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Abstract
Measurement error models (MEMs) provide a flexible framework to model the method

comparison data by incorporating measurement errors. However, these models often rely on
normality assumptions, which are frequently violated in practice due to skewness and heavy
tails. Furthermore, repeated data with measurement errors (MEs) are often observed in
medical research, epidemiological studies, economics, and the environment. Thus, this re-
search aims to assess the extent of similarity and agreement between the two methods using
the replicated measurement error model (RMEM) under asymmetric and heavy-tailed distri-
butions with a matching degree for true covariate and errors. The expectation-maximization
(EM) approach is applied to fit the model. A simulation study is used to test the proposed
methodology, demonstrated by evaluating subcutaneous fat data. The Total Deviation In-
dex (TDI) and Concordance Correlation Coefficient (CCC) were used to further assess the
agreement between the methods. Our suggested model works well for analyzing replicated
method comparison data with measurement errors, skewness, and heavy tails.

Key words: Agreement; Heavy-tailed distributions; Replicated measurement error model;
EM algorithm; Concordance correlation; Total deviation index.

1. Introduction

Method comparison study refers to comparing two or more methods that analyze the
outcome for understanding the agreement between the methods. Generally, a comparison is
made between the already established methods and the new methods to see whether there is
enough agreement between them. If the method comparison study of the continuous variables
is agreeable to each other or similar, it reflects that both methods can be interchangeably
used. With the vast development in the field of health and sciences, method comparisons
play a vital role in determining the better of the existing practices and new innovative
methods that are put into use. The methods include an assay, equipment, medical device,
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observation, measurement techniques, and variables of interest such as blood pressure, pulse
rate, level of cholesterol, the level of concentration of the chemical used, etc. Currently, we
have new techniques evolving in the health sector as a result of advancement, and these
new techniques might be much more effective, less invasive, economical, faster, and easy
to handle. However, the medical practitioner needs analysis of these more recent methods
that are to be compared with the already existing methods or standards to understand the
outcome.

Numerous method comparison studies are being conducted in the field of health
and science to evaluate the techniques used. Comparing the measurements of continuous
variables helps us determine the better of the prevailing methods or if they can be used
interchangeably. In method comparison studies, every subject has at least one measurement
from each method. Our focus in this research is where measurements are replicated. The first
step in the methodology is to model the method comparison data where the mixed-effects
model is commonly used. It is to be noted that the model assumes independent normal
distribution for both random effects and errors, and the measurement variability is constant
over the whole measurement range (Bland and Altman, 1999, 2007; Carrasco and Jover,
2003; Carstensen et al., 2008; Carrasco et al., 2009; Hedayat et al., 2009; Choudhary, 2008).
Secondly, the evaluation of agreement between the methods is conducted using inference on
one or more measures of agreements that quantify how much they agree well. When the
difference in measurements is small, it reflects a good agreement between the two methods.
There are numerous agreement measures, including the CCC (Lin, 1989; Barnhart et al.,
2007; Nawarathna and Choudhary, 2013, 2015) and the TDI (Lin, 1989; Nawarathna and
Choudhary, 2013, 2015; Choudhary, 2009; Choudhary and Yin, 2010) have attracted the
greatest attention in the statistical literature.

In many real-world situations, accurately measuring the true value of a variable is
challenging. Instead, we can only observe it with some degree of error. This discrepancy
between the observed and true values is known as ”Measurement Error (ME)”. Imagine
trying to hit a target with a bow and arrow. The true bullseye represents the actual value
we aim to measure, while the observed values are scattered around it due to measurement
error. These errors can arise from various factors, such as different measurement methods,
instruments, human error, or external influences. Ignoring these errors can lead to biased
estimates and increased variability in statistical inferences. Therefore, it is essential to
consider measurement errors to ensure accurate and reliable statistical analysis.

MEMs, which have been discussed in Nawarathna and Choudhary (2015), Dunn and
Roberts (1999), Alanen (2010), typically assume normality for both the true covariate and
error terms. However, in practice, the method comparison data often reflects skewness and
heavy tails, indicating departures from normality. This is exemplified by the subcutaneous
fat data discussed in Carstensen et al. (2020), demonstrating these characteristics. While
data transformations can be used to achieve normality, limiting transformations to (natural)
logarithmic transformations in method comparison studies is generally advised, as Bland and
Altman (1999) recommend. However, the log transformation may not always be successful.
In such cases, alternative approaches should be considered. Nonparametric methods, as
suggested by King and Chinchilli (2001), King et al. (2007), and Choudhary (2010), do
not rely on distributional assumptions. Generalized Estimating Equations (GEE), discussed
by Barnhart et al. (2002, 2005), and Lin et al. (2007), offer a semiparametric approach
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by directly modeling the moments of the data without assuming a specific distribution.
Additionally, parametric models can be utilized based on distributions other than the normal
distribution, as explored by Sengupta et al. (2015). These alternative approaches provide
flexibility in modeling method comparison data, accounting for its specific characteristics
beyond the assumptions of normality.

The parametric mixed-effects model approach developed by Sengupta et al. (2015) of-
fers a methodology for analyzing method comparison data with skewness and heavy tails. In
the context of MEM, Duwarahan and Nawarathna (2022) modified the STcT-MEM (Tomaya
and de Castro, 2018) specifically for unreplicated method comparison data with known error
variances. However, no MEM model is designed for replicated method comparison data.
Inspired by this gap, we aim to modify a model within the MEM framework to analyze
replicated method comparison data with skewed and heavy-tailed features. In our approach,
building upon the work of Cao et al. (2017), we consider MEMs for replicated data under
scale mixtures of skew-normal (SMSN) distributions for the true covariate and scale mixtures
of normal (SMN) distributions for the error terms with the matching degree. Specifically,
we use the skew-t (ST) distribution for the true covariate and the t distribution for the error
term. We also consider the skew-normal (SN) and normal (N) distributions for comparative
purposes. The primary objective of this paper is to modify the above model to analyze
method comparison data, assess the agreement between the two methods, and determine if
they can be used interchangeably.

Additionally, our proposed methodology provides a unified framework that can handle
various types of data, including normally distributed, skewed, and heavy-tailed data. It
encompasses the N-RMEM (normal-distributed replicated measurement error model) and
SN-RMEM (skew-normal-distributed replicated measurement error model) as special cases.
Specifically, when the degrees of freedom reach infinity, the SN-RMEM turns into a special
case of the ST-RMEM (skew-t-distributed replicated measurement error model). Similarly,
when the degrees of freedom tends to infinity and the skewness parameter is zero, the N-
RMEM becomes a special case of the ST-RMEM. This flexibility allows for comprehensive
analysis and comparison of different types of method comparison data.

The remainder of the paper is organized as follows. Section 2 introduces the ST-
RMEM for method comparison data. Section 3 discusses the proposed methodology for
evaluating similarity and agreement under ST-RMEM. Section 4 investigates the proposed
model’s performance using simulated studies. Section 5 illustrates our method using subcu-
taneous fat data, and the concluding section summarizes the findings and conclusions. The
statistical program R (R Core Team, 2021) was used to perform all of the computations
given in this research.

2. Framework for method comparison data

This section describes a framework for analyzing research that compares two methods
when taking several measurements on each subject. Let Yijk, k = 1, 2, . . . , nj, j = 1, 2, i =
1, 2, . . . , m denote the kth replicate measurement of the jth method on the ith subject. Here
m is the number of subjects in the study, and nj is the number of measurements on method
j. It is to be noted that nj ≥ 2. Here Method 1 is the reference method, while Method 2 is
the test method. Let n = n1 + n2 represent the total number of measurements taken on the
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subject and N = nm represent the total number of measurements in the dataset.

If multiple measurements are found on each subject, it is referred to as ‘repeated
measurements data’ and categorized as unlinked, linked, and longitudinal data. These cate-
gories are essential as it influences the way the data are modeled. In this research, we focus
on unlinked data. Unlinked data refers to the measurements obtained from the two methods
separately, and multiple measurements on a subject taken by a method are independent
replications of the same underlying measurement. In this case, it is not mandatory for the
methods to have the same number of replications on a subject. As always, measurements
from various subjects are presumed to be independent.

Let Np(µ, Σ), SNp(µ, Σ,λ), tp(µ, Σ, ν), and STp(µ, Σ,λ, ν) indicate the p dimen-
sional N, SN, t, and ST distributions, respectively. Here, µ ∈ Rp is a location vector, Σ is a
p × p positive definite scale matrix, λ ∈ Rp is a vector of skewness parameters, and ν(> 0) is
degrees of freedom. Let G(α, β) represent the gamma distribution with parameters α(> 0)
and β(> 0), and HN(0, σ2) represent the half-normal (0, σ2) distribution. Let Ip denote
a p × p identity matrix. The symbol Σ1/2 represents a square root of the symmetric and
positive definite matrix Σ. This implies that Σ1/2(Σ1/2)T = Σ, where the symbol T denotes
transposition. The inverse of Σ is denoted as Σ−1.

2.1. Definition of ST-RMEM

The classical replicated measurement error model is

Xik = bi + δik; k = 1, 2, . . . , p and
Yil = yi + ϵik; l = 1, 2, . . . , q

yi = α + βbi + ei; i = 1, 2, . . . , m

(1)

where bi, yi be the unobserved true covariate and response, and they are observed p and q
times, respectively; α is the fixed bias; slope β is its proportional bias; δik, ϵik are measure-
ment errors of Xik and Yil, respectively; ei is the equation error, which indicates that the
true variables bi and yi are not completely connected if other factors other than bi are also
involved in the variation in yi, and δik, ϵik, ei are uncorrelated with each other. Moreover,
ei is known as ‘method-subject interaction’ in a mixed-effects model. When a measurement
error model is used, it may be noted that they are frequently incorporated in the testing
method but not in the standard method. However, when a mixed-effects model is used, they
are always included in both methods. A slope β with a non-unit value suggests a difference
in the proportionate biases (or scales) of the methods.

Consider a (p+q) dimensional random vectorZi = (XT
i ,Y T

i )T , whereXi = (Xi1, Xi2,
. . . , Xip)T is a p dimensional random vector and Yi = (Yi1, Yi2, . . . , Yiq)T is a q dimensional
random vector. From (1), the model can be written as

Zi = A+Bbi +ψi (2)

where A =
[

0p

α1q

]
, B =

[
1p

β1q

]
, ψi =

[
δi

ei1q + ϵi

]
with δi = (δi1, . . . , δip)T , ϵi = (ϵi1, . . . , ϵiq)T .

It is standard to assume that bi, ei, δik and ϵik are independent and

bi ∼ N1(µb, ϕb), ei ∼ N1(0, ϕe), δik ∼ N1(0, ϕδ), and ϵik ∼ N1(0, ϕϵ). (3)
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Normality assumption is sometimes unfeasible due to the skewness, heavy-tailed ness, and
outliers. To overcome this problem, Cao et al. (2017) developed the ST-RMEM by consider-
ing ST for true covariate and t distribution for error terms with the same degrees of freedom.
It follows

bi ∼ ST1(µb, ϕb, λb, ν), ei ∼ t1(0, ϕe, ν), δik ∼ t1(0, ϕδ, ν), and ϵik ∼ t1(0, ϕϵ, ν). (4)

It can be hierarchically represented as

Zi | bi, Ui = ui ∼ Nn(A+Bbi, Σ1/Ui),
bi | Ui = ui, Vi = vi ∼ N1(µb + γbvi, τb/Ui),

Vi | Ui = ui ∼ HN (0, 1/Ui),

Ui ∼ G(ν

2 ,
ν

2).

(5)

where n = p + q, γb = ϕ
1/2
b δb, δb = λb√

1+λ2
b

, τb = ϕb(1 − δ2
b ), Σ1 =

[
ϕδIp 0p×q

0q×p ϕe1q1T
q + ϕεIq

]
.

The mean vector and variance matrix of Zi are as follows.

E(Zi) = A+BE(bi), ν > 1 and

Var(Zi) = ν

ν − 2ϕbBB
T − ζ2Bγbγ

T
b B

T + ν

ν − 2Σ1, ν > 2 (6)

where E(bi) = µb + ζγb, with ζ =
√

ν
π

Γ( ν−1
2 )

Γ( ν
2 ) and Γ(·) denotes the gamma function, and its

conditional distribution is expressed as

Zi | Ui ∼ SN n(A+Bµb, Σ/Ui,λ), (7)

where Σ = ϕbBB
T + Σ1 and λ = λbϕbΣ−1/2B√

ϕb+λ2
b
Λb

with Λb = ϕb

c
, c = 1 + ϕbB

T Σ−1
1 B.

Cao et al. (2017) used an EM algorithm to estimate the parameters due to the complexity
of the likelihood function.

2.2. ST-RMEM for method comparison data

Let Yij = (Yij1, Yij2, . . . , Yijnj
)T denote the nj measurement vector from method j(=

1, 2). The vector Yi = (Y T
i1 ,Y T

i2 )T denote all measurements on subject i. Let Ỹ = (Ỹ1, Ỹ2)T

represent paired observations from the two methods on a randomly chosen subject from the
population. The basic ST-RMEM can now be used flexibly to model replicated method
comparison data. This model implies that Method 1 is a well-known method used as a
reference method in the comparison. It is of the form

Yi1k = bi + δi1k;
Yi2k = α + βbi + ei + ϵi2k; i = 1, 2, . . . , m k = 1, 2, . . . , nj.

(8)

where α and β are the fixed bias and proportional bias of method 2, respectively, bi denotes
the true unobservable measurement for the ith subject, ei is the equation error, and δi1k,
ϵi2k are random errors. Both fixed and proportional biases result in systematic measuring
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mistakes. However, Method 1 does not assume a fixed or proportionate bias for identifiability
reasons.

This model can be expressed in the matrix notation of (2) by setting Zi = Yi,ψi =[
δi1

ei1n2 + ϵi2

]
where δi1 = (δi11, . . . , δi1n1)T , ϵi2 = (ϵi21, . . . , ϵi2n2)T , and (p, q) = (n1, n2). It

further assumes that
bi ∼ ST1(µb, ϕb, λb, ν), ei ∼ t1(0, ϕe, ν), δi1k ∼ t1(0, ϕδ, ν), and ϵi2k ∼ t1(0, ϕϵ, ν). (9)

where bi, ei, δi1k, and ϵi2k are mutually independent. This model is a modification of the
ST-RMEM, previously mentioned in this section. It can be considered when the data
shows skewness and heavy-tailedness in method comparison. It can handle two or more
measuring methods, replicated and un-replicated measurements, as well as balanced and
unbalanced designs. In the un-replicated case (i.e., nj = 1) there is no need to include
the equation error term. The unknown parameter vector of the model (9) is denoted by
θ = (α, β, µb, ϕb, λb, ϕe, ϕδ, ϕε)T , and we use the EM algorithm to obtain the maximum like-
lihood estimates (MLEs) of these parameters. The SN-RMEM gets to be a special case of
the ST-RMEM (9) when ν → ∞.

bi ∼ SN1(µb, ϕb, λb), ei ∼ N1(0, ϕe), δi1k ∼ N1(0, ϕδ), and ϵi2k ∼ N1(0, ϕϵ) (10)
When the skewness parameter λb = 0 and the degrees of freedom parameter ν → ∞, it is a
standard N-RMEM.

bi ∼ N1(µb, ϕb), ei ∼ N1(0, ϕe), δi1k ∼ N1(0, ϕδ), and ϵi2k ∼ N1(0, ϕϵ) (11)

3. Assessment of similarity and agreement

3.1. Similarity measures

A method comparison study aims to assess the similarity of measuring methods and
their agreement. This evaluation is performed by drawing conclusions based on similarity and
agreement measures, which are functions of the model parameters. Evaluation of similarity
is a comparison of characteristics, including biases, precisions, and scales of the methods,
to find out how the methods differ. In the case of the model (8), the similarity is assessed
by analyzing biases with intercept (α) and slope (β). The scales of the methods are the
same if the slope is 1. In addition, the true values of the methods are also the same if
the intercept is zero. Method precisions can be determined using the ratio, denoted as
λ = error variance of Method 1

error variance of Method 2 . If λ = 1, methods 1 and 2 are equally accurate, but if λ < 1,
Method 1 is more accurate than Method 2, and if λ > 1, Method 2 is more accurate than
Method 1. However, this necessitates that these methods be on the same scale. For example,
the precisions of two thermometers measured in Fahrenheit and Celsius cannot be compared
until one is converted to the same scale. Hence, the test method’s scale can be adjusted to
equal that of the reference method by dividing Ỹ2 by the slope β. As a result, the precision
ratio is β2λ and is referred to as the ’squared sensitivity ratio’.

3.2. Agreement measures

The evaluation of similarity is just a comparison of the methods’ marginal distribu-
tions. Evaluation of agreement is an analysis of the methods’ joint distribution, including
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their marginal distributions. Further, the closeness of the two methods’ measurements is re-
ferred to as agreement. When their measurements are identical, the methods agree perfectly.
In this ideal case, the bivariate distribution of Ỹ1 and Ỹ2 is concentrated on the 45° line; as
a result, the joint distribution becomes degenerate at zero.

In practice, we use measures of an agreement to quantify the extent of the agreement.
In spite of the fact that a number of agreement measures are available (Barnhart et al.,
2007), two among them, to be specific, the CCC and the TDI, have received the foremost
consideration in the statistical literature. These are explained below.

3.2.1. Concordance correlation coefficient

This measure was introduced by Lin (1989), and it is defined as

CCC = 2cov(Ỹ1, Ỹ2)
[E(Ỹ1) − E(Ỹ2)]2 + Var(Ỹ1) + Var(Ỹ2)

(12)

It lies in [−1, 1], and a high CCC score indicates good agreement. A score of 1 indicates per-
fect positive agreement, whereas -1 denotes excellent negative agreement. More information
on this measure’s properties and generalizations to various data types, and models can be
found in Barnhart et al. (2007) and Lin et al. (2012).

3.2.2. Total Deviation Index

Lin (2000) introduced this measure, defined as

TDI(p) = 100 pthpercentile of |D̃ = Ỹ1 − Ỹ2| for a specified p. (13)

In practice, the value of p is assumed to be between 0.80 and 0.95. It is a non-negative mea-
sure, with smaller values indicating higher agreement and zero indicating perfect agreement.
The confidence bounds of this measure reflect how significant a measurement difference may
be in a given large fraction of the population. As a result, if all of the discrepancies in this
interval are acceptable from a practical standpoint, the methods are said to be in satisfactory
agreement. Lin et al. (2002) and Choudhary (2008) provided extensive information on this
measure.

In order to evaluate the agreement between methods, we first fit a model to the
method comparison data Yijk, k = 1, . . . , nj, j = 1, 2, i = 1, . . . , m, using the maximum
likelihood (ML) approach, as indicated in section (2.2). Let θ̂ be the ML estimator of
the parameter vector of θ. According to asymptotic theory, when n is large, the sampling
distribution of θ̂ approximately follows a multivariate normal distribution with mean θ and
variance I−1 under specific regularity constraints, where I is the observed information matrix
Lehmann (1998).

Consider φ as a scalar measure of agreement between two methods. Its ML es-
timator φ̂ is produced by substituting θ with θ̂. When φ is a differentiable function of
θ, the delta method can be used to estimate the sample distribution of φ̂, expressed as
φ̂ ∼ N(φ,DTI−1D), where D = ∂φ

∂θ
is the Jacobian matrix evaluated at θ = θ̂, and they

are typically estimated numerically. The 100(1 − α)% two-sided confidence bounds for the
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agreement measure φ are φ̂ ± z1−αSE(φ̂), where z1−α is the (1 − α)th percentile of N1(0, 1)
and SE(φ̂) = (DTI−1D) 1

2 . In specific, in case small values for φ infer good agreement
(e.g., TDI), at that point, require an upper bound. Though in case large values for φ in-
fer good agreement (e.g., CCC), at that point, require a lower bound. After applying a
normalizing transformation, the confidence intervals are computed to make stride accuracy
for parameters or parameter functions whose range does not span the entire real line. The
results are rearranged back to the initial scale. Particularly, TDI is transformed using a log
transformation, while CCC is transformed using Fisher’s z-transformation. These confidence
boundaries are then used to assess if the methods agree sufficiently.

This approach makes sense only if there is no proportionate bias in the test procedure.
Thus, the test method needs to be adjusted such that its scale matches to that of the
reference method before the agreement can be evaluated (Nawarathna and Choudhary, 2015;
Choudhary and Nagaraja, 2017). Therefore, we first transform Ỹ2 as Ỹ2

∗ = Ỹ2/β to make Ỹ2
on the same scale as Ỹ1. The measures of agreement in the transformed case are functions
of parameters of the bivariate distribution of (Ỹ1, Ỹ2

∗), respectively, and the equation of
these agreement measures can be determined by inserting the moments from their respective
bivariate distributions into their definitions. After this transformation, these measures follow
from (12)-(13) that

CCC∗ = 2cov(Ỹ1, Ỹ2
∗)

[E(Ỹ1) − E(Ỹ2
∗)]2 + Var(Ỹ1) + Var(Ỹ2

∗)
(14)

TDI∗ = 100 pthpercentile of |D̃∗ = Ỹ1 − Ỹ2
∗| for a specified p. (15)

3.3. Agreement evaluation under different models

3.3.1. ST-RMEM

As previously mentioned, Ỹj denotes a single measurement using the jth method
(j = 1, 2) on a randomly selected subject from the population to derive the expressions for
measures of the agreement under the assumed ST-RMEM. Moreover, a companion model
for Ỹ = (Ỹ1, Ỹ2)T is generated from the model (8).

Ỹ = A+Bb̃ + ψ̃ (16)

where A =
[
0
α

]
; B =

[
1
β

]
; ψ̃ =

[
δ1

e + ϵ2

]
.

Further, b̃ ∼ ST1(µb, ϕb, λb, ν) and ψ̃ ∼ t2(0, Σ̃1, ν) with Σ̃1 =
[
ϕδ 0
0 ϕe + ϕε

]
.

The mean vector and variance matrix of Ỹ ∗ = (Ỹ1, Ỹ ∗
2 = Ỹ2/β) are as follows from (16) that

E(Ỹ ∗) = A∗ +B∗E(bi), ν > 1 and

Var(Ỹ ∗) = ν

ν − 2ϕbB
∗B∗T − ζ2B∗γbγ

T
b B

∗T + ν

ν − 2Σ̃1
∗
, ν > 2

(17)

whereA∗ =
[

0
α/β

]
;B∗ =

[
1
1

]
; E(bi) = µb+ζγb with ζ =

√
ν
π

Γ( ν−1
2 )

Γ( ν
2 ) and Σ̃∗

1 =
[
ϕδ 0
0 1

β2 (ϕe + ϕε)

]
.



2024] A MODIFIED MEASUREMENT ERROR MODEL FOR METHOD COMPARISON DATA 153

Further, we can write using the hierarchical representation (7),

Ỹ =
(

Ỹ1
Ỹ2

)
|U ∼ SN2(A+Bµb, Σ̃/U, λ̃) (18)

where A =
[0
α

]
;B =

[1
β

]
; Σ̃ =

[
ϕb + ϕδ βϕb

βϕb β2ϕb + ϕe + ϕϵ

]
and λ̃ = λbϕbΣ̃−1/2B√

ϕb+λ2
b
Λb

are counterparts of
Σ and λ. After the transformation, it becomes

Ỹ ∗ =
(

Ỹ1
Ỹ ∗

2

)
|U ∼ SN2(A∗ +B∗µb, Σ̃∗/U, λ̃∗) (19)

where Σ̃∗ =
[
ϕb + ϕδ ϕb

ϕb ϕb + 1
β2 (ϕe + ϕϵ)

]
and λ̃∗ = λbϕbΣ̃∗−1/2B∗√

ϕb+λ2
b
Λb

with Λb = ϕb
c ,

c = 1 + ϕbB
∗T Σ̃∗

1
−1B∗, Σ̃∗

1 =
[
ϕδ 0
0 1

β2 (ϕe + ϕϵ)

]
.

Furthermore, we know, if Y ∼ SNq(µb, ϕb, λb) and δb = λb

(1+λ2
b
)

1
2

, γb = ϕ
1
2
b δb, τb = ϕb(1 − δ2

b ).

Then
mT Y ∼ SN1

(
mT µb,m

T ϕbm,mT ϕ
1
2
b δb/(mT τbm)

1
2

)
, (20)

where m ∈ Rq with at least one non-zero element (Sengupta et al., 2015). It follows from (20) that
the difference D̃ = Ỹ1 − Ỹ2 is

D̃|U ∼ SN1
(
mT (A+Bµb),mT Σ̃m/U,mT Σ̃1/2δ̃/(mT Γ̃m)1/2

)
, (21)

where m = (1, −1)T , δ̃ = λ̃/(1 + λ̃T λ̃)1/2 and Γ̃ = Σ̃ − Σ̃1/2δ̃δ̃T Σ̃1/2.
When considering transformation, D̃∗ = Ỹ1 − Ỹ ∗

2 is

D̃∗|U ∼ SN1
(
mT (A∗ +B∗µb),mT Σ̃∗m/U,mT Σ̃∗1/2δ̃∗/(mT Γ̃∗m)1/2

)
, (22)

where δ̃∗ = λ̃∗/(1 + λ̃∗T λ̃∗)1/2 and Γ̃∗ = Σ̃∗ − Σ̃∗1/2
δ̃∗δ̃∗T Σ̃∗1/2.

We can now derive the equations for CCC and TDI under ST-RMEM (16) for transformed
data. As described in (14), the CCC∗ for transformed data can be computed as

CCC∗ =
2
[

ν
ν−2ϕb − ζ2γbγ

T
b

]
[mT (A∗ +B∗µb)]2 +

[
ν

ν−2ϕb − ζ2γbγ
T
b + ν

ν−2ϕδ

]
+
[(

ν
ν−2ϕb − ζ2γbγ

T
b

)
+ 1

β2

(
ν

ν−2ϕϵ + ν
ν−2ϕe

)]
(23)

Next, as we know from equation (15), the TDI∗ is defined as the pth quantile of D̃∗ with a given
large probability of 0 < p < 1, and it can be obtained by solving

TDI∗ = P (|D̃∗| ≤ t) =
ˆ ∞

0
{F ∗(t) − F ∗(−t)} f(u|ν) du, t > 0 (24)

where F ∗ is the distribution function of D̃∗|U and f(u|ν) is the density of U .
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3.3.2. SN-RMEM

For the model (10), the mean vector and variance matrix of Ỹ ∗ are

E(Ỹ ∗) = A∗ +B∗E(bi), and

Var(Ỹ ∗) = ϕbB
∗B∗T

(
1 − 2δT

b δb

π

)
+ Σ̃∗

1,
(25)

where E(bi) = µb +
√

2
π γb.

The hierarchical representation of Ỹ is
(

Ỹ1
Ỹ2

)
∼ SN2(A+Bµb, Σ̃, λ̃), and after the transformation,

the marginal distribution of (Ỹ1, Ỹ ∗
2 ) is

(
Ỹ1
Ỹ ∗

2

)
∼ SN2(A∗ +B∗µb, Σ̃∗, λ̃∗).

Then, CCC∗ can be defined as

CCC∗ =
2ϕb

(
1 − 2δ2

b
π

)
(

α
β

)2
+
[
ϕb

(
1 − 2δ2

b
π

)
+ ϕδ

]
+
[
ϕb

(
1 − 2δ2

b
π

)
+ 1

β2 (ϕε + ϕe)
] (26)

Next, D̃∗ = Ỹ1 − Ỹ ∗
2 and m = (1, −1)T .

D̃∗ ∼ SN1
(
α/β,mT Σ̃∗m,mT Σ̃∗1/2δ̃∗/(mT Γ̃∗m)1/2

)
. (27)

The TDI∗ for SN-RMEM is

P (|D̃∗| ≤ t) = F ∗(t) − F ∗(−t); t > 0 (28)

where F ∗ is the distribution function of D̃∗.

3.3.3. N-RMEM

The mean vector and variance matrix of Ỹ ∗ are, according to the standard model (11),

E(Ỹ ∗) = A∗ +B∗µb and
Var(Ỹ ∗) = ϕbB

∗B∗T + Σ̃∗
1.

(29)

The marginal distribution of (Ỹ1, Ỹ ∗
2 ) is

(
Ỹ1
Ỹ ∗

2

)
∼ N2(A∗ +B∗µb, Σ̃∗).

Next, D̃∗ = Ỹ1 − Ỹ ∗
2 can be represented as

D̃∗ ∼ N1
(
α/β,mT Σ̃∗m

)
. (30)

The N-RMEM adaptation of CCC∗ can now be defined as

CCC∗ = 2ϕb(
α
β

)2
+ [ϕb + ϕδ] +

[
ϕb + 1

β2 (ϕε + ϕe)
] (31)

The TDI∗ under N-RMEM can be determined as

P (|D̃∗| ≤ t) = Φ
(

t − E(D̃∗)
sd(D̃∗)

)
− Φ

(
−t − E(D̃∗)

sd(D̃∗)

)
(32)

where Φ denotes the cumulative distribution function (CDF) of a standard N distribution.
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4. Simulation study

A simulation study is performed to evaluate the performance of the MLEs under the ST-
RMEM, SN-RMEM, and N-RMEM models designed for analyzing method comparison data. We
generated the data for two different methods, considering sample sizes of m = 20, 50, and 100, using
models (5) and (8) that incorporated ST distribution for true covariate and t distribution for the
error term (ν = 5). The initial values of the parameters are µb = 1, α = 0.02, β = 0.96, log(ϕb) =
0.03, log(ϕδ) = −5, log(ϕε) = −6, log(ϕe) = −6, and we set λb = 5 and 10 for comparison. These
findings were inspired by the ML estimate from the real data set studied in Section 5. Furthermore,
we assume that the repeated number of observations per method is three. We then compute the
MLEs using the EM algorithm on the sample data using the ST, SN, and N distributions with
equation error, respectively. For the assessment of the estimations, we compute the sample bias
(BIAS), standard deviation (SD), root mean square error (RMSE), and coverage probability (CP)
after 1000 repeats. Table 1 summarizes the findings. The R programming language (R Core Team,
2021) was used to do all calculations.

Table 1 shows BIAS, SD, and RMSE values for the ST distribution are lower in all circum-
stances. As a result, the performance of the ST distribution is better than that of the SN and N
distributions, which may be due to their skewed and heavy-tailed characteristics. Additionally, the
estimates become more exact when the sample size rises from 20 to 100. When m = 100, all cover-
age probabilities (CPs) are near the nominal value of 95 percent. For smaller and moderate sample
sizes, most of the CPs are also around 95 percent, and some are considerably lower. However, the
CPs for all cases rise as the sample size increases. As a result, whether the skewness is moderate
or heavy, we may state that the ST-RMEM CPs outperform other models.

Table 2 presents the efficiencies of ST-RMEM-based estimators in relation to the SN-RMEM
and N-RMEM models calculated by dividing the MSE under the SN-RMEM and N-RMEM models
by the MSE under the ST-RMEM. Notice that the relative efficiencies are greater than one in all
situations, meaning that ST-RMEM is more accurate than SN-RMEM and N-RMEM. Furthermore,
when n rises, the relative efficiencies improve.

We also compute the Akaike information criterion (AIC) and Bayesian information criterion
(BIC) values when the data is produced via ST-RMEM. These values are shown in Table 3, and
the findings reveal that ST-RMEM performs better than other models since it has lower values.
Furthermore, as the sample size rises, the estimates become more exact. Table 4 presents estimated
type I error probabilities for the 5% level Likelihood Ratio (LR) test, where the null hypothesis
claims that a smaller model (SN-RMEM or N-RMEM) gives a good fit and the alternative hypoth-
esis states that a larger model (ST-RMEM) provides a good fit. For the small sample size, values
are close to 5%, showing the minimal difference between the two models. The values are fewer than
5% for moderate and large sample sizes, indicating that ST-RMEM is preferable. In summary, the
ST-RMEM performs much better than the N-RMEM and SN-RMEM in the presence of skewed
and heavy-tailedness.

5. Application to fat data

The subcutaneous fat thickness (Carstensen et al., 2020) was measured in centimeters at the
Steno Diabetes Center to compare the measurements of two experienced observers, ‘KL’ (Method
1) and ’SL’ (Method 2). The study includes 43 persons (subjects), and the measurements (cm)
from each method are repeated three times on each subject. The three replicates are interchange-
able within the subject and method, and the repeated measurements are unlinked. The design is
balanced with 43×3×2=258 observations, and measurements vary from 0.39 to 4.20 cm. Figure 1
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depicts a histogram and normal Q-Q plot for subcutaneous fat, revealing that the data is positively
skewed and heavy-tailed. The trellis plot of this data, shown in Figure 2, reveals considerable
overlap in the measurements given by the methods. At the same time, it is evident that SL values
are lower than KL for the majority of persons. A few cases show quite substantial disparities, im-
plying a skewed distribution of differences. The measures show significant within-subject variation,
although it is small when compared to between-subject variation. The dataset is homoscedastic,
and there are no obvious outliers.

Figure 3 shows scatterplots and Bland-Altman plots of randomly chosen and averaged over
replications. The scatter plots reveal a high correlation between the methods, confirming that KL
readings are greater than SL readings since most points are above the line of equality, and the
Bland-Altman plots indicate that the scales of the methods may differ. Moreover, it should be
noted that the data were obtained on persons from a Diabetes Center, and numerous factors, such
as a person’s food habits and laboratory conditions, might influence a measurement. As a result,
these measures are prone to inaccuracy. Thus, the measurement error model gives a better fit for
this data.

The modeling of data is the preliminary step in the analysis. Initially, we fit the data using
the modified ST-RMEM (9), where bi follows ST distribution, measurement errors (δik, ϵik), and
equation errors (ei) follows multivariate t distribution. In this case, the degree of freedom (ν) is
treated as a known parameter, determined by the Schwarz information criteria (Schwarz, 1978).
There are a total of eight parameters in this model. The numDeriv package (Gilbert and Varadhan,
2019) in R is used to compute the required numerical derivatives. Secondly, we fit the SN-RMEM
(10) where bi follows SN distribution, measurement errors (δik, ϵik), and equation errors (ei) follow
multivariate N distribution. This model also has eight unknown parameters. Next, we fit the
N-RMEM (11), which has seven unknown parameters. We then compute the MLEs of parameter
θ using the EM algorithm and their standard errors (SEs) under the above models.

Table 5 provides these parameter estimates, SEs, and 95% confidence limits for the above
RMEMs. AIC and BIC values based on the RMEM model under the above distributions are shown
in Table 6. The model is better when the AIC value is small, and we find that the AIC value is
small for ST-RMEM. Furthermore, the LR test is used to determine if the null hypothesis H0 :
SN-RMEM model is preferred to the alternative hypothesis H1 : ST-RMEM model is preferable.
It is important to test the hypothesis H0 to see if the inclusion of the degrees of freedom (ν)
is meaningful. The p-value for this LR test is < 0.0001. Therefore, the parameter (ν) must be
taken into account. Thus, the modified ST-RMEM fits significantly better than N-RMEM and
SN-RMEM.

The examination of similarity is the second step in the analysis. The proportionate bias
estimate (β) is 0.97 (SE = 0.02), and the 95% confidence interval is [0.93, 0.99]. As a result, there is
evidence of a minor downward proportionate bias, but it is marginal. Furthermore, the estimated
fixed bias (α) is 0.02 (SE = 0.03), with a 95% confidence range of [-0.04, 0.08]. Although this
interval includes 0, it also demonstrates a minor fixed bias. Because there is evidence of small bias,
the methods have unequal scales. Thus, their precision is measured using a squared sensitivity
ratio, and the value is 1.16 (> 1), indicating that Method 2 (SL) is more precise than Method
1(KL).

The next step is an assessment of the agreement. As previously indicated, due to a little bias
in SL measurement, we rescaled its measurement Ỹ2 as Ỹ2

∗ = Ỹ2/β. The estimated transformation
is Ỹ2

∗ = Ỹ2/0.97. We compute the estimates and 95% one-sided confidence limits for the agreement
measures examined in Section 3.2 for the converted data, which are also shown in Table 6. To obtain
these estimates, first, perform Fisher’s z-transformation for CCC∗ and the log transformation for
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TDI∗. The CCC∗ estimate for ST-RMEM is 0.990, as defined in (23), and its lower bound is 0.984;
both are close to one, suggesting good agreement amongst the methods. Next, we make an inference
on the agreement measure TDI∗ (with p = 0.90), which is given by (24). It has an estimate of
0.034 and an upper bound of 0.050. This upper bound indicates that 90% of discrepancies in
measurements from the methods lie within -0.05 to 0.05 with 95% confidence. Since the true value
range is around 4, this discrepancy may be regarded as acceptable. As a result, we may conclude
that the methods are in good agreement. This obviously suggests that the KL and rescaled SL
methods agree sufficiently to be deemed interchangeable.

6. Conclusions

This paper develops the methodology for analyzing replicated method comparison data
using the MEM framework with the ST distribution for true covariate and the t distribution
for errors. We considered the same degree for true covariates and errors. This methodology
is sufficient enough to accommodate normally distributed, skewed, heavy-tailed data and both
together. The main advantage of this model is that it can assess similarity and agreement between
methods, regardless of whether or not the methods use the same nominal unit of measurement.
We concentrated here on a comparison of two methods. However, the model may be expanded
to include more than two methods. Simulation experiments and the use of subcutaneous fat data
confirmed the efficiency and reliability of findings under the ST-RMEM model. Furthermore, we
determined that the ST-RMEM model performs best with skewed and heavy-tailed data. Our
proposed model would yield appropriate results for method comparison data with measurement
error, skewness, and heavy tails, which are frequent in many fields such as economics, health, and
the environment.

Data availability statement

The subcutaneous fat dataset is available in Carstensen et al. (2020).
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Table 2: Relative efficiencies of ST-RMEM-based estimators relative to the N-
RMEM and SN-RMEM

m Quantity λ = 5 λ = 10
MSESN/MSEST MSEN/MSEST MSESN/MSEST MSEN/MSEST

20 α 1.669 1.564 1.645 1.615
β 1.697 1.591 1.689 1.664
µb 1.542 6.880 1.494 39.476

log(ϕb) 2.214 16.298 2.899 125.044
λb 12.140 - 14.691 -

log(ϕδ) 2.941 2.869 3.041 3.004
log(ϕϵ) 2.230 2.230 2.261 2.261
log(ϕe) 2.420 1.864 2.552 2.008

50 α 2.518 2.353 2.478 2.436
β 2.599 2.427 2.542 2.479
µb 2.987 11.626 2.784 79.822

log(ϕb) 6.929 46.536 7.531 384.150
λb 17.174 - 15.026 -

log(ϕδ) 4.310 4.195 4.420 4.386
log(ϕϵ) 3.144 3.145 3.244 3.244
log(ϕe) 4.950 3.322 4.451 3.514

100 α 4.281 4.007 4.079 4.016
β 4.466 4.172 4.272 4.160
µb 5.886 20.898 4.224 150.331

log(ϕb) 16.624 106.344 8.354 860.975
λb 14.090 - 9.108 -

log(ϕδ) 8.006 7.790 8.370 8.245
log(ϕϵ) 4.114 4.114 4.215 4.215
log(ϕe) 7.444 5.211 6.147 5.975
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Table 3: Results of model selection criteria when the ST-RMEM is the data
generating model

Set m Criterion Models
ST-RMEM SN-RMEM N-RMEM

λ = 5 20 AIC -127.966 -114.127 -114.254
BIC -120.001 -106.161 -107.284

50 AIC -334.621 -291.235 -286.153
BIC -319.325 275.939 -272.769

100 AIC -681.815 -585.752 -571.630
BIC -660.974 -564.911 -553.394

λ = 10 20 AIC -130.099 -115.218 -115.177
BIC -122.133 -107.252 -108.206

50 AIC -341.021 -295.815 -288.066
BIC -325.725 -280.519 -274.681

100 AIC -695.410 -596.829 -575.334
BIC -674.569 -575.987 -557.098

Table 4: Estimated type I error probabilities for 5% level likelihood ratio test

Set m H0 : SN-RMEM model is preferable H0 : N-RMEM model is preferable
H1 : ST-RMEM model is preferable H1 : ST-RMEM model is preferable

λ = 5 20 0.067 0.044
50 0.008 0.002
100 < 0.001 < 0.001

λ = 10 20 0.062 0.032
50 0.008 0.001
100 < 0.001 < 0.001
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Table 6: Model selection criteria and measures of agreement for transformed
subcutaneous fat data. Lower bound for CCC∗ and upper bound for TDI∗ are
presented

Models AIC BIC CCC∗ TDI∗

Estimate 95% Bound Estimate 95% Bound
ST-RMEM -278.806 -259.171 0.990 0.984 0.034 0.050
SN-RMEM -261.149 -241.514 0.987 0.977 0.056 0.083
N-RMEM -264.469 -247.289 0.987 0.980 0.232 0.263

Figure 1: Histogram (a-b) and normal Q-Q plot (c-d) of the subcutaneous fat
data. Left panel for ’KL’ observer and right panel for ’SL’ observer
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Figure 2: Trellis plot for subcutaneous fat data
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Figure 3: Scatterplot with line of equality (left) and Bland-Altman plots with
zero line (right) for subcutaneous fat thickness measurements. One measurement
per method from each of the 43 subjects is randomly selected for this plot. Same
as the top panel but based on 43 average measurements
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