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Abstract 
                

Present paper studies the behaviour of few clientele available in the system, when the 
system starts and derives the time dependent probabilities of a single server queueing model 
with impatient customers (“balking and reneging”), Bernoulli schedule and multiple vacations. 
“Server accepts a customer with fix probability ρ or commences a vacation of random duration 
with probability (1- ρ)”. An arriving customer may balk (do not enter) or renege pursuant to 
the negative exponential distribution. Time dependent probabilities are computed with the help 
of recurrence relations and provide us a better understanding of the behaviour of the system. 
Finally, measureable outcomes are calculated with the help of Maple software. 
 
Key words: M/M/1; Bernoulli schedule; Impatient customers; Multiple vacations; Laplace 
transform. 

1. Introduction 
 

In recent years, various authors have studied queueing models from productive point of 
view. Many real-life situations occur where clienteles are dejected by longer queue and as a 
result clienteles have to wait long to get into service upon arrival. In queues, “balking and 
reneging are common phenomena, as a consequences the customer either decides to join the 
queue or depart after joining the queue without getting service due to impatience”. Queueing 
systems with impatient units (“balking and reneging”) have engross many authors because of 
their extensive applications in many practical situations such as perishable goods in 
supermarkets, emergency room in hospitals etc. Haight (1957), Haight (1959) obtained 
probabilities for impatient customers (“balking and reneging”) respectively. Anker and 
Gafarian (1963), Anker and Gafarian (1963) calculated steady state probabilities with impatient 
clienteles for a finite and an infinite queueing model respectively. Abou-El- Ata (1991) derived 
steady state probabilities for single-server Markovian queue with state dependent arrivals and 
impatient clienteles. Seddy et al. (2009) obtained time dependent probabilities by using 
generating function technique for c-servers Markovian queueing model. Bouchentouf and 
Messabihi (2018) obtained time independent probabilities for a heterogeneous server queueing 
system with feedback. Sharma and Indra (2020) obtained time dependent probabilities for a 
two-dimensional state Markovian queueing model with reneging. 

From the past few decades, Vacations Queueing system has attracted much attention 
from numerous researchers. “Vacation: when the server finishes serving a unit and finds the 
system empty, however, it goes away for a length of time”. Cooper (1970) was the first who 
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talked about vacation model and obtained waiting time distribution for M/G/1 model by using 
Laplace Stieltjes transform. There are different kinds of vacation policies available in literature 
i.e., single vacation, multiple vacations, Bernoulli schedule, t- policy and so on. “In Multiple 
vacations policy, server keeps on taking vacations until it finds at least one customer waiting 
in the system at the instant of vacation completion”. Bacot and Dshalalow (2001) obtained time 
independent probabilities for single server bulk queueing system with multiple vacations. 
Altman and Yechailli (2006) analyzed both single and multiple vacations cases and calculated 
time independent probabilities by using PGF technique for different markovian model. Banik 
(2009) obtained time independent probabilities and queue length distribution at various epochs 
for an infinite-buffer single server queueing model. Another feature that is widely used in 
queueing models is the Bernoulli schedule. “In Bernoulli schedule the server serves the new 
customer with probability ρ or takes a vacation with probability (1–ρ)”. Keilson and Servi 
(1987) introduced the concept of Bernoulli schedule and obtained steady state probabilities for 
M/G/1 queueing model. Khedhairi and Tadj (2007) studied bulk service queueing system for 
both discrete and continuous time by using semi regenerative technique. The combined effects 
of impatience customers and multiple vacations were studied by numerous researchers such as: 
Ramaswamy and Servi (1988) calculated joint distribution for busy period of M/G/1 model. 
Madan et al. (2003) calculated steady state probabilities by using generating function technique 
for a queueing system with two parallel servers. Yue et al. (2003) derived the closed-form 
expressions for the system sizes for a queueing model with variant of multiple vacations. 
Choudhary et al. (2007) calculated steady state behaviour in terms of recursive solutions of 
batch arrival queue with two phases of heterogeneous service. Ammar (2015) obtained 
transient probabilities in terms of modified Bessel function by employing PGF technique.  
 

All aforesaid authors have worked on the concept that, there is no clienteles available in 
the system when the system starts. Thus, the main aim of the paper is to make a model that is 
more applicable in day-to-day life activities such as railway booking counters, banks, doctor 
clinics, etc. In call centre: Calls arriving to a call centre are managed by agent to answer the 
calls. Primary calls are automatically answered by machines (i.e. initially a few clienteles are 
always present). The behaviour of the call may depend on several circumstances including 
waiting time and others. Each individual call may decide to balk or wait for some time and it 
may happen that clienteles abandon their call when their patience time expires. Server after 
completing all the clienteles (calls) in the system can go for vacation and after coming back 
from vacation if there are no clienteles available (calls) in the system server can go on vacation 
again. 

 
To obtain the time dependent solution by taking together all the above mentioned 

parameters is very interesting. As transient probability obtained by recursive technique does 
not involve heavy algebraic manipulations. “The two dimensional concept helps us to 
understand the probability of exactly a- arrivals and b- services occurs over a time interval of 
length t”. Validation of the model in form of tables is also done with the previous existing 
results. Graphical analysis shows the impact of parameters on measuring outcomes. Finally an 
expected cost model is discussed. 

 

2. Assumptions and Notations 
 

i. Inter-arrival time, Service times, vacation times and reneging times are exponentially 
distributed with parameter λ, μ, w, and ξ respectively. 
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ii. On arrival a customer either decides to join the queue with probability β or balk with 
probability (1–β). 

iii. Initially there are ‘n’ customers present at time t=0 i.e. 𝑃!,#(𝑛, 0) = 1.  
iv. When a customer has just been served and other customers are present, the server 

accepts a customer with fix probability ρ or commences a vacation of random duration 
with probability (1– ρ) 

v. The system state is given by (a, b), where a is the number of arrivals and b is the number 
of departures up to time t, i.e. 

 

P(n, 0) = ∑ 𝑃!$%,%,&(𝑛, 0) = 1'
%(# 																																																												   (1) 

3. Model 
             

Define 
𝑃),%,*(𝑐, 𝑡) = The probability of exactly a arrivals, b departures and c- customers remain in the 
system by time t and the server is busy corresponding to the queue; b< a                                                                                                         
𝑃),%,&(𝑐, 𝑡) = The probability of exactly a arrivals, b departures and c- customers remain in the 
system by time t and the server is on vacation; b ≤ a                                                                                                                                                                                                                                              
𝑃),%(𝑐, 𝑡) = The probability that there are exactly a arrivals and b departures and c- customers 
remain in the system by time t; b ≤ a                                                                                                                                  
 
3.1.  Equations of the system 
 
𝑑
𝑑𝑡 𝑃),%,&

(𝑐, 𝑡) = −(𝜆𝛽 + 𝑤)𝑃),%,&(𝑐, 𝑡) + (𝜆𝛽)𝑃)+,,%,&(𝑐 − 1, 𝑡)

+ µ(1 − 𝜌)𝑃),%+,,*(𝑐 + 1, 𝑡)51 − 𝛿%,#7 
   

	0 ≤ 𝑏 < 𝑎	, 𝑐 ≥ 1																(2) 
 
  
		 -
-.
𝑃),),&(0, 𝑡) = −(𝜆𝛽)𝑃),),&(0, 𝑡) + 𝜇𝑃),)+,,*(1, 𝑡)51 − 𝛿),#7,	     	𝑎 ≥ 0																											(3) 

            
                                                                          
𝑑
𝑑𝑡 𝑃),%,*

(𝑐, 𝑡) = −(𝜆𝛽 + 𝜇 + (𝑐 − 1)𝜉)𝑃),%,*(𝑐, 𝑡) + 𝜆𝛽𝑃)+,,%,*(𝑐 − 1, 𝑡)51 − 𝛿%,)+,7
+ 		𝑤𝑃),%,&(𝑐, 𝑡) +	(𝜇𝜌 + 	𝑐𝜉)𝑃),%+,,*(𝑐 + 1, 𝑡)																						 

 
0 ≤ 𝑏 < 𝑎, 𝑐 ≥ 1																	(4) 

 
  Clearly, 
 
𝑃),%(𝑐, 𝑡) = 𝑃),%,&(𝑐, 𝑡) + 𝑃),%,*(𝑐, 𝑡)(1 − 𝛿(),%)) 𝑎 ≥ 𝑏 ≥ 0																   (5)      
 

3.2. Findings of equations 
 

Solving above equation recursively with the help of Laplace transform: 
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	PDa,b,V(0,s)=
1

(s+λβ)
δ(n,0)P0,0,V(0,	0),		𝑎 = 0 = 𝑏				                                              	(6) 

											 
𝑃G),#,&(𝑎, 𝑠) = (𝜆𝛽))𝐻D),,,#

9:$;,9:,#(𝑠)𝛿(!,#)	𝑃#,#,&(0,0) +
∑ (𝜆𝛽))+-𝐻D)+-$,,#,#

9:$;,#,# (𝑠)𝛿(!,-)𝑃-,#,&(𝑑, 0), 𝑎 > 0		'
-(, 	    

(7) 
 

𝑃G),#,*(𝑎, 𝑠) = 	𝑤. ∑ 	 (9:)!"#

∏ {>$9:$?$()+-+,).A}!"#
$%&

		𝑃GC,#,&(𝑓, 𝑠),'
C(, 						𝑎	 > 	0																																			(8)   

𝑃G),%,&(𝑐, 𝑠) = ∑ (𝜆𝛽))+D+%)+%
D(# 𝜇(1 − 𝜌)(,+E((,&))	𝐻D)+%$,+D+E((,&),E((,&),#

9:$;,9:,# (𝑠)𝑃G%$D,%+,,*(𝑒 +

1, 𝑠) + (𝜆𝛽))+%𝐻D)+%,,,#
9:$;,9:,#(𝑠)	𝛿(!,#)𝑃%,%,&(0,0) +

∑ (𝜆𝛽))+- 	𝐻D)+-$,,#,#
9:$;,#,#'

-(%$, (𝑠)	𝛿(!,-+%)𝑃-,%,&(𝑑 − 𝑏, 0), 𝑎 > 𝑏 > 	0		   (9)                                                                                          

									 

𝑃G),%,*(𝑐, 𝑠) = P
(𝜆𝛽))+C . {𝜇𝜌 + (𝑓 − 𝑏). 𝜉}

∏ {𝑠 + 𝜆𝛽 + 𝜇 + (𝑎 − 𝑑 − 𝑏 − 1). 𝜉})+C
-(#

	𝑃GC,%+,,*(𝑓 − 𝑏 + 1, 𝑠)
'

C(%$,

+𝑤. P
(𝜆𝛽))+C .

∏ {𝑠 + 𝜆𝛽 + 𝜇 + (𝑎 − 𝑑 − 𝑏 − 1). 𝜉})+C
-(#

	𝑃GC,%,&(𝑓 − 𝑏, 𝑠)
'

C(%$,

,

𝑎	 > 𝑏

> 	0																																																																																																																		(10) 

𝑃G),),&(0, 𝑠) 		=
?

(>$9:)
𝑃G),)+,,*(1, 𝑠)(1 − 𝛿(),#)) +

,
(>$9:)

𝛿(!,#)𝑃),),&(0,0),	 	 	 	𝑎	 > 0					 	 	 	 	(11)																												                                                                                                                                
 

3. Substantiations 

The Laplace Transform	𝑃G).(𝑐, 𝑠)of the probability 𝑃).(𝑐, 𝑡) that exactly a unit arrives by 
the time t”: 

a) 𝑃G).(𝑠) = ∑ T(𝑃G),%,&(𝑐, 𝑠) + 𝑃G),%,*(𝑐, 𝑠)(1 − 𝛿),%)U)
%(#  

           = ∑ 𝑃G),%(𝑐, 𝑠))
%(# =	 (9:)!

(>$9:)!+,
  

              And its Inverse Laplace transform is 							𝑃).(𝑐, 𝑡) = 		
D"-./(9:.)!

)!
 

b) ∑ ∑ V𝑃G),%,&(𝑐, 𝑠) + 𝑃G(),%,*(𝑐, 𝑠)(1 − 𝛿(),%))W =
,
>

)
%(#

'
)(#  

            ∑ ∑ V𝑃),%,&(𝑐, 𝑡) + 𝑃),%,*(𝑐, 𝑡)(1 − 𝛿(),%))W = 	1)
%(#

∞
)(#   
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5. Analytical Results 

i. Pr {a arrivals in (0, t)} = D
"-/(9.)!

)!
  =  ∑ 𝑃),%(𝑐, 𝑡))

%(#  = 𝑃)	,.(𝑐, 𝑡) 

Table 1: For Exactly a customers served by time t 
 

λ µ w β ξ T a 𝑒+9. ∗ (𝜆𝑡))

𝑎!  P𝑃),%(𝑡)
)

%(#

 

1 2 1 1 1 3 1 0.149361 0.1493612051 
1 2 1 1 1 3 3 0.224042 0.2240418076 
1 2 1 1 1 3 5 0.100819 0.1008188135 
2 2 1 1 1 3 1 0.014873 0.01487251306 
2 2 1 1 1 3 3 0.089235 0.08923507838 
2 2 1 1 1 3 5 0.160623 0.1606231410 
1 2 1 1 1 4 1 0.073263 0.07326255556 
1 2 1 1 1 4 3 0.195367 0.1953668148 
1 2 1 1 1 4 5 0.156293 0.1562934518 
2 2 1 1 1 4 1 0.002684 0.002683701023 
2 2 1 1 1 4 3 0.028626 0.02862614425 
2 2 1 1 1 4 5 0.091604 0.09160366157 
2 4 1 1 1 4 5 0.091604 0.09160366160 
1 2 1 1 1 4 4 0.195367 0.1953668148 
1 2 1 1 1 3 6 0.050409 0.05040940672 
3 2 1 1 1 3 1 0.0011106 0.001110688237 
3 2 1 1 1 3 3 0.0149942 0.01499429120 
3 2 1 1 1 3 5 0.0607268 0.06072687936 

  

The last Column of Table-1 completely matches with Table-1 of Pegden and Rosenshine 
(1982). 

ii. The probability that exactly b number of customers have been served.  
 
Server is on vacation i.e.   ∑ 𝑃),%,&(𝑐, 𝑡)∞

)(%  
 
Server is busy i.e.    ∑ 𝑃),%,*(𝑐, 𝑡)'

)(%  are based on the following relationship     
               			𝑃.,%(𝑐, 𝑡) = 			∑ 𝑃),%(𝑐, 𝑡)'

)(%  where 𝑃),%(𝑐, 𝑡) is defined in equation (5)”.   
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Table 2: For exactly b customers served by time t 

λ = 1, µ = 4, w = 1, n = 0, β = 1, ξ = 1, ρ = 1, b = 0 to 6             
𝑃.%(𝑐, 𝑡) = 𝑃.%,*(𝑐, 𝑡) + 𝑃.%,&(𝑐, 𝑡) 

t = 1 t = 3  t = 5 t = 7 t = 10 
.483485 .392200 .338348 .222880 .0739809 
.333343 .293382 .232925 .136406 .0375456 
.13382 .156248 .112178 .0580149 .0132014 
.03866 .0738856 .048044 .0216532 .0040095 
.00875 .032712 .019831 .0075688 .0010965 
.00161 .013342 .007936 .0024681 .0002598 
.000252 .0047242 .002920 .0007192 .0000477 
.99992 .966494 .762184 .44971 .130142 

Table-2 Coincides with table I of Hubbard et al. (1986) 

iii. 𝑃H(𝑡) = 𝑃(𝐸𝑥𝑎𝑐𝑡𝑙𝑦	𝑁	𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑠𝑦𝑠𝑡𝑒𝑚	𝑏𝑦	𝑡𝑖𝑚𝑒	𝑡). 𝑃H(𝑡)			can be 
expressed in terms of  𝑃),%(𝑐, 𝑡) and is based on the relationship, we have 
 
																𝑃H(𝑡) = ∑ 𝑃%$H,%(𝑁, 𝑡)∞

%(#    &  𝑃H(𝑡) = 𝑃*(𝑁, 𝑡) + 𝑃&(𝑁, 𝑡)   
 

where,	𝑃*(𝑁, 𝑡) = ∑ 𝑃%$H,%,*(𝑁, 𝑡)'
%(# , 				𝑃&(𝑁, 𝑡) = ∑ 𝑃%$H,%,&(𝑁, 𝑡)'

%(#     

                

Table 3: 𝐄𝐱𝐚𝐜𝐭𝐥𝐲	𝑵	𝐜𝐮𝐬𝐭𝐨𝐦𝐞𝐫𝐬	𝐢𝐧	𝐭𝐡𝐞	𝐬𝐲𝐬𝐭𝐞𝐦 

λ = 1,	µ = 2 ,	w = 1, n = 1, ρ = 0.2, β = 0.6, ξ = 0.7, N = 0 to 6 
t = 1 t = 3 t = 5 
.245353 .367102 .362711 
.462100 .323646 .303897 
.221013 .181321 .158741 
.058932 .079292 .063808 
.010870 .028463 .020800 
.001528 .008188 .005287 
.000166 .001609 .000837 
.999963 .989623 .916082 

 

iv. The server’s utilization time, server’s vacation time i.e. the fraction of time the 
server is busy and the fraction of time server is on vacation until time t can also be 
expressed in terms of 	𝑃),%(𝑐, 𝑡) 

 
            Server’s utilization time: 𝑈(𝑡) = ∑ ∑ 𝑃),%,*(𝑐, 𝑡))

%(#
∞
)(#  
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       Server’s vacation time:𝑉(𝑡) = ∑ ∑ 𝑃),%,&(𝑐, 𝑡))
%(#

∞
)(#  

 

Table 4: Server’s utilization time and Server’s vacation time 
 

λ =1.7, µ = 2.5, w = 1.5, n = 1, ρ = 0.6, β = 0.7, ξ = 1.1 
 

PP𝑃),%,&(𝑐, 𝑡)
)

%(#

∞

)(#

 PP𝑃),%,*(𝑐, 𝑡)
)

%(#

∞

)(#

 
Total 

t = 1 0.650353 0.342156 0.992509 
t = 2 0.621177 0.285446 0.906623 
t = 3 0.513311 0.198857 0.712168 
t = 4 0.364730 0.118833 0.483563 
t = 5 0.228494 0.0633109 0.291805 

 

6. Performance Indices 
 
(a) The expected number of customers in the system E(L) is given by 

 
																																										𝐸(𝐿) = 	∑ 𝑁'

H(, 		[𝑃*(𝑁, 𝑡) + 𝑃&(𝑁, 𝑡)] 
 

(b)   The expected number of customers in the queue is given by 
 
																																					𝐸(𝐿I) = 	∑ (𝑁 − 1'

H(, 	)	[𝑃*(𝑁, 𝑡) + 𝑃&(𝑁, 𝑡)] 
 

(c)  The throughput is 

𝑇(𝑃) = 	P µ[
'

H(,

𝑃*(𝑁, 𝑡) + 𝑃&(𝑁, 𝑡)] 

 
(d)  Mean balking rate is given by 

 

																		𝐵. 𝑅. = 	P 𝜆(1 − 𝛽)
'

H(,

{𝑃*(𝑁, 𝑡) + 𝑃&(𝑁, 𝑡)} 

 

(e) Mean reneging rate is given by 

																																𝑅. 𝑅. = 	P 𝜉(𝑁 − 1)
∞

H(,

	[𝑃*(𝑁, 𝑡) + 𝑃&(𝑁, 𝑡)] 

(f) Average rate of customer loss (L.R.) is given by 
 

L.R. = B.R. + R.R. 
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7. Cost Model 

We make a expected cost function for the given system, considering cost per some unit 
of time of server for all the parameters considered above. 
 

Let 

C1 = Vacation Cost 

C2 = Busy cost 

C3 = Idle Cost. 

C4 = unit is waiting for service. 

C5 = unit joins the system and is served. 

C6 = customer renege or balks. 

Mean cost function per some unit time: 
 
C = C1*PVAC+C2*PBUSY+C3*PIDLE+C4*E(Lq)+C5*[E(L)−E(Lq)]+C6*L.R. 
 

We fix cost elements C1 = 100, C2 = 110, C3 = 120, C4 = 150, C5 = 130, C6 = 140. 
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8. Graphical Presentations 

  
Figure 1: Arrival rate on E(L) Figure 2: Arrival rate on probability 

of   server remains idle 
 

 
 

Figure 3: Arrival rate on L.R. Figure 4: Arrival rate on Cost function 

 
In Figures 1 to 4 we fix w = 1.5, n = 1, µ = 2.5, β = 0.4, ρ = 0.6, ξ = 1.1, t = 1 and vary the 
values of λ. These graphs show that the expected number of customers in the system, 
expected cost and average rate of customer loss increase as arrival rate increases but 
probability of server remains idle decreases as λ increases 

 



2022] TWO- STATE QUEUEING MODEL WITH INITIAL CUSTOMERS 158 

 
 

Figure 5: Service rate on E(L) Figure 6: Service rate on throughput 

 

  
Figure 7: Service rate on L.R Figure 8: Service rate on cost function 

 
In Figures 5 to 8 we fix λ = 1.7, w = 1.5, n = 1, β = 0.4, ξ = 1.1, ρ = 0.6 and vary the values 
of µ. These graphs show that the expected number of customers in the system, expected cost 
and average rate of customer loss decrease as µ increases but probability of server remains 
idle increases as µ increases”. 
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Figure 9: Vacation Rate (𝒘) on E(L) Figure 10: Vacation Rate (𝒘) on   
Probability of server remains idle 

 

  
Figure 11: Vacation Rate (𝒘) on L.R. Figure 12: Vacation Rate (𝒘) on Cost 

Function 
 
In Figures 9 to 12 we fix λ=1.7, µ= 2.5, n=1, β = 0.4, ρ = 0.6, ξ=1.1 and vary the values of 
w. “These graphs show that the expected number of customers in the system, expected cost, 
expected queue length and average rate of customer loss decrease as w increases but 
probability of server remains idle increases as vacation rate increases”. 
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Figure 13:  β on E(L) Figure 14: β on Probability of server 

remains idle 
 

  

Figure 15: Impact of β on Total Cost Figure 16: Impact of β on L.R. 

 
In Figures 13 to 16 we fix λ=1.7, µ=2.5, n=1,w = 1.5, ξ=1.1, ρ = 0.6 and vary the values of 
β. “These graphs show that the expected number of customers in the system, average rate of 
customer loss, expected cost increase as β increases but probability of server remains idle 
decreases as β increases”. 
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Figure 17: Reneging rate on E(L) Figure 18: Impact of ξ on probability that 

server remains Idle 
 

  
Figure 19: Impact of ξ on L.R. Figure 20: Impact of ξ on cost function 

 
In Figures 17 to 20 we fix λ = 1.7, w =1.5, n = 1, µ = 2.5, β = 0.4, ρ = 0.6, t = 1 and vary the 
values of ξ.  These graphs show that expected cost, probability of server remains idle and 
average rate of customer loss increase as ξ increases but expected queue length decreases as 
ξ increases. 
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Figure 21: Impact of λ on E(L) Figure 22: Impact of λ on L.R. 

 

 
 

Figure 23: Impact of β on E(L) Figure 24: Impact of λ on E(L) and L.R. 

 
Figures 23 and 24 give the effect of β and λ on mean system length and average loss of 
customer. As probability of joining the queue increases E [L] increases and as reneging rate 
increases E[L] decreases and average rate of customer loss increases 

 

9. Conclusions 

This paper considers two-dimensional state Markovian queueing model with Bernoulli 
Schedule, multiple vacations and impatience customers in which the state of the system is given 
by (a, b). The concept of few clienteles (say “n”) available in the system makes this model 
different from the previous models available in literature. The governing systems of equations 
are solved by using the Laplace transform and different measures of effectiveness (Expected 
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system length, throughput of system, mean balking rate, mean reneging rate, etc.) are calculated 
that provide better perception of a queueing system. Finally, an expected cost function is 
discussed, and it shows that if we increase service rate then the probability that customers may 
balk or renege from the system is reduced which minimize expected cost for the system.  
Different firms can utilize this model to model their system accordingly and can have an idea 
about the minimum cost that system will generate. 
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