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Abstract
In this paper, the association in time of a Markov process is considered. A measure

based on transition probability function is proposed to obtain and compare the degree of
association in time of two processes. A real data is analyzed.
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1. Introduction

For a multistate system it is difficult to calculate system reliability. The calculation of
system reliability can become even more difficult, perhaps impossible, if the components of
the system are maintained, or are interdependent. Hence, reliability bounds for reliability of
multistate systems (MSSs) are useful. In reliability and survival analysis, the lifetime ran-
dom variables are not independent but are associated. In structures in which the components
share load, the failure of one component results in increased load on each of the remaining
components. Associated random variables and time associated stochastic processes are useful
for obtaining the reliability bounds for MSSs. Association of random variables is mathemat-
ically described by Esary et al. (1967). Esary and Proschan (1970) obtained a minimal cut
lower bound for a non-maintained system, if the joint performance process of the components
is associated in time. A repairable system modeled by semi-Markov process is considered
by Dharmadhikari and Kuber (2006) and derived a sufficient condition for the association
in time of the process governing the system. Hjort et al. (1985) introduced a sufficient con-
dition for association when the marginal processes are Markovian. Bound for reliability of
maintained systems without imposing conditions of association in time of marginal process
of components is given by Natvig (1993). Minimal path structures of a coherent system
having components in common behave in a similar manner, so that failure of a component
will adversely affect the performance of all the minimal path structures.

A sufficient condition for association in time of the Markov performance process of a
binary system, in terms of its transition probability functions, is given by Esary and Proschan
(1970). Reliability analysis of MSSs can be seen in Barlow and Wu (1978).
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Relative degree (or strength) of association for two sets of random variables is described
by Karlin (1983). In order to assess the degree of association of a Markov process or of com-
paring the relative strength of association of two Markov processes, we need measures in
terms of transition probability functions. In this paper, in order to find degree of association
of the Markov process or to compare the relative degree of association of two Markov pro-
cesses, we consider a measure of association based on transition probability function. In MSS
modeling, the information regarding exact state visited by components before the present
state may not be available. At the same time, information regarding either the state is above
or below a certain state of performance may be available. The conditions for association in
time of the stochastic process which governs the MSS is still worthwhile. A weaker sufficient
condition for association in time of the finite Markov process is given.

In section 2, we discuss the measure of degree of association in time of the Markov
process in terms of the transition probability function. We examine the correlation in terms of
transition probability functions to asses the relative degree (or strength) of association when
comparing two Markov processes. In section 3, we present the weaker sufficient condition in
terms of transition functions and intensities for the Markov process to be associated in time.
An illustrative example is provided in section 4.

2. Measure of Degree of Association

An approach for assessing the level and form of dependence for multivariate observa-
tions is provided by Karlin (1983). It provides a fine tuning in evaluating relationships of pair
of random variable by transforming the data in natural manifold ways and then computing
the associated correlations whose totality reflects on the nature of dependence between array
of transformed variables. The degree of dependence between two random variables X and
Y can be computated by a single statistics.

The following definition gives the measure for ordering bivariate distributions by the
strength of their association.

Definition 1: For two bivariate distributions corresponding to the random variables (X, Y )
and (Z, W ) we say that dependence of (X, Y ) is stronger than the dependence of (Z, W )
with respect to classes of non-decreasing functions F and G if ρ[h(X), g(Y )]≥ρ[h(Z), g(W )]
for all h∈Fandg∈G.

The comparisons are made with respect to the same transformations on the variables
(X, Y ) and (Z, W ) for all functions h∈Fandg∈G.

A measure which can be used to measure the degree of association of the Markov
process is proposed below. We first discuss the measure of degree of association in dis-
crete time stochastic process {Xk, k ≥ 0} with state space E = {1, 2, ..., M}. We have,
Cov(Xk, Xk−1) = E(Xk.Xk−1) − E(Xk)E(Xk−1)
= ∑

i,j∈E P (Xk ≥ j, Xk−1 ≥ i) − ∑
j∈E P (Xk ≥ j) ∑

i∈E P (Xk−1 ≥ i).
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But, Xk and Xk−1, associated if, Cov(Xk, Xk−1) ≥ 0.
⇒

(∑
i,j∈E P (Xk ≥ j, Xk−1 ≥ i) − ∑

i,j∈E P (Xk ≥ j)P (Xk−1 ≥ i)
)

≥ 0
⇒ ∑

i,j∈E [P (Xk ≥ j, Xk−1 ≥ i) − P (Xk ≥ j)P (Xk−1 ≥ i)] ≥ 0
or ∑

i,j∈E

[P (Xk ≥ j|Xk−1 ≥ i) − P (Xk ≥ j)]P (Xk−1 ≥ i) ≥ 0. (1)

Using one step transition probability, we get,∑
i,j∈E

∑
i,j∈E

[P (Xk = j|Xk−1 = i) − P (Xk = j)]P (Xk−1 = i) ≥ 0 (2)

We can use the measure, Cov(Xk, Xk−1) = ∑
i,j∈E

∑
i,j∈E[P (Xk = j|Xk−1 = i) −

P (Xk = j)]P (Xk−1 = i), for assessing the association of the discrete time stochastic process.

Standardization of the covariance may be desired to achieve scale invariance and enable
meaningful comparisons between different data sets. The condition of association,

Cov(h(X), g(Y )) ≥ 0

for all functions h ∈ F and g ∈ G, of two random variables with respect to the classes F
and G is replaced by an equivalent requirement ρ(X, Y ) = Cov(h(X),g(Y ))√

V ar(h(X)).V ar(g(Y ))
≥ 0. For

two stochastic processes {Xk, k ≥ 0} and {Yk, k ≥ 0}, the following measure of association
is used for comparing two processes in terms of their strength of association. ρ(Xk,Xk−1) =

Cov(Xk,Xk−1)√
V ar(Xk).V ar(Xk−1)

where V ar(Xk) = ∑
i,j∈E P (Xk ≥ max(i, j)) − P (Xk ≥ j)P (Xk ≥ i).

If
ρ(Xk,Xk−1) ≥ ρ(Yk,Yk−1) (3)

the association between Xk and Xk−1 is larger than association between Yk and Yk−1. If (3) is
true for every k, then the stochastic process {Xk, k ≥ 0} is more associated than {Yk, k ≥ 0}.

Here we also consider a continuous time Markov process {X(t), t ≥ 0}. Consider the
random variables X(t), X(s), s < t in the Markov process. It is clear that if X(t) and X(s),
s < t are associated if

Cov(X(t), X(s)) =
�

R

�
R

P (X(t) > x, X(s) > y)−P (X(t) > x)P (X(s) > y)dxdy ≥ 0. (4)

Using transition probability function, P (X(t) = j|X(s) = i) of the Markov process, we write
(4) as,
Cov(X(t), X(s)) =�

R

�
R

∑
{i,j:X(s)=i>y,X(t)=j>x}

[P (X(t) = j|X(s) = i) − P (X(t) = j)]P (X(s) = i)dxdy ≥ 0 (5)

Comparison of two Markov processes, {X(t), t ≥ 0} and {Y (t), t ≥ 0}, only in terms of tran-
sition probabilities is not possible but comparison between covariances in terms of transition
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probabilities and state probabilities is more reasonable. The degree of association of two
Markov processes can be compared using the following correlation function, ρX(t, s).

In the case of the Markov process we have, ρX(t, s) = Cov(X(t),X(s))√
V ar(X(t)).V ar(X(s))

≥ 0 implies
association between X(s) and X(t). We use the correlation ρX(t, s) as a function of transition
probability function and state probabilities to measure the degree of association in time of
the Markov process.

We compare the degree of association of two Markov processes using ρX(t, s). This
gives a stochastic ordering of two Markov processes based on strength of their association.
Denote, CX(t, s) =

�
R

�
R

[P (X(t) ≥ x|X(s) ≥ y) − P (X(t) ≥ x) ]P (X(s) ≥ y)dxdy,
CX(t, t) =

�
R

�
R

[P (X(t) ≥ max(x, y)) − P (X(t) ≥ x)P (X(t) ≥ y) ]dxdy

ρX(t, s) = CX(t,s)√
CX(t,t).CX(s,s)

. We propose the following definitions.

Definition 2: For two different Markov processes {X(t), t ≥ 0} and {Y (t), t ≥ 0}, we say
that association of (X(t), X(s)), s < t is stronger than the association of (Y (t), Y (s)), s < t
if ρX(t, s) ≥ ρY (t, s).

Definition 3: For two different Markov processes {X(t), t ≥ 0} and {Y (t), t ≥ 0}, we say
that association of X process is stronger than the association of Y process if ∀s, t ∈ R, s < t,
ρX(t, s) ≥ ρY (t, s). Some conditions of association in terms of the nondecreasing functions
of the classes F and G and its distributional properties are given below. It provide a measure
for the comparison of the degree of association of two system each consists of n associated
components, see Prakash Rao and Dewan (2001).

Definition 4: A collection of random variables {Xn, n ≥ 1} is said to be associated if for
every n and for every choice of coordinate-wise non-decreasing functions h(x) and g(x) from
Rn to R,

Cov(h(X), g(X)) ≥ 0 (6)
whenever it exist, where X = (X1, ..., Xn).

Definition 5: The performance process of the ith component is a stochastic process
{Xi(t), t ∈ τ} where for each fixed t ∈ τ, Xi(t) denotes the state of component i at
time t. The joint performance process of the components is given by {X(t), t ∈ τ} =
{(X1(t), ..., Xn(t)), t ∈ τ}.

Let I = [tA, tB] ⊂ [0, ∞), τ(I) = τ ∩ I.

Definition 6: The joint performance process {X(t), t ∈ τ} of the components is said to be
associated in time interval I if and only if, for any integer m and {t1, ..., tm} ⊂ τ(I), the
random variables in the array

X1(t1) ... X1(tm)
... ... ...

Xn(t1) ... Xn(tm)
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are associated.

For the component performance process {Xi(t), t ∈ τ}, i ∈ {1, 2, ..., n} and fixed t1 <
... < tm, let hi(X i) ∈ F, gi(X i) ∈ G are nondecreasing function of random variables from Rm

to R, where X i = (Xi(t1), Xi(t2), ..., Xi(tm)). Xi(t1), Xi(t2), ..., Xi(tm) are associated if for
every hi(xi), gi(xi), Cov(hi(X i), gi(X i)) ≥ 0 where Cov(hi(X i), gi(X i)) =

�
R

�
R

[P (hi(X i) >
x, gi(X i) > y) − P (hi(X i) > x)P (gi(X i) > y)]dxdy, i ∈ {1, 2, ..., n}. This implies that if

�
R

�
R

[P (hi(X i) > x|gi(X i) > y) − P (hi(X i) > x)]P (gi(X i) > y)dxdy ≥ 0 (7)

we have association of the component performance processes {Xi(t), t ∈ τ}.

Definition 7: A Markov performance process {Xi(t), t ∈ τ} of component i is associated
if

�
R

�
R

[P (hi(X i) > x|gi(X i) > y) − P (hi(X i) > x)]P (gi(X i) > y)dxdy ≥ 0 for every
collection of random variables X i = (Xi(t1), ..., Xi(tm)) and every choice of coordinate wise
nondecreasing function hi(xi) and gi(xi) from Rm to R.

In a similar way, we can find a condition for association of joint performance process of
components, in terms of non-decreasing functions, which is quite desirable. In the following
definition, we consider the nondecreasing functions H ∈ F and G ∈ G from Rnm to R.

Definition 8: The joint performance process of the components {X(t),t∈ τ}
= {(X1(t), ..., Xn(t)), t ∈ τ} is associated in time if

�
R

�
R

[P (H(X) > x|G(X) > y) − P (H(X) > x)]P (G(X) > y)dxdy ≥ 0

for every collection of random variables,

X = (X1(t1), X2(t1), ..., Xn(t1), X1(t2), ...., Xn(t2), ..., X1(tm), ..., Xn(tm))

and every choice of coordinate wise nondecreasing function H(x) and G(x) from Rnm

to R.

The measure of degree of association of the system which consists of n associated
components governed by Markov processes is given below.

Denote

CX(H, G) =
�

R

�
R

[P (H(X) > x|G(X) > y) − P (H(X) > x)]P (G(X) > y)dxdy

CX(H, H) =
�

R

�
R

[P (H(X) > max{x, y}) − P (H(X) > x)P (H(X) > y)]dxdy

and
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ρX(H, G) = CX(H,G)√
CX(H,H)CX(G,G)

The degree of association of two performance processes {X(t), t ≥ 0} and {Y (t), t ≥ 0}
of two systems can be compared using the measures ρX(H, G) and ρY (H, G).

Definition 9: For two performance process {X(t), t ≥ 0} and {Y (t), t ≥ 0}, of two systems
consists of n associated components governed by the Markov processes {X i(t), t ≥ 0} and
{Y i(t), t ≥ 0}, i = 1, 2, ..., n respectively, we say that association of X-system is stronger
than the association of Y -system if ∀m , n and H ∈ F, G ∈ G, from Rmn to R, ρX(H, G) ≥
ρY (H, G).

The proposed measures may help us (i) to suggest whether a Markov process is associ-
ated in time; and (ii) to asses the relative degree (or strength) of association of two different
Markov processes, and (iii) to asses the relative strength of association of two performance
process of two systems consists of n associated components which are governed by Markov
processes.

3. A Weaker Condition for Association in Time of a Markov Process

A sufficient condition using transition probability function for association with the
marginal Markovian processes is given by Hjort et al. (1985). We consider much weaker
conditions for the Markov process to be associated in time. Let P∗

ij(s, t) = P (X(t) =
j|X(s) ≥ i), s < tand P∗(s, t) = {P ∗

ij(s, t)}i,j∈{0,1,...,M}, s < t Assume the existence of the
following intensities

µ∗
ij(s) =

 limh→0+
P ∗

ij(s,s+h)
h

, i ̸= j

limh→0+
P ∗

ij(s,s+h)−1
h

, i = j

Let P∗
i,≥j(s, t) = P (X(t) ≥ j|X(s) ≥ i)

P ∗
i,<j(s, t) = P (X(t) < j|X(s) ≥ i)

µ∗
i,≥j(s) = ∑M

ν=j µ∗
iν(s), i < j

µ∗
i,<j(s) = ∑j−1

ν=0 µ∗
iν(s), i ≥ j

Now we consider the following definitions, see Barlow and Proschan (1975).

Definition 10: A random variable T is stochastically right tail increasing (st. RTI) in
random variables S1, ..., Sk if P (T > t|S1 ≥ s1, ..., Sk ≥ sk) is nondecreasing in s1, s2, ..., sk.

Definition 11: Random variables T1, ..., Tn are conditionally RTI in sequence if Ti is st.
RTI in T1, ...., Ti−1 for i = 2, 3, ..., n.

Definition 12: A process {X(t), t ≥ 0} is conditionally RTI in time if P(X(t)≥ j|X(s1) ≥
i1, ..., X(sn) ≥ in) is nondecreasing in i1, ..., in for each j and for each choices of s1 < ... <
sn < t, n ≥ 1.

Manoharan (1995) proved the following result.

Theorem 1: If the random variables T1, T2, ..., Tn are conditionally RTI in sequence, then
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they are associated.

Now using the Definition 12 and the above Theorem 1, we get the following result.

Theorem 2: If a stochastic process {X(t), t ≥ 0} is conditionally RTI in time, then it is
associated in time.

A main result of this section which gives a weaker condition for the Markov process to
be associated in time is given below.

Theorem 3: Let X be a continuous time Markov process with state space {0, 1, ..., M}.
Assume µ∗

ij(s) to be continuous. Then each of the following three conditions are equivalent
and implay that X is associated in time

(a) X is conditionally RTI in time.

(b) P ∗
i,≥j(s, t) is nondecreasing in i for each j and for each choice of s < t.

(c) For each j and s

µ∗
i,≥j(s) is nondecreasing in i ∈ {0, 1, ..., j − 1}

µ∗
i,<j(s) is nonincreasing in i ∈ {j, j + 1, ..., M}

Proof: In view of Theorem 2, it suffices to prove the equivalence of conditions (a), (b)
and (c).

The equivalence of (a) and (b) follows from the Markov property of X.

Now to prove the equivalence of (b) and (c), note that statement (b) is equivalent to
the following three conditions.

(i)P (X(t) ≥ j|X(s) ≥ i) = P ∗
i,≥j(s, t) is nondecreasing in i ∈ {0, 1, 2..., j − 1}

(ii)P (X(t) < j|X(s) ≥ i) = P ∗
i,<j(s, t) is nonincreasing in i ∈ {j, j + 1, ..., M}.

(iii)P (X(t) ≥ j|X(s) ≥ j − 1) ≤ P (X(t) ≥ j|X(s) ≥ j)

Thus if (b) holds then for i < j, µ∗
i,≥j(s) = ∑M

ν=j µ∗
iν(s)

= ∑M
ν=j limh→0+

P ∗
ij(s,s+h)

h
= limh→0+

P ∗
i,≥j(s,s+h)

h
is nondecreasing in i ∈ {0, 1, ..., j − 1}, and

for i ≥ j

µ∗
i,<j(s) =

j−1∑
ν=0

µ∗
iν(s) = limh→0+

P ∗
i,<j(s, s + h)

h

is nonincreasing in i ∈ {j, j + 1, ..., M}. Hence (b) implies (c).

To show that (c) implies (b), let M∗ denote the class of all stochastic matrices
P∗ = (P ∗

ij)i,j∈{0,1,...,M} such that ∑M
ν=j P ∗

iν is nondecreasing in i for each j. In order to prove
that X has property (b) it is enough to show that P∗(s, t) ∈ M∗ for each choice s < t.
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Define
a∗

ij(u) =
{

µ∗
ij(u), i ̸= j

1 − ∑
j ̸=i µ∗

ij(u), i = j

and let A∗(u) = (a∗
ij(u))i,j∈{0,1,...,M}. Also let Q∗(u) = A∗(u) − I, where I is the identity

matrix. Using the product integral representation (see Johansen (1977)) and the fact that
the transition intensities are uniformly continuous on [s, t], we have

P∗(s, t) = limn→∞

n−1∏
j=0

[I + Q∗(s + (j/n)(t − s))(t − s)/n] (8)

Note that B(u, h) = I + Q∗(u)h = (1 − h)I + A∗(u)h is a stochastic matrix. Now if
(c) is satisfied, ∑M

ν=j biν(u, h) = ∑M
ν=j q∗

iν(u)h = ∑M
ν=j µ∗

iν(u)h is nondecreasing in i ∈
{0, 1, ..., j − 1}, and ∑j−1

ν=0 biν(u, h) = ∑j−1
ν=0 µ∗

iν(u)h is nonincreasing in i ∈ {j, j + 1, ..., M}.
Also ∑M

ν=j bjν(u, h)−∑M
ν=j bj−1,ν(u, h) = (1−h)+ha∗

jj(u)+h
∑M

ν=j+1 a∗
jν(u)−h

∑M
ν=j a∗

j−1,ν(u)
= (1 − h) + h

[
1 − ∑

l ̸=j µ∗
jl(u)

]
+ h

∑M
ν=j+1 µ∗

jν(u) − h
∑M

ν=j µ∗
j−1,ν(u)

= 1 + h
[∑M

ν=j+1 µ∗
jν(u) − ∑M

ν=j µ∗
j−1,ν(u) − ∑

l ̸=j µ∗
jl(u)

]
Now choose h small enough so that∑M

ν=j bjν(u, h) − ∑M
ν=j bj−1,ν(u, h) ≥ 0 ∀j = 1, 2, ..., M.Since µ∗

ij’s are bounded, we can choose
h independent of u. Hence for sufficiently small h (independent of u),

B(u, h) = I + Q∗(u)h

satisfies the conditions (i), (ii) and (iii), which means that B(u, h) ∈ M∗. The class M∗

being closed under multiplication and also under pointwise limits, we conclude from (8) that
P ∗(s, t) ∈ M∗. Hence (b) is true.

Remark 1: It can be easily seen that the conditions for the association of Markov process
in Hjort et al. (1985) imply the conditions (a) to (c) of the Theorem 3 and hence the latter
set gives a much weaker conditions for association in time of a Markov process.

Remark 2: For the binary reliability system (M=1) it is easily seen that condition (b) of
the Theorem 3 is equivalent to P11(s, t)+P00(s, t) ≥ 1 for each s < t which is the sufficient
condition for the association in time of X given by Esary and Proschan (1970). Furthermore,
when the transition intensities are continuous, the condition (c) of the Theorem 3 is always
satisfied and hence the corresponding Markov process is always associated.

Remark 3: One may have further extension of the conditions (a)-(c) of the Theorem 3 for a
semi-Markov process by augmenting the waiting time variable to the state variable as dealt
in Kuber and Dharmadhikari (1996).

4. Application

We consider the data set from medical field for the illustration of concept of measure
of degree of association in Markov processes.

Example 1: We re-examine the data on an oral hygiene study, discussed in Das and
Chattopadhyay (2004)(cf. Dharmadhikari and Dewan (2006)) for the illustration of the
association of a vector valued process. The reduction in the amount of plaque on teeth is
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recorded. Each individual in the data was monitored for a couple of days. Two teeth were
identified, one on the left lower canine which is in the left lower corner of a jaw, and one on
molar at upper right jaw. The reduction in the thickness of plaque for subjects are usually
recorded as belonging to four different categories, viz, no reduction, slight reduction, moder-
ate reduction and vast reduction. To evaluate effectiveness of brushing, we use the proposed
measures. To check whether it is possible to reduce the number of records per individual per
day and there is some sort of dependence Das and Chattopadhyay (2004) developed a latent
mixture regression model to study this categorical multivariate data. Table A.1 give a part
of dental data analyzed. It gives stain on the same tooth at all four positions before and
after brushing, respectively. Numbers under (P1, P2, P3, P4) indicate the amount of stain at
each of the four positions on the selected tooth of an individual. The data in Table A.1 are
conditionally increasing in its coordinates.

The state probabilities are given in Table A.2. The conditional probabilities P (X(t) =
j|X(s) = i) for i, j ∈ {0, 1, 2, 3} for the four sets of data are calculated in Table A.3.

To get an ordering in terms of association we have to compute the measure of associa-
tion. The values are obtained in Table A.4.

This shows that the data in the third (P3) position is more associated. This informa-
tion may be useful to medical practitioners.

5. Summary

The degree of association in time of a Markov process can be measures using proposed
measures which are based on transition probability function. The measure can be used to
compare two Markov process according to the degree of association. A weaker condition for
association of a Markov process in time is derived. The proposed measure can be used in
various areas such as engineering, medical, social science etc.
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Appendix A

Table A.1: Dental data stain before and after brushing

Before brushing After brushing Individual Before brushing After brushing
Individual P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

1 1 1 1 2 0 0 0 0 14 2 1 2 2 0 0 1 1
2 1 1 2 2 0 0 0 1 15 2 2 2 2 0 0 1 1
3 1 1 2 2 0 0 0 1 16 2 2 2 2 0 0 1 1
4 1 1 2 2 0 0 0 1 17 2 2 2 2 0 0 1 1
5 1 1 2 2 0 0 0 1 18 2 2 2 2 0 0 1 1
6 1 2 2 2 0 0 0 1 19 2 2 2 2 0 0 1 1
7 1 2 2 2 0 0 0 1 20 2 2 2 2 0 0 1 1
8 1 2 2 2 0 0 0 1 21 2 2 2 2 0 1 1 1
9 1 2 2 2 0 0 0 1 22 2 2 2 2 0 1 1 1
10 1 2 2 2 0 0 0 1 23 2 2 2 2 0 1 1 1
11 1 2 2 2 0 0 0 1 24 2 2 2 3 0 1 1 1
12 1 2 2 2 0 0 0 2 25 2 2 2 3 1 1 1 2
13 1 2 2 3 0 0 0 2

Table A.2: State probabilities

P1 P2 P3 P4
P (X(s) = 1) = 13/25 P (X(s) = 1) = 6/25 P (X(s) = 1) = 1/25 P (X(s) = 1) = 0
P (X(s) = 2) = 12/25 P (X(s) = 2) = 19/25 P (X(s) = 2) = 24/25 P (X(s) = 2) = 22/25
P (X(s) = 3) = 0 P (X(s) = 3) = 0 P (X(s) = 3) = 0 P (X(s) = 3) = 3/25
P (X(t) = 0) = 24/25 P (X(t) = 0) = 20/25 P (X(t) = 0) = 13/25 P (X(t) = 0) = 1/25
P (X(t) = 1) = 1/25 P (X(t) = 1) = 5/25 P (X(t) = 1) = 22/25 P (X(t) = 1) = 21/25
P (X(t) = 3) = 0 P (X(t) = 3) = 0 P (X(t) = 3) = 0 P (X(t) = 2) = 3/25

Table A.3: The conditional probabilities P (X(t) = j|X(s) = i) for i, j ∈ {0, 1, 2, 3}

X(t) 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
X(s)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
2 11

12
1
12 0 0 14

19
5
19 0 0 12

24
12
24 0 0 1

22
20
22

1
22 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 1
3

2
3 0

Table A.4: Covariance

Position P1 P2 P3 P4
Cov(X(t), X(s)) 0 30/625 12/25 2/25


