
E-mail: bikassinha1946@gmail.com
Invited paper: Part of the special issue on Designs for Factorial Experiments and their Applications, guest edited by Rajender Parsad, Sudhir Gupta and Kashinath Chatterjee

Likewise, we may take up the case of 2^{3}-factorial experiment and study similar optimality problem involving $28 x$-values, all in the closed interval $[-1,1]$.

While we will develop the theory of optimization for the general case of 2^{n}-factorial experiment involving $2^{(n-1)}\left(2^{n}-1\right)$ covariate-values, the cases of $n=2,3$ will serve as illustrative examples.

2. Optimal Choice of Covariate Values for 2^{n}-factorial Design Set-up

For n factors, each at 2-levels, let $N=2^{n}$ denote the total number of level combinations. Since the allocation of covariate-values is assumed to 'cover' a pair of experimental units each time, we let $c=\binom{N}{2}$ denote the number of covariates $x_{i}, i=1,2, \cdots, c$ and X denote the $(c \times 1)$ vector $\left(x_{1} x_{2} \cdots x_{c}\right)^{\prime}$. Now, it follows that $I(\beta)$ is a quadratic form in X and we denote it by a constant times $Q(X)$.

Construction of the matrix of quadratic form:
$I(\beta)=2 X^{\prime} I X-\left[\left(c_{1}^{\prime} X\right)^{2}+\cdots+\left(c_{N}^{\prime} X\right)^{2}\right] /(N-1)$
$=(1 /(N-1)) X^{\prime}\left\{2(N-1) I-\left[\left(c_{1} c_{1}^{\prime}+\cdots+c_{N} c_{N}^{\prime}\right)\right]\right\} X=(1 /(N-1)) Q(X)$,
where c_{i} is the coefficient vector of order $(c \times 1)$ of $i^{\text {th }}$ constraint having $(N-1)$ elements equal to 1 and the rest equal to 0 .
Therefore each $c_{i} c_{i}^{\prime}$ is a symmetric matrix of order $(c \times c)$ with only $(N-1)$ nonnull rows (columns) with each nonnull row (column) having ($N-1$) elements equal to 1 and the rest of $(c-N+1)$ elements equal to 0 .
Thus $Q(X)=X^{\prime}[2(N-1) I-M] X$ where $M=\Sigma c_{i} c_{i}^{\prime}$.

Notice that M is a symmetric matrix of order $(c \times c)$ wherein each row (column) has diagonal element equal to $2,2(N-2)$ elements equal to 1 and the rest of $(c-2 N+3)$ elements equal to 0 .

In order to maximize $Q(X)$ for optimal choice of X i.e., of the x_{i} 's, we argue, as in Sinha et al. (2014), that $Q(X)$ is maximized only when the x 's are each at the extremes i.e., $+/-1$. We skip the proof in general terms. However, we provide all the technical details below for the cases of $n=2,3$.

3. Optimal Choice of Covariate Values for 2^{2} Factorial Design Set-up

We start with the following Table 1 of x-values :
Standard representation in the form $\left[Y, A \theta, \sigma^{2} I\right]$ with

$$
\theta=(\tau(00), \tau(01), \tau(10), \tau(11), \beta)^{\prime}
$$

suggests a form of the matrix A of order 12×5 and we partition it as usual to derive an expression for Information on β i.e., $I(\beta)$. For simplicity, we drop the multiplier $\sigma^{-} 2$. It follows that

$$
I(\beta)=2\left(\sum x_{i}^{2}\right)-\left[\left(x_{1}+x_{2}+x_{3}\right)^{2}+\left(x_{1}+x_{4}+x_{5}\right)^{2}+\left(x_{2}+x_{4}+x_{6}\right)^{2}+\left(x_{3}+x_{5}+x_{6}\right)^{2}\right] / 3
$$

Table 1

$x-$ values	level - combination (1)	level - combination (2)
x_{1}	$(0,0)$	$(0,1)$
x_{2}	$(0,0)$	$(1,0)$
x_{3}	$(0,0)$	$(1,1)$
x_{4}	$(0,1)$	$(1,0)$
x_{5}	$(0,1)$	$(1,1)$
x_{6}	$(1,0)$	$(1,1)$

Optimality problem centers around optimal choice of the x 's so as to maximize $I(\beta)$ when $-1 \leq$ $x_{i}, i=1,2,3,4,5,6 \leq 1$.

It follows that $I(\beta)$ can be expressed as a constant times a quadratic form $Q(X) . I(\beta)=$ $X^{\prime}[6 I-M] X / 3=Q(X) / 3$ where the matrix M with $i^{\text {th }}$ column m_{i} is given in an explicit form as

$$
M=\Sigma c_{i} c_{i}^{\prime}=\left(\begin{array}{cccccc}
m_{1} & m_{2} & m_{3} & m_{4} & m_{5} & m_{6} \\
2 & 1 & 1 & 1 & 1 & 0 \\
1 & 2 & 1 & 1 & 0 & 1 \\
1 & 1 & 2 & 0 & 1 & 1 \\
1 & 1 & 0 & 2 & 1 & 1 \\
1 & 0 & 1 & 1 & 2 & 1 \\
0 & 1 & 1 & 1 & 1 & 2
\end{array}\right)
$$

It turns out that a choice of the X 's subject to the value of each of the expressions ($x_{1}+x_{2}+$ $\left.x_{3}\right),\left(x_{1}+x_{4}+x_{5}\right),\left(x_{2}+x_{4}+x_{6}\right),\left(x_{3}+x_{5}+x_{6}\right)$ is $+/-1 ; x_{i}=+/-1$ serves the purpose and we achieve $I(\beta)=32 / 3$. Specifically, one choice is $x_{1}=-1, x_{2}=+1, x_{3}=-1, x_{4}=-1, x_{5}=+1, x_{6}=+1$ which yields, for the partial sums, $\left(x_{1}+x_{2}+x_{3}\right)=-1,\left(x_{1}+x_{4}+x_{5}\right)=-1,\left(x_{2}+x_{4}+x_{6}\right)=+1,\left(x_{3}+x_{5}+x_{6}\right)=+1$.

We give a proof of the above claim below.
Lemma 1: Let $X_{0}=\left(x_{1} x_{2} \cdots x_{c}\right)^{\prime}$ be the vector with elements in the interval $[-1,+1]$ which maximizes $Q(X)=X^{\prime}(t I-M) X$, where $t \geq \max \left(m_{i i}\right)$ is a positive constant. Then each component x_{i} of X_{0} is $+/-1$.

Proof: Write $X_{0}=U_{i}+x_{i} e_{i}$ where e_{i} is the $i^{t h}$ column of I. Then
$Q\left(X_{0}\right)=\left(U_{i}+x_{i} e_{i}\right)^{\prime}(t I-M)\left(U_{i}+x_{i} e_{i}\right)=U_{i}^{\prime}(t I-M) U_{i}+x_{i}^{2}\left(t-m_{i i}\right)+2 x_{i} U_{i}^{\prime}(t I-M) e_{i}$ $=U_{i}^{\prime}(t I-M) U_{i}+x_{i}^{2}\left(t-m_{i i}\right)+2 x_{i} U_{i}^{\prime}(-M) e_{i}=p_{i}+\left(t-m_{i i}\right) x_{i}^{2}+2 x_{i} q_{i}$,
where $p_{i}=U_{i}^{\prime}(t I-M) U_{i}$ and $q_{i}=-U_{i}^{\prime} M e_{i}=-U_{i}^{\prime} m_{i}$ do not involve x_{i}.
Now it is clear that for $Q\left(X_{0}\right)$ to be maximum the value of x_{i} should be $+/-1$ with sign as that of the constant q_{i}. In case $q_{i}=0, x_{i}$ can be given any of +1 or -1 .
Algorithm: Start with $U_{0}=\phi$. For $i=1,2, \cdots, c$, in $i^{t h}$ step, calculate $q_{i}=-U_{i-1}^{\prime} m_{i}$. Replace i th element of U_{i-1} with $+/-1$, the sign being that of q_{i} and denote this new vector by U_{i}. If $q_{i}=0$ then any sign can be chosen. Add $\left|q_{i}\right|$ to q. Increase i by 1 and repeat.
After c steps, check the vector $X=U_{c}$ is a vector which maximizes $Q(X)$ or not.

The following lemma is useful for checking whether the vector computed using above algorithm maximizes $Q(X)$ or not.

Lemma 2: Starting with $U_{0}=\phi$, the final vector U_{c} obtained after c steps of above algorithm maximizes $Q(X)$ if and only if $2 \mathrm{q}=2 \Sigma\left|q_{i}\right|=\Sigma m_{i i}-N$.
Proof: Let Q_{i} denote $Q\left(U_{i}\right)$, for $i=1,2, \cdots, c$. Notice that at $i^{\text {th }}$ step $Q_{i}=Q_{i-1}+\left(t-m_{i i}\right) x_{i}^{2}+2 x_{i} q_{i}$. Hence the increment at $i^{t h}$ step is $\left(t-m_{i i}\right) x_{i}^{2}+2 x_{i} q_{i}$. Thus $Q_{c}=\sum\left(\left(t-m_{i i}\right) x_{i}^{2}+2 x_{i} q_{i}\right)=t \times c-\Sigma m_{i i}+2 \times \Sigma\left|q_{i}\right|$. Comparing this with the maximum value $t \times c-N$ of $Q(X)$, we get the required result.

For $n=2, N=4, c=6, t=6$, each $m_{i i}=2$ and $\Sigma\left|q_{i}\right|=4$ (from the table).Therefore, $2 \Sigma\left|q_{i}\right|=8=\Sigma m_{i i}-N$. Hence $Q\left(U_{c}\right)$ maximizes $Q(X)$.

In order to achieve the solution, it is now a matter of verification of the conditions

$$
\left(u_{1}+u_{2}+u_{3}\right)=\left(u_{1}+u_{4}+u_{5}\right)=\left(u_{2}+u_{4}+u_{6}\right)=\left(u_{3}+u_{5}+u_{6}\right)=+/-1 ; x_{i}=+/-1 .
$$

Example: For the case $n=2$, the successive U vectors along with k_{2} values are as follows:

q_{i}	0	-1	0	0	-1	2
U_{0}	U_{1}	U_{2}	U_{3}	U_{4}	U_{5}	U_{6}
0	1	1	1	1	1	1
0	0	-1	-1	-1	-1	-1
0	0	0	1	1	1	1
0	0	0	0	-1	-1	-1
0	0	0	0	0	-1	-1
0	0	0	0	0	0	1

The first row gives the values of $q_{i}=-U_{i-1}^{\prime} m_{i}$, for $i=1,2, \cdots, c$, and the last column displays the optimum choice of U since the conditions are readily verified to hold.
For the first step when $q_{1}=0$, we chose the value +1 for the first element of U_{1}. Next step $q_{2}=-1$ and we take the second element of $U_{2}=-1$. For the third step, $q_{3}=0$ and we choose the third element of $U_{3}=1$ and so on. The solution is not unique though. For example, another choice of the final vector is $(1-111-11)$ which also maximizes $Q(x)$.

4. Optimal Choice of Covariate Values in $A 2^{3}$ Factorial Experiment

We now discuss similar result for the case of 2^{3} factorial experiment. A version of Table 1 would be Table 2 as shown below. This time the matrix A is of order 28×9 and $I(\beta)$ is given by the expression [again ignoring $\sigma^{-} 2$]

$$
I(\beta)=2 \sum x_{i}^{2}-\left[\left(x_{1}+x_{2}+\ldots \ldots+x_{7}\right)^{2}+\ldots+\left(x_{7}+x_{13}+x_{18}+x_{22}+x_{25}+x_{27}+x_{28}\right)^{2}\right] / 7
$$

It turns out that $I(\beta)$ attains its maximum value of $56-8 / 7=384 / 7$ for a choice of the x 's at the extreme values $+/-1$ subject to

$$
\begin{array}{ccc}
(000): & x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}= & +/-1, \\
(001): & x_{1}+x_{8}+x_{9}+x_{10}+x_{11}+x_{12}+x_{13}= & +/-1, \\
(010): & x_{2}+x_{8}+x_{14}+x_{15}+x_{16}+x_{17}+x_{18}= & +/-1, \\
(011): & x_{3}+x_{9}+x_{14}+x_{19}+x_{20}+x_{21}+x_{22}= & +/-1, \\
(100): & x_{4}+x_{10}+x_{15}+x_{19}+x_{23}+x_{24}+x_{25}= & +/-1, \\
(101): & x_{5}+x_{11}+x_{16}+x_{20}+x_{23}+x_{26}+x_{27}= & +/-1, \\
(110): & x_{6}+x_{12}+x_{17}+x_{21}+x_{24}+x_{26}+x_{28}= & +/-1, \\
(111): & x_{7}+x_{13}+x_{18}+x_{22}+x_{25}+x_{27}+x_{28}= & +/-1 .
\end{array}
$$

One such (optimal) choice is given in the same Table 2.
The realized values of various partial sums of the x 's corresponding to the above solution to the x 's are given below.

$$
\begin{array}{lcc}
(000): & x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}= & -1, \\
(001): & x_{1}+x_{8}+x_{9}+x_{10}+x_{11}+x_{12}+x_{13}= & -1, \\
(010): & x_{2}+x_{8}+x_{14}+x_{15}+x_{16}+x_{17}+x_{18}= & -1, \\
(011): & x_{3}+x_{9}+x_{14}+x_{19}+x_{20}+x_{21}+x_{22}= & -1, \\
(100): & x_{4}+x_{10}+x_{15}+x_{19}+x_{23}+x_{24}+x_{25}= & -1, \\
(101): & x_{5}+x_{11}+x_{16}+x_{20}+x_{23}+x_{26}+x_{27}= & +1, \\
(110): & x_{6}+x_{12}+x_{17}+x_{21}+x_{24}+x_{26}+x_{28}= & -1, \\
(111): & x_{7}+x_{13}+x_{18}+x_{22}+x_{25}+x_{27}+x_{28}= & +1 .
\end{array}
$$

5. Proof of Claim for 2^{3} Case

The expression for $Q(x)$ given for 2^{2} factorial set-up generalizes itself naturally to the case of 2^{3} factorial set-up and is given by $I(\beta)=X^{\prime}[14 I-M] X / 7=Q(X) / 7$ where all the diagonal elements of the matrix M are each equal to 2 while its off-diagonal elements are a known combination of 0 s and 1 s . The Lemma 1 and the algorithm stated above both work in this set-up as well. In the above, we have given one solution and there are other solutions too.

Table 3 gives the matrix M along with the final vector U_{c} (obtained using the above algorithm with initial vector as null vector), the values of q_{i} and $\left|q_{i}\right| . Q(X)$ attains maximum at $X=U$.

For $n=3, N=8, c=6, t=14$, each $m_{i i}=2$ and $\Sigma\left|q_{i}\right|=24$ (from the table).Therefore, $2 \Sigma\left|q_{i}\right|=48=\Sigma m_{i i}-N$. Hence U_{c} maximizes $Q(X)$.

For the choice vector displayed above, various partial sums, as realized, are shown below.

Table 2

generic $x-$ values	level - combination (1)	level - combination (2)	optimal $x-$ values
x_{1}	$(0,0,0)$	$(0,0,1)$	-1
x_{2}	$(0,0,0)$	$(0,1,0)$	-1
x_{3}	$(0,0,0)$	$(0,1,1)$	-1
x_{4}	$(0,0,0)$	$(1,0,0)$	-1
x_{5}	$(0,0,0)$	$(1,0,1)$	1
x_{6}	$(0,0,0)$	$(1,1,0)$	1
x_{7}	$(0,0,0)$	$(1,1,1)$	1
x_{8}	$(0,0,1)$	$(0,1,0)$	1
x_{9}	$(0,0,1)$	$(0,1,1)$	1
x_{10}	$(0,0,1)$	$(1,0,0)$	1
x_{11}	$(0,0,1)$	$(1,0,1)$	1
x_{12}	$(0,0,1)$	$(1,1,0)$	-1
x_{13}	$(0,0,1)$	$(1,1,1)$	-1
x_{14}	$(0,1,0)$	$(0,1,1)$	-1
x_{15}	$(0,1,0)$	$(1,0,0)$	-1
x_{16}	$(0,1,0)$	$(1,0,1)$	-1
x_{17}	$(0,1,0)$	$(1,1,0)$	1
x_{18}	$(0,1,0)$	$(1,1,1)$	1
x_{19}	$(0,1,1)$	$(1,0,0)$	1
x_{20}	$(0,1,1)$	$(1,0,1)$	1
x_{21}	$(0,1,1)$	$(1,1,0)$	1
x_{22}	$(0,1,1)$	$(1,1,1)$	-1
x_{23}	$(1,0,0)$	$(1,0,1)$	-1
x_{24}	$(1,0,0)$	$(1,1,0)$	-1
x_{25}	$(1,0,0)$	$(1,1,1)$	1
x_{26}	$(1,0,1)$	$(1,1,0)$	1
x_{27}	$(1,0,1)$	$(1,1,1)$	-1
x_{28}	$(1,1,0)$	$(1,1,1)$	

$$
\begin{array}{lcc}
(000): & x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}= & 1, \\
(001): & x_{1}+x_{8}+x_{9}+x_{10}+x_{11}+x_{12}+x_{13}= & 1, \\
(010): & x_{2}+x_{8}+x_{14}+x_{15}+x_{16}+x_{17}+x_{18}= & 1, \\
(011): & x_{3}+x_{9}+x_{14}+x_{19}+x_{20}+x_{21}+x_{22}= & 1, \\
(100): & x_{4}+x_{10}+x_{15}+x_{19}+x_{23}+x_{24}+x_{25}=1, \\
(101): & x_{5}+x_{11}+x_{16}+x_{20}+x_{23}+x_{26}+x_{27}=1, \\
(110): & x_{6}+x_{12}+x_{17}+x_{21}+x_{24}+x_{26}+x_{28}=1, \\
(111): & x_{7}+x_{13}+x_{18}+x_{22}+x_{25}+x_{27}+x_{28}=1 .
\end{array}
$$

It may be seen that this solution is different from the one shown earlier.
I

```
00000rr0000rro00rro0rrorrrrar
```

0000れ0-000roroororororrorrnr

○○○roorooroororoorroorrrnorr
OOOHOHOOOHOHOOHOHOHOHOHNHHOH
○○○r- 0000 rrooorroorroonrrrrro

OOHOOHOOHOOHOHOOHOHHNーOHOHOH
○○rorooororoororoornrrroorro

○rooororooororrrnNrooroororor

○rorooororooornrrrrooorrrooo

-00000r-rrarnooooroooroororr

H-HーHNHOOOOHOOOOHOOOHOOHOHOH

Table 4

$x-$ values	level - combination (1)	level - combination (2)	level - combination (3)
x_{1}	$(0,0)$	$(0,1)$	$(1,0)$
x_{2}	$(0,0)$	$(0,1)$	$(1,1)$
x_{3}	$(0,0)$	$(1,0)$	$(1,1)$
x_{4}	$(0,1)$	$(1,0)$	$(1,1)$

6. Generalization to 'triplets'

We now contemplate a situation when every single application of the covariate value x encompasses three experimental units i.e., 'covers the eu's in triplets'. What would be the optimal choice of covariate values for most efficient estimation of the β co-efficient ? We study the cases of 2^{2} and 2^{3} factorials in this section.
(A) The case of 2^{2} factorial

It follows that we need 4 covariate-values $x_{1}, x_{2}, x_{3}, x_{4}$ as are indicated in the Table 4 below.

It transpires that $I(\beta)$ has the representation

$$
I(\beta)=3 \sum x_{i}^{2}-\left[\left(T-x_{1}\right)^{2}+\left(T-x_{2}\right)^{2}+\left(T-x_{3}\right)^{2}+\left(T-x_{4}\right)^{2}\right] / 3, T=\sum x_{i}
$$

We readily find that $I(\beta)=\left[8 \sum x_{i}^{2}-2 T^{2}\right] / 3 \leq 32 / 3$ with " $=$ " if and only if $T=0 ; x_{i}=$ $+/-1 ; i=1,2,3,4$. Any contrast of order 4×1 involving $+/-1$'s such as $(1,1,-1,-1)$ gives a solution.
(B) The case of 2^{3} factorial

It follows that we need 56 covariate-values $x_{1}, x_{2}, \ldots, x_{56}$ associated with the triplets of the level-combinations as are partially indicated in the Table 5 below.

In the above, we have displayed the first set of $21 x$-values corresponding to the triplets starting with $(0,0,0)$. Note that the second set of $15 x$-values $\left[x_{22}-x_{36}\right]$ correspond to triplets starting with $(0,0,1)$. Likewise, third set of $10\left[X_{37}-x_{46}\right]$ start with $(0,1,0)$; fourth set of 6 [$x_{47}-x_{52}$] start with $(0,1,1)$; fifth set of $3\left[x_{53}-x_{55}\right]$ start with $(1,0,0)$ and the last [sixth] set of a singleton starts with $(1,0,1)$.

Next note that each triplet generates three observations and hence we have a total of $56 \times$ $3=168$ observations in the vector representation Y. Moreover, every x-value will have three replications. It transpires that $I(\beta)$ has the representation

$$
I(\beta)=3 \sum x_{i}^{2}-\left[T_{1}^{2}+T_{2}^{2}+\ldots+T_{8}^{2}\right] / 21 .
$$

Table 5

$x-$ values	level - combination (1)	level - combination (2)	level - combination (3)
x_{1}	$(0,0,0)$	$(0,0,1)$	$(0,1,0)$
x_{2}	$(0,0,0)$	$(0,0,1)$	$(0,1,1)$
-	-	-	-
x_{6}	$(0,0,0)$	$(0,0,1)$	$(1,1,1)$
x_{7}	$(0,0,0)$	$(0,1,0)$	$(0,1,1)$
-	-	-	-
x_{11}	$(0,0,0)$	$(0,1,0)$	$(1,1,1)$
x_{12}	$(0,0,0)$	$(0,1,1)$	$(1,0,0)$
-	-	-	-
x_{15}	$(0,0,0)$	$(0,1,1)$	$(1,1,1)$
x_{16}	$(0,0,0)$	$(1,0,0)$	$(1,0,1)$
x_{17}	$(0,0,0)$	$(1,0,0)$	$(1,1,0)$
x_{18}	$(0,0,0)$	$(1,0,0)$	$(1,1,1)$
x_{19}	$(0,0,0)$	$(1,0,1)$	$(1,1,0)$
x_{20}	$(0,0,0)$	$(1,0,1)$	$(1,1,1)$
x_{21}	$(0,0,0)$	$(1,1,0)$	$(1,1,1)$

There are eight level-combinations and therefore, eight T_{i} 's. Every T_{i} contains 21 terms and we demand it to assume the value $+/-1$. In the above expression, each T_{i} is a linear combination of x_{i} s. The Lemma holds true once again. Each x_{i} has to be necessarily $+/-1$. Now writing $T_{i}=c_{i}^{\prime} x$ for $i=1,2, \cdots, 8$, the following table gives the 8 these coefficient vectors c_{i}, along with a solution vector X.

References

Sinha, B. K., Rao, P. S. S. N. V. P., Mathew, T. and Rao, S. B. (2014). A new class of optimal designs in the presence of a quantitative covariate. International Journal of Statistical Sciences, 14(1-2), 1-16.

Table 6

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	X
1	1	1	1	0	0	0	0	0	1
2	1	1	0	1	0	0	0	0	-1
3	1	1	0	0	1	0	0	0	1
4	1	1	0	0	0	1	0	0	-1
5	1	1	0	0	0	0	1	0	1
6	1	1	0	0	0	0	0	1	-1
7	1	0	1	1	0	0	0	0	1
8	1	0	1	0	1	0	0	0	-1
9	1	0	1	0	0	1	0	0	1
10	1	0	1	0	0	0	1	0	-1
11	1	0	1	0	0	0	0	1	1
12	1	0	0	1	1	0	0	0	-1
13	1	0	0	1	0	1	0	0	1
14	1	0	0	1	0	0	1	0	-1
15	1	0	0	1	0	0	0	1	1
16	1	0	0	0	1	1	0	0	-1
17	1	0	0	0	1	0	1	0	1
18	1	0	0	0	1	0	0	1	-1
19	1	0	0	0	0	1	1	0	1
20	1	0	0	0	0	1	0	1	-1
21	1	0	0	0	0	0	1	1	1
22	0	1	1	1	0	0	0	0	-1
23	0	1	1	0	1	0	0	0	1
24	0	1	1	0	0	1	0	0	-1
25	0	1	1	0	0	0	1	0	1
26	0	1	1	0	0	0	0	1	-1
27	0	1	0	1	1	0	0	0	1
28	0	1	0	1	0	1	0	0	-1
29	0	1	0	1	0	0	1	0	1
30	0	1	0	1	0	0	0	1	-1
31	0	1	0	0	1	1	0	0	1
32	0	1	0	0	1	0	1	0	-1
33	0	1	0	0	1	0	0	1	1
34	0	1	0	0	0	1	1	0	-1
35	0	1	0	0	0	1	0	1	1
36	0	1	0	0	0	0	1	1	-1
37	0	0	1	1	1	0	0	0	1
38	0	0	1	1	0	1	0	0	-1
39	0	0	1	1	0	0	1	0	1
40	0	0	1	1	0	0	0	1	-1
41	0	0	1	0	1	1	0	0	1
42	0	0	1	0	1	0	1	0	-1
43	0	0	1	0	1	0	0	1	1
44	0	0	1	0	0	1	1	0	-1
45	0	0	1	0	0	1	0	1	1
46	0	0	1	0	0	0	1	1	-1
47	0	0	0	1	1	1	0	0	-1
48	0	0	0	1	1	0	1	0	1
49	0	0	0	1	1	0	0	1	-1
50	0	0	0	1	0	1	1	0	1
51	0	0	0	1	0	1	0	1	-1
52	0	0	0	1	0	0	1	1	1
53	0	0	0	0	1	1	1	0	-1
54	0	0	0	0	1	1	0	1	1
55	0	0	0	0	1	0	1	1	-1
56	0	0	0	0	0	1	1	1	1

