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Abstract
In this article, three new association schemes and construction of partially balanced

incomplete block (PBIB) designs based on these association schemes in three and four as-
sociate classes using polyhedra have been proposed. Construction methods use polyhedra
such as icosahedron, octahedron and pentagonal prism. PBIB designs based on icosahedral
and octahedral association schemes are resolvable block designs whereas designs based on
pentagonal prism association scheme are 2-replicate PBIB designs. A simple analysis of
these designs is outlined including generalized forms of canonical efficiency factors (CEFs)
and average variances (V̄ ). A catalogue of PBIB designs for k (size of each block) ≤ 20 is
given along with computed efficiencies.

Key words: Icosahedral association scheme; Octahedral association scheme; Pentagonal
prism association scheme; Resolvable partially balanced incomplete block design.

1. Introduction

PBIB designs based on 2-associate classes have been extensively studied in the litera-
ture and for a comprehensive catalogue of these designs; one may refer to Clatworthy (1973);
Dey (1977); Sinha (1991); Ghosh and Divecha (1995); and Saurabh and Sinha (2022). A lot
of literature is available on PBIB designs based on 3- or higher class association schemes.
PBIB designs based on rectangular (3-class) association scheme (known as rectangular de-
signs) are an important class of block designs with factorial structure for experiments with
two factors [see e.g., Vartak (1955), Sharma and Das (1985), Suen (1989), Srivastava et al.
(2000), Parsad et al. (2007a, 2007b) and references cited therein]. The nested group divisible
designs, a class of PBIB(3) designs, useful for 3-factor experiments was introduced by Roy
(1953) were subsequently studied by Raghavarao (1960); Bhagwandas et al. (1992); Duan
and Kageyama (1993); Miao et al. (1996); and Mitra et al. (2002). More generalized asso-
ciation scheme called extended group divisible association scheme and designs based on this
scheme are known as extended group divisible (EGD) designs was introduced by Hinkelmann
(1964). Many useful applications of these designs and their catalogue are given in Parsad et
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al. (2007a, 2007b). Rao (1956) developed circular lattices which were essentially PBIB(3)
designs for v = 2n2 treatments, where n ≥ 2 and these were further generalized by Varghese
and Sharma (2004) to accommodate 2sn2 treatments; n, s ≥ 2. Also, Varghese et al. (2004)
gave some PBIB(3) designs and their applications to partial diallel crosses. Sharma et al.
(2010) introduced 3-associate-class tetrahedral and cubical association schemes and meth-
ods of constructions of PBIB(3) designs based on these schemes using polyhedra such as
tetrahedron and cube (hexahedron). On the similar lines, Vinayaka and Vinaykumar (2021)
extended the work on graph based 2- and 3-associate class schemes of Garg and Farooq
(2014) to 3- and 4-class graphical association schemes and constructions of related PBIB
designs.

Some work on investigations of 4-associate class PBIB designs was carried out by
several authors such as Nair (1951), Tharthare (1963, 1965), Garg et al. (2011), and others.
Further, investigations on 2-replicate PBIB designs are limited to only Varghese and Sharma
(2004); Sharma et al. (2010); and Kipkemoi et al. (2013, 2015).

For some parameters neither a BIB design nor a PBIB design with 2-associate classes
is available. The best alternative design for such situations is higher associate PBIB design,
if such design exists. Hence, in this investigation, we extend the work on 3- and 4-associate
class PBIB designs further by proposing three new association schemes called icosahedral
association scheme with 4-associate classes; octahedral association scheme with 3-associate
classes and pentagonal prism association scheme with 3-associate classes and methods of
constructing related PBIB designs based on these schemes. First two schemes produces 3-
and 4-class PBIB designs belongs to the resolvable block designs which are also used in
information theory i.e., constructing A2-codes and low density parity-check (LDPC) codes
[see e.g., Pei (2006); and Xu et al. (2015, 2020) ] and in sequential experimentation over space
and time [see e.g., Patterson and Silvery (1980); John and Williams (1995); and Morgan and
Reck (2007)]. The third scheme give rise to the two-replicate PBIB design which is beneficial
in the situation of limited resources and also for developing mating plans in the area of plant
breeding experiments like Narain (1993), Kaushik (1999), and others. We can also find
applications of PBIB design in cryptology; see for example, Adhikari et al. (2007).

However, several authors such as Harshbarger (1949); Bose and Nair (1962); David
(1967); Patterson and Williams (1976); Williams et al. (1976, 1977); Jarrett and Hall (1978);
Varghese and Sharma (2004); Sharma et al. (2010); etc., fostered detailed information on
problems of construction and analysis of resolvable incomplete block designs.

Flowchart of the article as follows: In Section 2, three new association schemes viz.,
icosahedral association scheme, octahedral association scheme and pentagonal prism asso-
ciation scheme are defined along with numerical illustrations. Section 3 deals with the
constructions of PBIB designs using icosahedron, octahedron, and pentagonal prism along
with examples. An outline of analysis of these designs is established in Section 4. Section 5
reveals a brief discussion. A catalogue of efficient PBIB designs has been obtained for k ≤ 20
and is presented in the Appendix.

2. Definition of association schemes and numerical illustrations

It is well known that any polyhedron is a three-dimensional shape with V number of
vertices, E number of edges and F number of faces. Polyhedra satisfy the Euler characteristic
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χ which relates the V,F and E as χ = V + F − E, for details, one may refer to Richeson
(2019). Further, convex polyhedra where every face is the same kind of regular polygon
with n number of edges may be found among three families viz., formerly triangles: these
polyhedra are called deltahedra. There are only eight strictly-convex deltahedra out of
which three are regular polyhedra (such as tetrahedron, octahedron and icosahedron are
indeed platonic solids), and five are Johnson solids. Secondly, squares: the hexahedron is
the only convex example and thirdly, pentagons: the regular dodecahedron is the only convex
example. These are useful for constructions of PBIB designs; a reference can be made to
Sharma et al. (2010).

Now we define three association schemes using icosahedron, octahedron and pentag-
onal prism in the sequel.

2.1. Icosahedral association scheme

Let the number of symbols (treatments) be v = 12m (m ≥ 2). Arrange these symbols
on the twelve vertices of an icosahedron such that each vertex contains exactly m distinct
symbols and intersected by five distinct edges. We define the four associates of a particular
treatment ϕ as follows:

(i) Treatments except ϕ appearing in the same vertex with ϕ are the first associates;

(ii) Treatments appearing in different vertices that directly meet a vertex of ϕ through
single edge are the second associates;

(iii) Treatments appearing in the end vertex that is exactly opposite to the vertex of ϕ are
the third associates;

(iv) The remaining treatments are the fourth associates.

The parameters of first kind and second kind (association matrices) of the association scheme
are delineated in continuation. i.e., v(= 12m), n1 = m− 1, n2 = 5m, n3 = m, n4 = 5m, and

P1 =


m− 2 0 0 0

0 5m 0 0
0 0 m 0
0 0 0 5m

 , P2 =


0 m− 1 0 0

m− 1 2m 0 2m
0 0 0 m
0 2m m 2m



P3 =


0 0 m− 1 0
0 0 0 5m

m− 1 0 0 0
0 5m 0 0

 , P4 =


0 0 0 m− 1
0 2m m 2m
0 m 0 0

m− 1 2m 0 2m

 .

Here, ni is the number of ith (i =1, 2, 3, 4) associates of a given treatment. Given any two
treatments that are mutually ith associates, the number of treatments common to the jth
associates of the first and kth associates of the second is pi

jk (i, j, k =1, 2, 3, 4) reflected in
Pi matrices.

Moreover, this association scheme may also be defined alternatively as follows: Arrange
v = 12m (m ≥ 2) treatments in 12 columns and m rows then the treatment δ, say, is the
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first associate of specific treatment ϕ, say, if δ belongs to the same column of ϕ; the second
associate, if δ occur either in second or third or fourth or fifth or sixth column; the third
associate, if δ occur in seventh column; and the fourth associate, otherwise.

Illustration 1: Let v = 24(= 12 × 2) treatments arranged on the twelve vertices of an
icosahedron such that each vertex comprises exactly two distinct treatments are shown in
Figure 1 or arrange these v = 24(= 12 × 2) treatments in 12 columns and 2 rows as given
below.

1 3 5 7 9 11 13 15 17 19 21 23
2 4 6 8 10 12 14 16 18 20 22 24

Figure 1: Arrangement of 24 treatments on the vertices of an icosahedron

The parameters of this association scheme are v = 24, n1 = 1, n2 = 10, n3 = 2, n4 = 10,
and association matrices as:

P1 =


0 0 0 0
0 10 0 0
0 0 2 0
0 0 0 10

 , P2 =


0 1 0 0
1 4 0 4
0 0 0 2
0 4 2 4

 , P3 =


0 0 1 0
0 0 0 10
1 0 0 0
0 10 0 0

 , P4 =


0 0 0 1
0 4 2 4
0 2 0 0
1 4 0 4

 .

2.2. Octahedral association scheme

Let the number of treatments be v = 6m (m ≥ 2). Arrange these v = 6m treatments
on the six vertices of an octahedron such that each vertex filled with m number of distinct
treatments. Now we define the three associates of a specific treatment θ as follows:

(i) Treatments other than θ present in the same vertex of θ are the first associates;
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(ii) Treatments present in different vertices that intersect the vertex of θ through their
respective edges are the second associates;

(iii) The remaining treatments are the third associates.

The parameters of first kind of this association scheme are v(= 6m), n1 = m− 1, n2 = 4m,
n3 = m. Further, association matrices (parameters of second kind) are as follows:

P1 =

m− 2 0 0
0 4m 0
0 0 m

 , P2 =

 0 m− 1 0
m− 1 2m m

0 m 0

 , P3 =

 0 0 m− 1
0 4m 0

m− 1 0 0

 .

The alternative definition for the above association scheme is as follows: Arrange v = 6m
(m ≥ 2) treatments in six columns and m rows then the treatment δ, say, is the first associate
of specific treatment θ, say, if δ belongs to the same column of θ; the second associate, if δ
appears in any column except fourth column; and the third associate, otherwise.

Figure 2: Arrangement of 12 treatments on the vertices of an octahedron
Illustration 2: Let v = 12(= 6×2) treatments arranged on the six vertices of an octahedron
such that each vertex contains 2 distinct treatments are shown in Figure 2 or arrange these
v = 12(= 6 × 2) treatments in six columns and two rows as given below.

1 3 5 7 9 11
2 4 6 8 10 12

The parameters of this association scheme are v = 12, n1 = 1, n2 = 8, n3 = 2, and

P1 =

0 0 0
0 8 0
0 0 2

 , P2 =

0 1 0
1 4 2
0 2 0

 , P3 =

0 0 1
0 8 0
1 0 0

 .
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2.3. Pentagonal prism association scheme

A pentagonal prism is also polyhedron and a type of three-dimensional solid objects
which comprises the two identical five sided pentagonal bases (ends) and remaining five faces
are rectangles or parallelograms. Interestingly, two identical five sided pentagons contact
each other with five edges respectively. Let v = 10m (m ≥ 1) be the number of treatments.
Arrange these treatments on the ten vertices of a pentagonal prism such that each vertex
contains exactly m distinct treatments. Now we define the three associates of a specific
treatment ψ as follows:

(i) Treatments other than ψ present in the two vertices of the same edge Ey ∀ y = 1, 2,
3, 4, 5 are the first associates;

(ii) Treatments present in the different vertices of any two rectangles that contain common
edge Ey except treatments lie on both terminals of Ey are the second associates;

(iii) The remaining treatments are the third associates.

Figure 3: Arrangement of 20 treatments on the vertices of pentagonal prism
Here, the edges within identical five sided pentagons (both upper and lower) are of not
interested, hence these are not named in Figure 3. The parameters of the association scheme
are: v(= 10m), n1 = 2m− 1, n2 = 4m, n3 = 4m, and

P1 =

2(m− 1) 0 0
0 4m 0
0 0 4m

 , P2 =

 0 2m− 1 0
2m− 1 0 2m

0 2m 2m

 , P3 =

 0 0 2m− 1
0 2m 2m

2m− 1 2m 0
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Alternatively, the above association scheme may be defined as follows: arrange v = 10m
(m ≥ 1) treatments in 10 columns and m rows then the treatment δ, say, is the first
associate of particular treatment ψ, say, if δ belongs to either same column of ψ or sixth
column; the second associate, if δ appears either in second or fifth or seventh column; and
the third associate, otherwise.

Illustration 3: Let v = 20(= 10×2) treatments arranged on the ten vertices of a pentagonal
prism such that each vertex contains m = 2 distinct treatments as shown in Figure 3 or
arrange these treatments in 10 columns and 2 rows as given below.

1 3 5 7 9 11 13 15 17 19
2 4 6 8 10 12 14 16 18 20

The parameters of this association scheme are: v = 20, n1 = 3, n2 = 8, n3 = 8, and

P1 =

2 0 0
0 8 0
0 0 8

 , P2 =

0 3 0
3 0 4
0 4 4

 , P3 =

0 0 3
0 4 4
3 4 0

 .

3. Construction methods of PBIB designs

In this section, we give two construction methods of resolvable PBIB designs and
a construction method of 2-replicate PBIB design based on aforesaid association schemes
i.e., icosahedral association scheme, octahedral association scheme, and pentagonal prism
association scheme, respectively.

3.1. Method of constructing icosahedral PBIB(4) design

An arrangement v = 12m (m ≥ 2) treatments on the vertices of an icosahedron such
that each vertex contains m number of distinct treatments is given in Figure 1. Evidently,
each vertex is intersected by five edges. Let v = 12m treatments are defined on the icosahe-
dral association scheme. In order to form a block, combine the treatments of a chosen vertex
and five distinct vertices which intersect this chosen vertex. Applying this process to all
twelve vertices of an icosahedron yields a PBIB(4) design based on icosahedral association
scheme with parameters v = 12m, b = 12, r = 6, k = 6m, λ1 = 6, λ2 = 4, λ3 = 0, λ4 = 2.

Example 1: Let v = 24(= 12 × 2) treatments are defined on the icosahedral association
scheme. One can get an idea about arrangement of treatments on vertices of icosahedron
with the help of Figure 1. Now, by following the procedure of Method 3.1, one gets a PBIB(4)
design based on the icosahedral association scheme with parameters are as v = 24, b = 12,
r = 6, k = 12, λ1 = 6, λ2 = 4, λ3 = 0, λ4 = 2. This design is a resolvable class of incomplete
block designs wherein twelve blocks can be grouped into six sets of two blocks each, that is,
{(B1, B2); (B3, B4); (B5, B6); (B7, B8); (B9, B10); (B11, B12)} such that every treatment
appears in each set exactly once. The block structure of the design is given below.

Remark 1: For m = 1, this scheme also reduced to 3-associate class rectangular association
scheme. The PBIB(3) design so obtained is symmetric rectangular design with parameters
v = 12 = b, r = 6 = k, λ1 = 4, λ2 = 0, λ3 = 2. This design seems to be new and not
reported in the Varghese et al. (2004) and Parsad et al. (2007b).
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Replication No. Block No. Block Contents
I B1 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

B2 (13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24)
II B3 (1, 2, 3, 4, 5, 6, 9, 10, 19, 20, 23, 24)

B4 (7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22)
III B5 (1, 2, 3, 4, 5, 6, 7, 8, 21, 22, 23, 24)

B6 (9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20)
IV B7 (1, 2, 5, 6, 7, 8, 11, 12, 15, 16, 21, 22)

B8 (3, 4, 9, 10, 13, 14, 17, 18, 19, 20, 23, 24)
V B9 (1, 2, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18)

B10 (3, 4, 5, 6, 13, 14, 19, 20, 21, 22, 23, 24)
VI B11 (1, 2, 3, 4, 9, 10, 11, 12, 17, 18, 19, 20)

B12 (5, 6, 7, 8, 13, 14, 15, 16, 21, 22, 23, 24)

3.2. Method of constructing octahedral PBIB(3) design

An octahedron has eight triangular faces and twelve edges, each face enclosed by the
three vertices. Let v = 6m (m ≥ 2). Arrangement of these v treatments on the six vertices of
an octahedron such that each vertex contains m number of distinct treatments as indicated
in the association scheme. Now form the contents of a block by taking treatments that lie
on three vertices of specific triangular face. Likewise, obtain the other seven blocks using
remaining triangular faces of octahedron. The eight blocks thus obtained, each corresponding
to one triangular face. This process results in a PBIB(3) design based on the octahedral
association scheme with parameters v = 6m, b = 8, r = 4, k = 3m, λ1 = 4, λ2 = 2, λ3 = 0.

Example 2: Let v = 12(= 6 × 2) treatments are defined on the octahedral association
scheme. Figure 2 gives an idea about arrangement of treatments on vertices of octahedron.
Now applying the procedure of Method 3.2, we can get a PBIB(3) design based on the
octahedral association scheme with parameters as v = 12, b = 8, r = 4, k = 6, λ1 = 4,
λ2 = 2, λ3 = 0. This design is resolvable as its eight blocks can be grouped into four sets of
two blocks each, that is, {(B1, B2); (B3, B4); (B5, B6); (B7, B8)} such that every treatment
appears in each set exactly once. The block layout of the design is displayed below.

Replication No. Block No. Block Contents
I B1 (1, 2, 3, 4, 5, 6)

B2 (7, 8, 9, 10, 11, 12)
II B3 (1, 2, 3, 4, 11, 12)

B4 (5, 6, 7, 8, 9, 10)
III B5 (1, 2, 5, 6, 9, 10)

B6 (3, 4, 7, 8, 11, 12)
IV B7 (1, 2, 9, 10, 11, 12)

B8 (3, 4, 5, 6, 7, 8)

Remark 2: For m = 1, this scheme also reduced to two-class group divisible (GD) associ-
ation scheme. The design so obtained is a semi-regular group divisible (SRGD) design with
parameters as v = 6, b = 8, r = 4, k = 3, λ1 = 0, λ2 = 2, n1 = 1, n2 = 4 which is SR19 in
the Clatworthy (1973).
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3.3. Method of constructing pentagonal prism PBIB(3) design

Arrange v = 10m (m ≥ 1) treatments on the vertices of pentagonal prism such that
each vertex contains m number of distinct treatments. Let v = 10m treatments are defined
on the pentagonal prism association scheme. Evidently, one can form five distinct rectangular
shapes through diagonals using upper and lower pentagons given in Figure 3, so these are
named as diagonal rectangles. Form five blocks of the design each one corresponding to a
diagonal rectangular shape by combining the treatments situated on four vertices of that
diagonal rectangle as the block contents. This process yields a PBIB(3) design based on
pentagonal prism association scheme with parameters as v = 10m, b = 5, r = 2, k = 4m,
λ1 = 2, λ2 = 0, λ3 = 1.

Example 3: Let v = 20(= 10 × 2) treatments are defined on the pentagonal prism associ-
ation scheme. For the arrangement of the treatments given in Figure 3, Now, by following
the procedure of Method 3.3, one can get a PBIB(3) design based on pentagonal prism
association scheme with block contents are given below:

Block No. Block Contents
B1 (1, 2, 5, 6, 11, 12, 15, 16)
B2 (1, 2, 7, 8, 11, 12, 17, 18)
B3 (3, 4, 7, 8, 13, 14, 17, 18)
B4 (3, 4, 9, 10, 13, 14, 19, 20)
B5 (5, 6, 9, 10, 15, 16, 19, 20)

The design so obtained is a pentagonal prism design with parameters as v = 20, b = 5, r = 2,
k = 8, λ1 = 2, λ2 = 0, λ3 = 1.

4. Analysis

The above designs viz., icosahedral, octahedral, and pentagonal prism designs can be
analyzed as general PBIB designs. For completeness, simple steps for method of analysis are
as follows: we know that the liner additive fixed effect model i.e.,

y = µ1 + Z′
1α + Z′

2β + ε

where, y = vector of n observations, µ = general mean, α = (α1, α2, . . . , αv) = vector of
treatment effects, β = (β1, β2, . . . , βb) = vector of block effects, 1 = vector of unities with
order (n × 1), Z′

1 = treatments vs observations incidence matrix with order (v × n), Z′
2 =

blocks vs observations incidence matrix with order (b × n) and ε ∼ N (0, σ2In) = vector of
errors with order (n× 1).

The general expressions of the information (C) matrices, Eigen values (ηl, ∀ l = 1,
2, 3, 4) and corresponding multiplicities (ωl, ∀ l = 1, 2, 3, 4) of these information matrices
for aforementioned designs (i.e., icosahedral, octahedral, and pentagonal prism designs) are
displayed in the Table 1. Here, Cid, Cod, and Cpd are the information matrices of icosahedral,
octahedral, and pentagonal prism designs, respectively and also their corresponding incidence
matrices denoted as N1, N2, and N3. Further, concurrence matrices and associates using
these incidence matrices are also mentioned in the Table 2.
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Table 1: Eigen values and corresponding multiplicities of C-matrices of designs

Particulars C-matrix Eigen values Multiplicities

Icosahedral design Cid = 6I12m − (6m)−1N1N′
1

η1
η2
η3
η4

6
5.745
4.255

0

ω1
ω2
ω3
ω4

12m− 7
3
3
1

Octahedral design Cod = 4I6m − (3m)−1N2N′
2

η1
η2
η3

4
2.667

0

ω1
ω2
ω3

2(3m− 2)
3
1

Pentagonal prism design Cpd = 2I10m − (4m)−1N3N′
3

η1
η2
η3
η4

2
1.809
0.691

0

ω1
ω2
ω3
ω4

5(2m− 1)
2
2
1

It is well known that the canonical efficiency factors (CEFs) is 1/r times of harmonic
mean of non-zero and positive Eigen values of the information matrix for a given block
design. i.e.,

CEFs = 1
r

 (ω1 + ω2 + . . .+ ωl)(
ω1
η1

+ ω2
η2

+ . . .+ ωl

ηl

)


Table 2: Concurrence matrices and associates using incidence matrices of designs

Particulars N1N′
1 = ((nii′)) N2N′

2 = ((nii′)) N3N′
3 = ((nii′))

if i = i′(= 1, 2, . . . , v) = r(= 6) = r(= 4) = r(= 2)
if i and i′ are the 1st associates = λ1(= 6) = λ1(= 4) = λ1(= 2)
if i and i′ are the 2nd associates = λ2(= 4) = λ2(= 2) = λ2(= 0)
if i and i′ are the 3rd associates = λ3(= 0) = λ3(= 0) = λ3(= 1)
if i and i′ are the 4th associates = λ4(= 2) − −

Suppose for icosahedral design, there are four Eigen values (ηl) and their corresponding
multiplicities (ωl) as in Table 1, then its canonical efficiency factors are derived as follows:

CEFs = 1
6

 (12m− 7 + 3 + 3)(
12m−7

6 + 3
5.745 + 3

4.255

)
 =

[
(12m− 1)

(12m+ 0.364)

]
= 11(12m− 1)

4(33m+ 1)

Similarly, expressions of canonical efficiency factors (CEFs) and average variances (V̄ ) of
these designs are generalized in Table 3.

Table 3: Canonical efficiency factors (CEFs) and average variances (V̄ )

Particulars CEFs V̄
Icosahedral design 11(12m− 1)/4(33m+ 1) 4(33m+ 1)/33(12m− 1)
Octahedral design 2(6m− 1)/(12m+ 1) (12m+ 1)/4(6m− 1)

Pentagonal prism design (10m− 1)/(10m+ 3) (10m+ 3)/(10m− 1)
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For more details and a comprehensive bibliography on canonical efficiency factors (CEFs),
one may refer to Dey (2008). At last, a list of these designs using aforementioned three
methods of construction is given along with computed efficiencies as Table 4, Table 5, and
Table 6 respectively in the Appendix.

5. Discussion

The designs obtained from the icosahedral and octahedral association schemes fall
into the resolvable class of incomplete block designs with minimal replications (i.e., r ≤ 6).
The benefit of resolvable design is that its replications can be applied over different locations
or over distinct time periods. Further, pentagonal prism association scheme provide 2-
replicate PBIB designs which are beneficial when the experimenters facing the situation of
constraint of resources. Additionally, efficiencies of these designs are quite high. Hence, these
designs can be used to test a large number of cultivars in agricultural trials. The association
schemes of these designs also find application in obtaining efficient partial diallel cross plans
in plant/animal breeding experiments.
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Appendix

Table 4: PBIB(4) designs based on Icosahedral association scheme with k ≤ 20
using Method 3.1

SI. No. m v b r k λ1 λ2 λ3 λ4 E1 E2 E3 E4 E
1 2 24 12 6 12 6 4 2 0 1 0.9649 0.8979 0.9282 0.9440
2 3 36 12 6 18 6 4 2 0 1 0.9763 0.9295 0.9510 0.9625

Table 5: PBIB(3) designs based on Octahedral association scheme with k ≤ 20
using Method 3.2

SI. No. m v b r k λ1 λ2 λ3 E1 E2 E3 E
1 2 12 8 4 6 4 2 0 1 0.8889 0.8000 0.8800
2 3 18 8 4 9 4 2 0 1 0.9230 0.8571 0.9189
3 4 24 8 4 12 4 2 0 1 0.9411 0.8889 0.9388
4 5 30 8 4 15 4 2 0 1 0.9524 0.9090 0.9508
5 6 36 8 4 18 4 2 0 1 0.9600 0.9231 0.9589

Table 6: PBIB(3) designs based on Pentagonal prism association scheme with
k ≤ 20 using Method 3.3

SI. No. m v b r k λ1 λ2 λ3 E1 E2 E3 E
1 1 10 5 2 4 2 0 1 1 0.5882 0.7692 0.6923
2 2 20 5 2 8 2 0 1 1 0.7407 0.8695 0.8261
3 3 30 5 2 12 2 0 1 1 0.8108 0.9090 0.8788
4 4 40 5 2 16 2 0 1 1 0.8511 0.9302 0.9070
5 5 50 5 2 20 2 0 1 1 0.8772 0.9433 0.9245
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