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4 Insee, Direction des statistiques démographiques et sociales, division salaires et revenus
d’activité
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Abstract

Marginal imputation, which consists of imputing each item requiring imputation separately, is
often used in surveys. This type of imputation procedures leads to asymptotically unbiased esti-
mators of simple parameters such as population totals (or means), but tends to distort relationships
between variables. As a result, it generally leads to biased estimators of bivariate parameters such
as coefficients of correlation or odd-ratios. Household and social surveys typically collect cate-
gorical variables, for which missing values are usually handled by nearest-neighbour imputation
or random hot-deck imputation. In this paper, we propose a simple random imputation proce-
dure, closely related to random hot-deck imputation, which succeeds in preserving the relationship
between categorical variables. Also, a fully efficient version of the latter procedure is proposed.
A limited simulation study compares several estimation procedures in terms of relative bias and
relative efficiency.

Key words: Balanced random imputation; Coefficient of correlation; Categorical variable; Fully
efficient estimator; Joint proportion; Odd-ratio; Random hot-deck imputation.

1 Introduction

Single imputation, which consists of replacing a missing value by an artificial value, is often
used in statistical agencies for treating item nonresponse. The main objective of imputation is to
reduce the nonresponse bias, which may be appreciable when the respondents and non-respondents
differ with respect to the study variables. Achieving an efficient bias reduction relies on the avail-
ability of auxiliary information, which is a set of variables observed for all the sample units. Impu-
tation leads to a complete rectangular data file, which is attractive for an analyst since complete data
estimation methods may be readily applied to compute point estimates. In some cases, response
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flags, indicating the item specific response statuses for each unit, are provided in the imputed data
file. In some situations, however, the flags are not provided by statistical agencies.

In household and social surveys, missing values are often handled through donor imputation pro-
cedures such as nearest-neighbour imputation or random hot-deck imputation. In this paper, we
focus on survey weighted random hot-deck imputation, whereby a missing value is imputed by the
value of a respondent (donor) selected at random from the set of respondents with probabilities pro-
portional to their sampling weights. In practice, survey weighted random hot-deck imputation is
generally applied independently within imputation classes, defined on the basis of auxiliary infor-
mation. The reader is referred to Andridge and Little (2010) for more details on random hot-deck
imputation; for multiple imputation methods suitable for categorical variables, see for example
White et al. (2010), Van Buuren (2012) and the references therein.

Most often, survey statisticians are interested in estimating simple parameters such as popula-
tion totals, means and marginal proportions. In this case, marginal imputation, which consists
of imputing variables separately, leads to asymptotically unbiased estimators, provided that the
assumed imputation model is correctly specified (Haziza, 2009). For example, one may use ran-
dom hot-deck imputation for each variable requiring imputation. However, this type of method
tends to distort the relationships between variables. As a result, estimators of parameters measur-
ing the relationship between variables may be severely biased, especially if the nonresponse rates
are appreciable. It is thus desirable to develop imputation strategies which succeed in preserv-
ing the relationship between categorical variables. For bivariate parameters involving continuous
variables, Shao and Wang (2002) proposed a joint random regression imputation procedure and
showed that it leads to asymptotically unbiased estimators of correlation coefficients. Chauvet and
Haziza (2012) proposed a fully efficient version of the Shao-Wang procedure in the sense that the
imputation variance is eliminated or considerably reduced. A different approach for dealing with
bivariate parameters was considered in Skinner and Rao (2002), who proposed to first use marginal
imputation to fill in the missing values and then to adjust for the bias at the estimation stage.

In household and social surveys, variables are often categorical so that the methods described above
are not directly applicable: rather than dealing with means and correlations, we are interested in
marginal and joint proportions. We propose a simple joint random hot-deck imputation procedure
that requires the same amount of information that is needed for random hot-deck imputation, and
show that it preserves the relationship between categorical variables in the sense that imputed
estimators of the joint proportions are approximately unbiased for their population counterparts.
Also, a balanced version is proposed, for which the imputation variance is virtually eliminated. The
proposed procedure leads to efficient and approximately unbiased estimators of joint proportions
while being more efficient than random hot-deck imputation if the interest lies in estimating the
marginal proportions.

2 Set-up

Consider a finite populationU of sizeN . Let x denote a categorical study variable with possible
characteristics k = 0, . . . , K − 1. Similarly, let y denote a categorical study variable with possible
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characteristics l = 0, . . . , L − 1. We are interested in estimating pk• = N−1
∑

i∈U 1(xi = k), the
marginal proportion of units who possess the characteristic k for x; p•l = N−1

∑
i∈U 1(yi = l), the

marginal proportion of units who possess the characteristic l for y; and pkl = N−1
∑

i∈U 1(xi =
k)1(yi = l), the joint proportion of units who possess both characteristics k for x and l for y.

A sample s of size n is selected from U according to some sampling design p(·). Let wi = 1/πi
be the sampling weight attached to unit i, where πi = P (i ∈ s) denotes its first-order inclusion
probability in the sample. Complete data estimators of pk•, p•l and pkl are the Horvitz-Thompson
(1952) estimators

p̂k• = N−1
∑
i∈s

wi1(xi = k),

p̂•l = N−1
∑
i∈s

wi1(yi = l), (2.1)

p̂kl = N−1
∑
i∈s

wi1(xi = k)1(yi = l).

The estimators p̂k•, p̂•l and p̂kl are design-unbiased for pk•, p•l and pkl, respectively. That is,

Ep(p̂k•) = pk•,

Ep(p̂•l) = p•l,

Ep(p̂kl) = pkl,

where Ep(·) denotes the expectation with respect to the sampling design. Alternatively, the de-
nominator N =

∑
i∈U 1 in (2.1) can be estimated by N̂ =

∑
i∈swi, which leads to the so-called

Hàjek estimators of pk•, p•l and pkl (Hàjek, 1971). For simplicity, we confine to the case of the
Horvitz-Thompson estimators given by (2.1). In practice, both x and y are prone to missing values
and require some form of imputation.

In this paper, we assume that the units respond independently of one another. Also, the finite
population U is assumed to be partitioned into G imputation classes U1, . . . , U g, . . . , UG of size
N1, . . . , N g, . . . , NG, respectively. In class U g, denote by sg = s∩U g the sample members; sgrr the
set of ng

rr respondents to both items x and y; sgrm the set of ng
rm respondents to item x only; sgmr the

set of ng
mr respondents to item y only; sgmm the set of ng

mm non-respondents to both items. Let φg
i◦

denote P (i ∈ sg◦|i ∈ s) for any response/nonresponse pattern ◦ ∈ {rr, rm,mr,mm}. We assume
that a given pattern occurs with the same probability for any unit i ∈ sg, so that we simplify the
notation as φg

i◦ = φg
◦. The data are thus assumed to be Missing Completely At Random (MCAR)

within the imputation classes.

In practice, we may ensure that a given pattern occurs with (approximately) the same probability
inside an imputation class, by building these imputation classes as follows. We first select the
auxiliary variables that are related to the probability of response to x and y. We then fit a poly-
tomous logistic regression model using the selected auxiliary variables as predictors. For sample
unit i, we obtain the vector of estimated response probabilities (φ̂irr, φ̂irm, φ̂imr, φ̂imm)>. Based
on these vectors, the sample is then partitioned into homogeneous groups by using a classification
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algorithm such as the k-means algorithm. Each of these groups forms one imputation class, and
the estimated response probability φ̂g

◦ for each pattern ◦ inside the imputation class g is simply
taken as the frequency of this pattern inside g. This method can be viewed as an extension of the
so-called score method (Haziza and Beaumont, 2007) to the case of two study variables.

The population proportions of interest may be rewritten as

pk• = N−1
G∑

g=1

N g pgk• with pgk• = (N g)−1
∑
i∈Ug

1(xi = k),

p•l = N−1
G∑

g=1

N g pg•l with pg•l = (N g)−1
∑
i∈Ug

1(yi = l),

pkl = N−1
G∑

g=1

N g pgkl with pgkl = (N g)−1
∑
i∈Ug

1(xi = k)1(yi = l).

Similarly, the complete data estimators (2.1) may be rewritten as

p̂k• = N−1
G∑

g=1

N̂ g p̂gk• with p̂gk• = (N̂ g)−1
∑
i∈sg

wi1(xi = k),

p̂•l = N−1
G∑

g=1

N̂ g p̂g•l with p̂g•l = (N̂ g)−1
∑
i∈sg

wi1(yi = l),

p̂kl = N−1
G∑

g=1

N̂ g p̂gkl with p̂gkl = (N̂ g)−1
∑
i∈sg

wi1(xi = k)1(yi = l),

where N̂ g =
∑

i∈sg wi is an estimator of the g-th class size, Ng.

Let x∗i and y∗i be the imputed values used to replace the missing xi and yi. Imputed estimators of
pk•, p•l and pkl are respectively

p̂k•,I = N−1
G∑

g=1

∑
i∈sgr•

wi1(xi = k) +N−1
G∑

g=1

∑
i∈sgm•

wi1(x∗i = k),

p̂•l,I = N−1
G∑

g=1

∑
i∈sg•r

wi1(yi = l) +N−1
G∑

g=1

∑
i∈sg•m

wi1(y∗i = l), (2.2)

p̂kl,I = N−1
G∑

g=1

∑
i∈sgrr

wi1(xi = k)1(yi = l) +N−1
G∑

g=1

∑
i∈sgrm

wi1(xi = k)1(y∗i = l)

+ N−1
G∑

g=1

∑
i∈sgmr

wi1(x∗i = k)1(yi = l) +N−1
G∑

g=1

∑
i∈sgmm

wi1(x∗i = k)1(y∗i = l),

where sgr• = sgrr ∪ sgrm denotes the set of respondents to item x in class g; sgm• = sgmr ∪ sgmm de-
notes the set of non-respondents to item x in class g, and sg•r and sg•m corresponding to item y are
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similarly defined. Once the data have been imputed, the computation of (2.2) does not require the
response flags to be available in the imputed data file. Complete data estimation procedures may
thus be readily applied by secondary analysts for point estimation, which is an important practical
aspect.

In order to study the properties of an imputed estimator p̂�,I of a proportion p�, we express its total
error as

p̂�,I − p� = (p̂� − p�) + (p̃�,I − p̂�) + (p̂�,I − p̃�,I) , (2.3)

where p̃�,I ≡ EI (p̂�,I) , for � ∈ {k•, •l, kl}, and EI(·) denotes the expectation with respect to the
imputation mechanism, conditionally on the sample s and on the sets of respondents to items x and
y. In other words, EI(·) denotes the expectation with respect to the random selection of donors in
the case of a random imputation method. The first term on the right hand side of (2.3) represents
the sampling error, whereas the second and the third terms represent the non-response error and
the imputation error. The imputation error occurs solely from the random imputation mechanism.
We seek an imputation procedure under which the non-response bias

BpqI(p̂�,I) ≡ EpEqEI (p̂�,I − p̂�) = EpEq (p̃�,I − p̂�)

is approximately equal to 0, where Eq(·) denotes the expectation with respect to the assumed non-
response model, conditionally on the sample s.

We focus on survey weighted random hot-deck imputation, which consists of selecting a donor at
random from the set of respondents with probability proportional to its sampling weight, and then
using the donor’s item value(s) to ”fill in” for the missing value of a non-respondent. Marginal
random hot-deck imputation, which consists of imputing x and y separately, tends to attenuate
the relationship between items being imputed. As a result, this method introduces a bias in the
estimation of pkl that may be severe if the non-response rate is appreciable. In practice, it is
customary to use a slightly different version of random hot-deck imputation that consists of using
a common donor when both x and y are missing. For any class U g, we proceed as follows:

(i) for i ∈ sgmr, missing xi is imputed by x∗i = k with probability

p̂gk•,ac ≡ (N̂ g
r•)
−1
∑
i∈sgr•

wi1(xi = k) (2.4)

estimated from the available cases (AC) in class g for item x, and N̂ g
r• =

∑
i∈sgr• wi;

(ii) for i ∈ sgrm, missing yi is imputed by means of an analogous procedure;

(iii) for i ∈ sgmm, missing (xi, yi) is imputed by (x∗i , y
∗
i ) = (k, l) with probability

p̂gkl,cc ≡ (N̂ g
rr)
−1
∑
i∈sgrr

wi1(xi = k)1(yi = l) (2.5)

estimated from the complete cases (CC) in class g to items x and y, with N̂ g
rr =

∑
i∈sgrr wi.
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When one variable only is missing, random hot-deck imputation estimates its distribution sepa-
rately from available cases for this variable. When both variables are missing, their distribution is
estimated jointly from complete cases for both variables. Random hot-deck imputation succeeds in
preserving the marginal distributions of x and y. Therefore,BpqI(p̂k•,I) ' 0 andBpqI(p̂•l,I) ' 0 for
any characteristics k and l. Although this imputation procedure generates less bias than marginal
random hot-deck imputation, there generally remains some bias when estimating the joint propor-
tions, since

BpqI(p̂kl,I) ' −N−1
G∑

g=1

N g(φg
rm + φg

mr)(p
g
kl − p

g
k•p

g
•l). (2.6)

The proof of (2.6) is given in Appendix A. The asymptotic bias vanishes if φg
rm = φg

mr = 0 for any
g, which means that items x are y may not be missing separately, or if both x and y are unrelated
within imputation classes, in which case pgkl = pgk•p

g
•l.

3 Proposed Imputation Procedures

To account for the existing relationship between variables, we propose two imputation procedures,
where the distribution of x is estimated conditionally on y if x only is missing, and where the
distribution of y is estimated conditionally on x if y only is missing. For any unit i ∈ U g, we note

p̂gk|l,cc =

∑
i∈sgrr wi1(xi = k)1(yi = l)∑

i∈sgrr wi1(yi = l)

the estimated probability that xi = k when yi = l, and

p̂gl|k,cc =

∑
i∈sgrr wi1(xi = k)1(yi = l)∑

i∈sgrr wi1(xi = k)

the estimated probability that yi = l when xi = k.

As pointed out by Chauvet et al. (2011) and Chauvet and Haziza (2012), imputing missing values
may be performed by sampling within populations of cells, separately for each of the sub-samples
sgmr, s

g
rm and sgmm.

(i) To handle units in sgmr, we create a population of cells U g∗
mr of size ng

mr ×K. Each cell (i, k)
is assigned the probability of selection p̂gk|yi,cc. A random sample sg∗mr of size ng

mr is selected
from U g∗

mr, and missing xi is imputed by x∗i = k if the cell (i, k) is selected.

(ii) To handle units in sgrm, we create a population of cells U g∗
rm of size ng

rm × L. Each cell (i, l)
is assigned the probability of selection p̂gl|xi,cc

. A random sample sg∗rm of size ng
rm is selected

from U g∗
rm, and missing yi is imputed by y∗i = l if the cell (i, l) is selected.

(iii) To handle units in sgmm, we create a population of cells U g∗
mm of size ng

mm× (KL). Each cell
(i, q′) is assigned the probability of selection p̂gkq′ lq′ ,cc. A random sample sg∗mm of size ng

mm is
selected from U g∗

mm, and missing (xi, yi) is imputed by (x∗i , y
∗
i ) = (kq, lq) if the cell (i, q) is

selected.
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In the populations U g∗
mr, U

g∗
rm and U g∗

mm, each row stands for a non-respondent, and each column
for a possible imputed value. We impose that

C1: the samples sg∗mr, s
g∗
rm and sg∗mm are drawn so that exactly one cell per row is selected.

The constraint C1 is required since exactly one imputed value must be selected for each non-
respondent. Imposing only the constraint C1 results in the joint random hot-deck imputation pro-
cedure which may be alternatively described as follows:

(i) for i ∈ sgmr, missing xi is imputed by x∗i = k with probability p̂gk|yi,cc,

(ii) for i ∈ sgrm, missing yi is imputed by y∗i = l with probability p̂gl|xi,cc
,

(iii) for i ∈ sgmm, missing (xi, yi) is imputed by (x∗i , y
∗
i ) = (k, l) with probability p̂gkl,cc.

It is shown in Appendix B thatBpqI(p̂�,I) ' 0 under this imputation procedure, for � ∈ {k•, •l, kl}
and any characteristics k and l. Guidelines are given in Appendix C to extend the joint random
hot-deck imputation procedure to the case of more than two missing items. A drawback of the
proposed procedure is that it suffers from an additional variability, called the imputation variance,
due to the random selection of donors. To eliminate the imputation variance, we further impose
that

C2: the samples sg∗mr, s
g∗
rm and sg∗mm are drawn so that the following balancing equations are satis-

fied: ∑
(i,k)∈sg∗mr

(
p̂gk|yi,cc

)−1
tik =

∑
(i,k)∈Ug∗

mr

tik (3.1)

with tik = {(tik)1, . . . , (tik)KL}> and (tik)q = wi p̂
g
k|yi,cc 1(k = kq) 1(yi = lq) for any

q = 1, . . . , KL, where kq and lq are the two integers such that q = kq × L+ (lq + 1);∑
(i,l)∈sg∗rm

(
p̂gl|xi,cc

)−1
til =

∑
(i,l)∈Ug∗

rm

til, (3.2)

with til = {(til)1, . . . , (til)KL}> and (til)q = wi p̂
g
l|xi,cc

1(xi = kq) 1(l = lq);∑
(i,q)∈sg∗mm

(
p̂gkqlq ,cc

)−1
tiq =

∑
(i,q)∈Ug∗

mm

tiq. (3.3)

with tiq′ = {(tiq′)1, . . . , (tiq′)KL}> and (tiq′)q = wi p̂
g
kq′ lq′ ,cc

1(kq′ = kq) 1(lq′ = lq).

If the constraint C2 is exactly satisfied, we prove in Appendix D that p̂�,I − p̃�,I = 0 for � ∈
{k•, •l, kl} and any characteristics k and l. As a result, the imputation error in (2.3) is equal to zero
and the imputation variance vanishes. If both constraints C1 and C2 are imposed in the selection
of cells, we obtain the balanced joint random hot-deck imputation procedure. The constraints C1
and C2 may be satisfied by selecting the samples sg∗mr, s

g∗
rm and sg∗mm by means of the cube method

originally developed in the context of balanced sampling; see Deville and Tillé (2004) and Chauvet
et al. (2011). The extension of the above procedure to the case of three categorical procedures is
presented in Appendix C.
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4 Alternative Estimators

We now present some alternative estimation procedures for pk•, p•l and pkl. In Section 7, these
procedures are compared empirically to the methods described in Sections 2 and 3 in terms of bias
and relative efficiency. We start by the complete case (CC) estimators

p̂k•,cc = N̂−1rr

G∑
g=1

N̂ g
rr p̂

g
k•,cc with p̂gk•,cc = (N̂ g

rr)
−1
∑
i∈sgrr

wi1(xi = k),

p̂•l,cc = N̂−1rr

G∑
g=1

N̂ g
rr p̂

g
•l,cc with p̂g•l,cc = (N̂ g

rr)
−1
∑
i∈sgrr

wi1(yi = l), (4.1)

p̂kl,cc = N̂−1rr

G∑
g=1

N̂ g
rr p̂

g
kl,cc with p̂gkl,cc = (N̂ g

rr)
−1
∑
i∈sgrr

wi1(xi = k)1(yi = l),

which are based on the responding units to both x and y, where N̂rr =
∑G

g=1 N̂
g
rr. The bias of CC

estimators can be approximated by

Bpq(p̂k•,cc) '
∑G

g=1Ng{φg
rr − φ̄rr}{pgk• − pk•}∑G
g=1Ngφ

g
rr

,

Bpq(p̂•l,cc) '
∑G

g=1Ng{φg
rr − φ̄rr}{pg•l − p•l}∑G
g=1Ngφ

g
rr

, (4.2)

Bpq(p̂kl,cc) '
∑G

g=1Ng{φg
rr − φ̄rr}{pgkl − pkl}∑G
g=1Ngφ

g
rr

,

where Bpq(·) denotes the bias under both the sampling design and the non-response model, and
φ̄rr = N−1

∑G
g=1Ngφ

g
rr. From (4.2), the CC estimators are biased if there is an association be-

tween the probability of responding to both variables and the proportion we wish to estimate.

The bias of the CC estimators can be removed by accounting for class information. This leads to
the adjusted complete case (ACC) estimators

p̂k•,acc = N−1
G∑

g=1

N̂ g p̂gk•,cc,

p̂•l,acc = N−1
G∑

g=1

N̂ g p̂g•l,cc, (4.3)

p̂kl,acc = N−1
G∑

g=1

N̂ g p̂gkl,cc.

It can be shown that Bpq(p̂�,acc) ' 0 for any � ∈ {k•, •l, kl}. The ACC estimators may be viewed
as propensity score adjusted estimators, where the response probability of a unit in a given im-
putation class is estimated by the response rate to both items within the same class. However,
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implementing ACC estimators in order to obtain a complete imputed data file will necessarily lead
to ”impossible values”. For example, in the case of a binary variable (with possible values 0 and
1), the imputed values will never be equal to either 0 or 1 but will lie in the interval (0, 1), which
is a drawback from a micro-data point of view. In contrast, the imputation procedures described
in Sections 3 and 4 use the values of donors to replace the missing values, which eliminates the
problem of impossible values.

Another set of estimators are based on available cases, which leads to the available case (AC)
estimators

p̂k•,ac = N̂−1r•

G∑
g=1

N̂ g
r• p̂

g
k•,ac with p̂gk•,ac = (N̂ g

r•)
−1
∑
i∈sgr•

wi1(xi = k),

p̂•l,ac = N̂−1•r

G∑
g=1

N̂ g
•r p̂

g
•l,ac with p̂g•l,ac = (N̂ g

•r)
−1
∑
i∈sg•r

wi1(yi = l), (4.4)

p̂kl,ac = p̂kl,cc,

where N̂r• =
∑G

g=1 N̂
g
r•, and N̂•r is defined similarly. The bias of AC estimators can be approxi-

mated by

Bpq(p̂k•,ac) '
∑G

g=1Ng{φg
r• − φ̄r•}{pgk• − pk•}∑G
g=1Ngφ

g
r•

,

Bpq(p̂•l,ac) '
∑G

g=1Ng{φg
•r − φ̄•r}{p

g
•l − p•l}∑G

g=1Ngφ
g
•r

, (4.5)

Bpq(p̂kl,ac) '
∑G

g=1Ng{φg
rr − φ̄rr}{pgkl − pkl}∑G
g=1Ngφ

g
rr

,

where φg
r• = φg

rr + φg
rm and φ̄r• = N−1

∑G
g=1Ngφ

g
r•; φ

g
•r and φ̄•r are defined similarly. An AC

estimator is thus biased if there exists an association between the probability of responding to the
required variables and the proportion we wish to estimate.

The bias can be removed by accounting for class information, which leads to the adjusted available
case (AAC) estimators

p̂k•,aac = N−1
G∑

g=1

N̂ g p̂gk•,ac,

p̂•l,aac = N−1
G∑

g=1

N̂ g p̂g•l,ac, (4.6)

p̂kl,aac = N−1
G∑

g=1

N̂ g p̂gkl,ac.
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It can be shown that Bpq(p̂�,aac) ' 0 for any � ∈ {k•, •l, kl}. As for the ACC estimators, the AAC
estimators can be viewed as propensity score adjusted estimators, where the response probability
of a unit within an imputation class is estimated by the response rate based on available respondents
within the same class. Also, as for the ACC estimators, the AAC estimators will necessarily lead
to impossible values.

5 Variance Estimation under the Balanced Procedure

In this section, we turn our attention to estimating the variance of the imputed estimators under
the proposed balanced imputation procedure described in Section 3. It is well known that treating
the imputed values as if they were observed leads to serious underestimation of the variance of
imputed estimators if the proportion of missing data is appreciable and to poor confidence inter-
vals. Several variance estimation methods accounting for nonresponse and imputation have been
proposed in the literature; see Haziza (2009) for a review. In this paper, we focus on the boot-
strap method, which was studied by Shao and Sitter (1996). The rationale behind the Shao-Sitter
method is to select, using any complete data bootstrap method, a bootstrap sample consisting of
original or rescaled imputed data and their corresponding original response statuses. The bootstrap
data with a missing status are then reimputed using the same imputation method that was used in
the original sample. The proposed balanced joint random hot-deck imputation procedure entails
the application of the procedure within each bootstrap sample, which may be highly computer
intensive. A simplified bootstrap method can be used by noting that the imputation variance is
virtually eliminated under the proposed balanced imputation procedure. It consists of reimput-
ing the deterministic version of the balanced joint random hot-deck imputation procedure within
each bootstrap sample, which is equivalent to re-calculating p̃�,I ≡ EI (p̂�,I) within each bootstrap
sample, � ∈ {k•, •l, kl}. After some relatively straightforward algebra, we obtain

p̃k•,I ' N−1
G∑

g=1

[
N̂ g

r•p̂
g
k•,ac + N̂ g

mrp̂
g
k•,mr + N̂ g

mmp̂
g
k•,cc

]
,

p̃•l,I ' N−1
G∑

g=1

[
N̂ g
•rp̂

g
•l,ac + N̂ g

rmp̂
g
•l,rm + N̂ g

mmp̂
g
•l,cc

]
, (5.1)

p̃kl,I ' N−1
G∑

g=1

[
(N̂ g

rr + N̂ g
mm)p̂gkl,cc + N̂ g

mrp̂
g
kl,mr + N̂ g

rmp̂
g
kl,rm

]
,

where p̂gk•,ac and p̂g•l,ac are given in (4.4), p̂gk•,cc, p̂
g
•l,cc and p̂gkl,cc are given in (4.1) and

p̂gk•,mr =

∑
i∈sgmr

wi

∑L
l=1 1(yi = l)p̂gk|l,cc∑
i∈sgmr

wi

,

p̂g•l,rm =

∑
i∈sgrm wi

∑K
k=1 1(xi = k)p̂gl|k,cc∑
i∈sgrm wi

,

p̂gkl,mr =

∑
i∈sgmr

wi1(yi = l)p̂gk|l,cc∑
i∈sgmr

wi

,

p̂gkl,rm =

∑
i∈sgrm wi1(xi = k)p̂gl|k,cc∑

i∈sgrm wi

.
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As an illustration, we use the bootstrap weight method of Rao, Wu and Yue (1992) in the special
case of simple random sampling without replacement. The extension to stratified simple random
sampling without replacement is straightforward. The bootstrap weight procedure proceeds as
follows:

(1) Let n′ be the bootstrap sample size, which may be different from n.

(2) Draw a simple random sample with replacement s∗ of size n′ from s. Let m∗i be the number
of times unit i is selected in s∗. We have n′ =

∑
i∈sm

∗
i . For unit i ∈ s, define the bootstrap

weight as

w∗i = wi

{
1 +
√
λ

(
nm∗i
n′
− 1

)}
with λ =

n′
(
1− n

N

)
n− 1

.

Compute p̃∗�,I from (5.1) by replacing wi with w∗i .

(3) Repeat Step 2 a large number of times, C, to get with-replacement samples s∗(1), . . . , s∗(C).
For each sample s∗(c), c = 1, . . . , C, compute p̃∗(c)�,I like in Step 2.

(4) Estimate the variance of p̃�,I by

V̂1C =
1

C − 1

C∑
c=1

(
p̃
∗(c)
�,I −

1

C

C∑
d=1

p̃
∗(d)
�,I

)2

. (5.2)

The reader is referred to Chauvet (2007, 2015) for a review of bootstrap methods in survey sam-
pling, and to Antal and Tillé (2011) and Beaumont and Patak (2012) for bootstrap weight methods
in the context of unequal probability sampling designs. If the sampling fraction n/N is negligi-
ble, the bootstrap variance estimators (5.2) are consistent for the true variance; see Haziza (2009)
and Mashreghi et al. (2014) for a discussion on the consistency of the method of Shao and Sit-
ter (1996). Variance estimation for non-negligible sampling fractions in the context of bivariate
parameters requires further investigations.

6 Simulation Study

We conducted two simulation studies to test the performance of the point and variance esti-
mation procedures described in Sections 2-5. In the first study, we compared the performance of
several point estimation procedures in terms of relative bias and relative efficiency. In the second,
we tested the performance of the bootstrap variance estimator described in Section 5.

6.1 Performance of the Point Estimators

We generated a finite population of size N = 20, 000 consisting of two binary variables x and
y so that k ∈ {0, 1} and l ∈ {0, 1}. The population consisted of five classes, each of size 4, 000.
We were interested in estimating the marginal first moments p1• and p•1, the joint proportion p11
as well as the population odd-ratio

OR =
p11 p00

p10 p01

. (6.1)



134 HÉLÈNE CHAPUT ET AL. [Vol. 16, No. 1

From the population, we selected B = 10, 000 samples of size n = 2, 000 according to simple
random sampling without replacement. In each selected sample, non-response to x and y was
generated according to a non-response mechanism described in Table 1, along with the population
characteristics. The characteristics of the population were chosen so as to obtain a positive asso-
ciation between φg

rr and pg1•, between φg
rr and pg•1, and between φg

rr and pg11. The CC estimators
are therefore expected to be positively biased; see (4.2). Also, the characteristics of the population
were chosen so as to obtain a positive association between φg

r• and pg1•, and between φg
•r and pg•1.

The AC estimators are therefore expected to be positively biased; see (4.5).

Table 1: Characteristics of the population and mechanism used to generate nonresponse
Class p1• p•1 p11 OR φrr φrm φmr φmm

1 0.50 0.50 0.20 0.44 0.10 0.20 0.20 0.50
2 0.55 0.55 0.30 0.96 0.20 0.20 0.20 0.40
3 0.60 0.60 0.40 2.00 0.30 0.25 0.25 0.20
4 0.65 0.65 0.50 4.44 0.40 0.20 0.20 0.20
5 0.70 0.70 0.60 12.00 0.50 0.20 0.20 0.10

In each sample, we computed seven estimators for each of the parameters of interest pk•, p•l, p11
and OR: (i) the CC estimators given in (4.1); (ii) the ACC estimators given in (4.3); (iii) the AC
estimators given in (4.4); (iv) the AAC estimators given in (4.6); (v) the imputed estimators given
by (2.2) based on the random hot-deck imputation (RHDI) procedure described in Section 2; (vi)
the imputed estimators given by (2.2) based on the joint random hot-deck imputation (JHDI) pro-
cedure described in Section 3; (vii) the imputed estimators given by (2.2) based on the balanced
joint random hot-deck imputation (BJRHDI) procedure described in Section 3. In each case, an
estimator ÔRI of the OR was obtained by replacing each unknown parameter in (6.1) by its corre-
sponding imputed estimator. Using a personal laptop and the IML procedure of the SAS software,
it took an average time of 0.13 seconds to select a sample and to compute the associated estimators.

As a measure of bias of a point estimator θ̂ of a parameter θ, we used the Monte Carlo Percent
Relative Bias (RB) given by

RB(θ̂) =
EMC(θ̂)− θ

θ
× 100, (6.2)

whereEMC(θ̂) = B−1
∑B

b=1 θ̂
(b) and θ̂(b) denotes the estimator θ̂ in the b-th sample, b = 1, . . . , 10 000.

When the true value of the parameter θ is close to zero, the relative bias may not be an appropriate
measure. This is not problematic in our simulation set-up as the values of p1•, p•1, p11 and OR
were bounded away from 0 (see Table 1). As a measure of Relative Efficiency (RE), we used

RE =
MSEMC(θ̂(aac))

MSEMC(θ̂(·))
× 100, (6.3)

whereMSEMC(θ̂) is the Monte Carlo mean square error of θ̂ and θ̂aac denote the adjusted available-
case estimator.
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Table 2: Monte-Carlo percent relative bias and relative efficiency (between brackets) of several
estimators

Estimator p1• p•1 p11 OR
CC 5.6 (15) 5.5 (17) 16.7 (10) 71.2 (28)

ACC 0.0 (46) 0.0 (44) 0.0 (100) 35.6 (100)
AC 3.3 (41) 3.3 (42) 16.7 (10) 71.2 (28)

AAC 0.0 (100) 0.0 (100) 0.0 (100) 35.6 (100)
RHDI 0.0 (68) 0.0 (68) -3.7 (89) -21.8 (278)
JHDI 0.0 (60) 0.0 (59) 0.0 (115) 2.5 (329)

BJRHDI 0.0 (70) 0.0 (67) 0.0 (131) 2.3 (377)

Table 2 shows the Monte Carlo percent Relative Bias (RB) and percent Relative Efficiency (RE)
of the seven estimators of p1•, p•1, p11 and OR. The CC estimators and the AC estimators showed
positive bias for p1•, p•1 and p11, as expected. As a result, the corresponding estimators of OR were
strongly biased with a value of RB equal to 71.2%. The ACC estimator and the AAC estimator,
which account for class information, showed virtually no bias for p1•, p•1 and p11, but were signif-
icantly biased for OR with a value of RB equal to 35.6%. Turning to the imputed estimators, we
note that the imputed estimators of the marginal proportions showed no bias, as expected. How-
ever, under RHDI, both the imputed estimator of p11 and the estimator of OR were biased with
values of RB equal to −3.7% and −21.6%, respectively. Also, the biases were negative clearly
illustrating the problem of attenuation of relationships. On the other hand, both JHDI and BJRHDI
led to negligible bias, showing that both procedures succeeded in preserving the relationship be-
tween variables.

We now turn to the relative efficiency. We first consider the marginal first moments. We note
that the CC and ACC estimators were inefficient, which can be explained by the fact that they
tend to discard a lot of information. The imputed estimators under both RHDI and JHDI were
less efficient than the corresponding AAC estimator with values of RE ranging from 59% to 68%.
The efficiency loss arises from the random selection of donors in the random hot-deck imputation
procedures. The imputed estimators under BJRHDI were more efficient than the corresponding
estimators obtained under RHDI and JHDI, illustrating the reduction of the imputation variance.
In regards to the joint proportion p11, the imputed estimator under RHDI was less efficient than the
AAC estimators, while the imputed estimators under both JHDI and BJRHDI were more efficient.
The imputed estimator of OR under all three imputation methods was considerably more efficient
than the AAC estimator.

6.2 Performance of the Variance Estimators

We conducted a second simulation study on the same population in order to assess the per-
formance of the bootstrap procedure described in Section 5. We were interested in estimating the
variance of the marginal first moments p1• and p•1, the joint proportion p11 as well as the popula-
tion odd-ratio OR.
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From each population, we selected B = 10, 000 samples of size n = 1, 000 according to simple
random sampling without replacement. In each selected sample, non-response to x and y was
generated according to the non-response mechanism described in Table 1. We were interested
in estimating the variance of the imputed estimators of p1•, p•1, p11 and OR under the proposed
balanced joint random hot-deck imputation procedure. In each sample (containing respondents
and nonrespondents), we selected C = 2, 000 bootstrap samples according to the bootstrap weight
procedure of Section 5. To measure the bias of the Bootstrap variance estimator, we used the
Monte Carlo percent relative bias given by (6.2). The true variance was replaced by a Monte Carlo
approximation, obtained through an independent run of 50, 000 simulations. Also, we computed
confidence intervals by means of the percentile method. For example, in the case of ÔRI , we
computed the C bootstrap versions of the odd-ratio, ÕR

∗(c)
I , c = 1, . . . , C. An (1−2α) confidence

interval is then given by
[
ÕR

∗(L)
I , ÕR

∗(U)

I

]
with L = α C and U = (1 − α) C. We computed the

coverage error rates of the percentile bootstrap confidence intervals, with nominal error rates of
2.5% and 5% in each tail. Using a personal laptop and the IML procedure of the SAS software,
it took an average time of 22 seconds to select a sample along withC = 2, 000 bootstrap resamples.

Table 3 shows the Monte Carlo percent relative bias (RB) of the Bootstrap variance estimator and
the error rates. The Bootstrap variance estimator performed well for p̂1•,I , p̂•1,I and p̂11,I , with
an absolute relative bias less than 5%. The Bootstrap variance estimator was positively biased for
ÔRI . This bias is partly due to the skewed distribution of the estimated odd-ratios, due to the
multiplicative structure of the parameter. The error rates were close to the nominal rates in all the
cases.

Table 3: Monte Carlo percent RB (in %) and error rates of the Bootstrap variance estimator

Nominal error rate
RB Lower limit Upper limit

2.5 5.0 2.5 5.0
p̂1•,I -3.9 2.9 5.2 3.4 5.7
p̂•1,I -5.0 3.4 5.9 3.9 6.4
p̂11,I -3.9 2.5 5.6 3.4 6.1
ORI 16.2 3.2 5.2 3.3 5.8

7 Concluding Remarks

In this paper, we considered the problem of preserving the relationship between categorical vari-
ables when imputation was used to compensate for the missing values. We proposed a simple
joint imputation procedure that succeeds in preserving the relationship between two categorical
variables, unlike random hot-deck imputation. We also proposed a fully efficient version of the
proposed joint imputation procedure. Simulation results showed the good performance of both
methods in terms of bias. Also, the balanced joint random hot-deck imputation procedure was
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found to be significantly more efficient than the joint random hot-deck imputation procedure.

The properties of the proposed joint imputation procedures were derived under the assumption
that the data are MCAR within the imputation classes, which is essentially equivalent to the MAR
assumption. An alternative imputation procedure satisfying the MAR assumption consists of using
the auxiliary information to obtain a vector of estimated response probabilities. That is, the vector
of probabilities φi ≡ (φirr, φirm, φimr, φimm)> may be modeled by using a set of auxiliary variables
ui available for the whole sample. For example, we may assume that this vector of probabilities
may be parametrically modeled as

φi = f(ui; β),

with f(·) some known function and β a vector of unknown parameters. The estimated probabilities
φ̂i = f(ui; β̂) resulting from replacing β with some estimator β̂ (for example, obtained through
polytomous logistic regression) can then be used to define imputation weights which are used for
selecting imputed values to fill-in missing values (see Haziza and Rao, 2006; Chauvet et al., 2016).
The theoretical properties of such methods requires further investigations.

An alternative to balanced imputation is fractional imputation, where parameter estimation is per-
formed through the EM algorithm. In the context of fractional imputation, imputed values are
assigned a fractional weight; see Kim and Shao (2013, pp. 88) for a discussion of fractional impu-
tation for estimating joint probabilities. An empirical comparison between fractional imputation
and the proposed balanced procedure will be presented elsewhere.

In Section 5, we considered the case of negligible sampling fractions and gave an illustration
of the use of the Rao, Wu and Yue (1992) bootstrap method for variance estimation. Though
numerous bootstrap methods have been proposed in the literature, their drawback is that they are
not usually suitable for general sampling designs, in the sense that a particular sampling design
usually requires a tailor made resampling scheme. Estimating the variance under the proposed
imputation methods with non-negligible sampling fractions and with a general sampling design
is a challenging problem. The derivation of linearization variance estimators for the proposed
balanced joint random hot-deck imputation procedure is currently under investigation.
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Chauvet, G. (2007). Méthodes de Bootstrap en population finie. Ph.D. dissertation, University
of Rennes 2.

Chauvet, G. (2015). Coupling methods for multistage sampling. Annals of Statistics, 43, 2484–
2506.

Chauvet, G., Deville, J.C., and Haziza, D. (2011). On Balanced Random Imputation in Surveys.
Biometrika, 98, 459–471.

Chauvet, G., and Haziza, D. (2012). Fully efficient estimation of coefficients of correlation in the
presence of imputed data. The Canadian Journal of Statistics, 40, 124–149.

Deville, J.C. (1999). Variance estimation for complex statistics and estimators: linearization and
residual techniques. Survey Methodology, 25, 193–203.
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A Proof of (2.6)

From the definition of p̂k•,I , we have

EI (p̂k•,I) = N−1
G∑

g=1

∑
i∈sgr•

wi1(xi = k)

+ N−1
G∑

g=1

∑
i∈sgmr

wip̂
g
k•,ac +N−1

G∑
g=1

∑
i∈sgmm

wi

L−1∑
l=0

p̂gkl,cc.

Since Eq(p̂
g
k•,ac) ' p̂gk• and Eq(

∑L−1
l=0 p̂

g
kl,cc) ' p̂gk•, we obtain

EqI (p̂k•,I) ' N−1
G∑

g=1

∑
i∈sg

wi(φ
g
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g
mr +N−1

G∑
g=1

p̂gk•
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g
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= N−1
G∑
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(φg
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mm)
∑
i∈sg

wi1(xi = k)

= N−1
∑
i∈s

wi1(xi = k),

so that BqI (p̂k•,I) ' 0. The proof for p̂•l,I is similar. We now turn to p̂kl,I . From definition, we
have

EI(p̂kl,I) = N−1
G∑

g=1

∑
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wi1(xi = k)1(yi = l) +N−1
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g=1

∑
i∈sgrm

wi1(xi = k)p̂g•l,ac

+ N−1
G∑

g=1

∑
i∈sgmr

wip̂
g
k•,ac1(yi = l) +N−1

G∑
g=1

∑
i∈sgmm

wip̂
g
kl,cc

= N−1
G∑

g=1

∑
i∈sgrr

wi1(xi = k)1(yi = l) +N−1
G∑

g=1

p̂g•l,ac
∑
i∈sgrm

wi1(xi = k)

+ N−1
G∑

g=1

p̂gk•,ac
∑
i∈sgmr

wi1(yi = l) +N−1
G∑

g=1

p̂gkl,cc
∑

i∈sgmm

wi.
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Since Eq(p̂
g
•l,ac) ' p̂g•l, Eq(p̂

g
k•,ac) ' p̂gk• and Eq(p̂

g
kl,cc) ' p̂gkl, we obtain
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This leads to

EqI(p̂kl,I − p̂kl) = N−1
G∑
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(N̂ g)−1(φg
rm + φg

mr)
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mr)
∑
i∈sg
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and

EpqI(p̂kl,I − p̂kl) ' −N−1
G∑
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(φg
rm + φg

mr)
∑
i∈Ug

{1(xi = k)− pgk•}{1(yi = l)− pg•l},

which leads to (2.6).

B Non-response Bias for the Imputed Estimators under the Proposed Procedures

We first consider p̂k•,I . From definition, we have

EI (p̂k•,I) = N−1
G∑

g=1

∑
i∈sgr•

wi1(xi = k) (B.1)
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p̂gkl,cc.
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p̂gkl
p̂g•l

and Eq(
∑L−1

l=0 p̂
g
kl,cc) ' p̂gk•, we obtain

EqI (p̂k•,I) ' N−1
G∑

g=1

∑
i∈sg

wi(φ
g
rr + φg

rm)1(xi = k)

+ N−1
G∑

g=1

∑
i∈sg

wiφ
g
mr

L−1∑
l=0

1(yi = l)
p̂gkl
p̂g•l

+N−1
G∑

g=1

p̂gk•
∑
i∈sg

wiφ
g
mm

= N−1
∑
i∈s

wi1(xi = k) = p̂k•,

so that BpqI (p̂k•,I) ' 0. The proof for p̂•l,I is similar. We now turn to p̂kl,I . Using similar
arguments, we obtain

EI(p̂kl,I) = N−1
G∑

g=1

∑
i∈sgrr

wi1(xi = k)1(yi = l) +N−1
G∑

g=1

∑
i∈sgrm

wi1(xi = k)p̂gl|k,cc

+ N−1
G∑

g=1

∑
i∈sgmr

wi1(yi = l)p̂gk|l,cc +N−1
G∑

g=1

∑
i∈sgmm

wip̂
g
kl,cc (B.2)

and

EqI(p̂kl,I) ' N−1
G∑

g=1

φg
rr

∑
i∈sg

wi1(xi = k)1(yi = l)) +N−1
G∑

g=1

φg
rm

∑
i∈sg

wi1(xi = k)
p̂gkl
p̂gk•

+ N−1
G∑

g=1

φg
mr

∑
i∈sg

wi1(yi = l)
p̂gkl
p̂g•l

+N−1
G∑

g=1

φg
mm

∑
i∈sg

wip̂
g
kl

= N−1
∑
i∈s

wi1(xi = k)1(yi = l) = p̂kl,

so that BpqI (p̂kl,I) ' 0.

C Extension of the Proposed Imputation Procedures

In this section, we briefly describe the set-up and extension of the imputation procedures to
the case of more than two missing items. To avoid intricate notations, we focus on the case of 3
missing items and describe the extension of the joint random hot-deck imputation only. In addition
to x and y, let z denote a study variable with Q possible characteristics zi = 0, . . . , Q− 1 for unit
i. We want to impute jointly the three variables x, y and z. We assume that the population U is
partitioned intoG imputation classes U1, . . . , UG and note sg◦ the subset of units in sg = S∩U g with
pattern ◦ ∈ {rrr,mrr, rmr, rrm,mmr,mrm, rmm,mmm}, where the first letter in ◦ refers to
the status of x (respondent or missing), the second to the status of y and the third to the status of z.
We assume that the data are MCAR within imputation classes, and we note P (i ∈ sg�|i ∈ s) = φg

�.
The joint random imputation procedure described in Section 3 can be extended by modeling

the distribution of each variable conditionally on the non-missing items known for this variable.
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For any unit i ∈ U g; we note

p̂gk|lq,cc =

∑
i∈sgrrr wi1(xi = k)1(yi = l)1(zi = q)∑

i∈sgrrr wi1(yi = l)1(zi = q)
,

p̂gl|kq,cc =

∑
i∈sgrrr wi1(xi = k)1(yi = l)1(zi = q)∑

i∈sgrrr wi1(xi = k)1(zi = q)
,

p̂gq|kl,cc =

∑
i∈sgrrr wi1(xi = k)1(yi = l)1(zi = q)∑

i∈sgrrr wi1(xi = k)1(yi = l)
,

for the estimated conditional probabilities when two items are available; we note

p̂gkl|q,cc =

∑
i∈sgrrr wi1(xi = k)1(yi = l)1(zi = q)∑

i∈sgrrr wi1(zi = q)
,

p̂gkq|l,cc =

∑
i∈sgrrr wi1(xi = k)1(yi = l)1(zi = q)∑

i∈sgrrr wi1(yi = l)
,

p̂glq|k,cc =

∑
i∈sgrrr wi1(xi = k)1(yi = l)1(zi = q)∑

i∈sgrrr wi1(xi = k)
,

for the estimated conditional probabilities when one item is available; finally, we note

p̂gklq,cc =

∑
i∈sgrrr wi1(xi = k)1(yi = l)1(zi = q)∑

i∈sgrrr wi

.

The joint random imputation procedure is as follows:

(i) for i ∈ sgmrr, missing xi is imputed by x∗i = k with probability p̂gk|yizi,cc;

(ii) for i ∈ sgrmr, missing yi is imputed by y∗i = l with probability p̂gl|xizi,cc
;

(iii) for i ∈ sgrrm, missing zi is imputed by z∗i = q with probability p̂gq|xiyi,cc
;

(iv) for i ∈ sgmmr, missing (xi, yi) is imputed by (x∗i , y
∗
i ) = (k, l) with probability p̂gkl|zi,cc;

(v) for i ∈ sgmrm, missing (xi, zi) is imputed by (x∗i , z
∗
i ) = (k, q) with probability p̂gkq|yi,cc;

(vi) for i ∈ sgrmm, missing (yi, zi) is imputed by (y∗i , z
∗
i ) = (l, q) with probability p̂glq|xi,cc

;

(vii) for i ∈ sgmmm, missing (xi, yi, zi) is imputed by (x∗i , y
∗
i , z
∗
i ) = (k, l, q) with probability

p̂gklq,cc.

D Properties of the Balanced Joint Random Hot-deck Imputation Procedure

In this Section, we prove that p̂�,I = p̃�,I for � ∈ {k′•, •l′, k′l′} and any characteristics k′ and l′.
We first consider p̂k′•,I for k′ = 0, . . . , K−1. The case of p̂•l′,I for l′ = 0, . . . , L−1 may be proved
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similarly. Using (B.1), we obtain after some algebra that a sufficient condition for p̂k′•,I = p̃k′•,I is
that for any g = 1, . . . , G:∑

i∈sgmr

wi1(x∗i = k′) =
∑
i∈sgmr

wip̂
g
k′|yi,cc, (D.1)

∑
i∈sgmm

wi1(x∗i = k′) =
∑

i∈sgmm

wi

(
L−1∑
l′=0

p̂gk′l′,cc

)
. (D.2)

In (D.1), the first term may be rewritten as

∑
i∈sgmr

wi1(x∗i = k′) =
∑

(i,k)∈sg∗mr

wi1(k = k′)
L−1∑
l′=0

1(yi = l′)

=
∑

(i,k)∈sg∗mr

(
p̂gk|yi,cc

)−1{L−1∑
l′=0

(tik)(k′−1)L+l′

}
,

and the second term may be rewritten as

∑
i∈sgmr

wip̂
g
k′|yi,cc =

∑
i∈sgmr

K−1∑
k=0

wip̂
g
k|yi,cc1(k = k′)

L−1∑
l′=0

1(yi = l′)

=
∑

(i,k)∈Ug∗
mr

{
L−1∑
l′=0

(tik)(k′−1)L+l′

}

so that (D.1) follows from (3.1). Similarly, (D.2) follows from (3.3). We now consider p̂k′l′,I for
k′ = 0, . . . , K−1 and l′ = 0, . . . , L−1. Using (B.2), we obtain after some algebra that a sufficient
condition for p̂k′l′,I = p̃k′l′,I is that for any g = 1, . . . , G:∑

i∈sgmr

wi1(x∗i = k′)1(yi = l′) =
∑
i∈sgmr

wip̂
g
k′|l′,cc1(yi = l′), (D.3)

∑
i∈sgrm

wi1(xi = k′)1(y∗i = l′) =
∑
i∈sgrm

wip̂
g
l′|k′,cc1(xi = k′), (D.4)

∑
i∈sgmm

wi1(x∗i = k′)1(y∗i = l′) =
∑

i∈sgmm

wip̂
g
k′l′,cc. (D.5)

It is easily proved that (3.1), (3.2) and (3.3) imply (D.3), (D.4) and (D.5), respectively.


