A Survey on Cyclic Solution of Block Designs

Shyam Saurabh ${ }^{1}$ and Kishore Sinha ${ }^{2}$
${ }^{1}$ Ranchi University, Ranchi, India
${ }^{2}$ Formerly at Birsa Agricultural University, Ranchi, India and
\#201 Maitry Residency, Kalkere Main Road, Bangalore - 560043

Received: 07 September 2021; Revised: 17 September 2021; Accepted: 21 September 2021

Abstract

Cyclic designs are incomplete block designs based on cyclic development of one or more initial blocks. John et al. (1972) described the advantages of cyclic designs as calibration designs and experimental designs and tabulated these designs in the useful range of parameters which was published by National Bureau of Standards, Washington, DC. The cyclic designs may have up to $v / 2$ associate classes. The purpose of this survey is to present cyclic solutions of balanced incomplete block designs, group divisible designs, Latin square type designs and cyclic designs, wherever possible, which have at most two associate classes and higher efficiencies.

Key words: Balanced incomplete block (BIB) designs; Semi-regular and regular group divisible designs; Latin square type designs; Cyclic Designs.

1. Introduction

Cyclic designs are incomplete block designs based on cyclic development of one or more initial blocks. Their flexibility, ease in conduct of experiment and natural groupings for one-way elimination of heterogeneity, make them worthy of attention in their own right. All cyclic designs are partially balanced incomplete block (PBIB) designs with up to $v / 2$ associate classes. Among the class of cyclic designs, cyclic balanced incomplete block (BIB) designs are obviously best in the sense that all the pair-wise treatment comparisons are measured with same and maximum efficiency. When no cyclic BIB design exists, then we look for cyclic solution of two associate class PBIB design with same (v, b, r, k). These designs are used as calibration designs and experimental designs [see John et al. (1972), Clatworthy (1973), John and Williams (1995)]. Cyclic designs were catalogued by John et al. (1972). The cyclic solutions of BIB designs were given by Hall (1998), wherever possible. Clatworthy (1973) tabulated two associate classes PBIB designs. The purpose of this paper is to present a survey on cyclic solutions of BIB designs, group divisible designs, Latin square type designs and cyclic designs in the range of $r, k \leq 10$.

The concept of cyclic designs is extended to generalized cyclic designs which are useful as factorial experiments [see Jarrett and Hall (1978), Lamacraft and Hall (1982), Nigam et al. (1988), Dean and Lewis (1990), Bailey (1990)].

A Group divisible design (GDD) is an arrangement of $v(=m n ; m, n \geq 2)$ treatments into b blocks such that each block contains $k(<v)$ distinct treatments, each treatment occurs r times and any pair of distinct treatments which are first associates occur together in λ_{1} blocks and in λ_{2} blocks if they are second associates. Furthermore, if $r-\lambda_{1}=0$ then the GD design is Corresponding Author: Kishore Sinha
Email: kishore.sinha@gmail.com
singular (S); if $r-\lambda_{1}>0$ and $r k-v \lambda_{2}=0$ then it is semi-regular (SR); and if $r-\lambda_{1}>0$ and $r k-v \lambda_{2}$ >0, the design is regular (R). For definitions and terminologies, we refer to Dey (1986, 2010), Raghavarao (1971), Raghavarao and Padgett (2005).

2. Cyclic Solutions of Block Designs

No.	BIBD/GDD/ CD/ LSD: (v, r, k, b); Overall Efficiency	John No.; Overall Efficiency	Cyclic Solutions
1^{M}	SR1: (4, 2, 2, 4); 0.60		G: $(1,4) \bmod 4$
$2{ }^{*}$	C1: (5, 2, 2, 5); 0.50	-	$C:(1,3) \bmod 5$
3 *	C6: (5, 6, 2, 15); 0.61	-	C: $(1,3) ;(1,3) ;(1,2) \bmod 5$
4^{*}	C7: (5, 8, 2, 20); 0.59	-	C: $(1,3) ;(1,3) ;(1,3) ;(1,2) \bmod 5$
$5 *$	C8: ($5,10,2,25$); 0.58	-	$C:(1,3) ;(1,3) ;(1,3) ;(1,3) ;(1,2)$ $\bmod 5$
6*	C9: (5, 10, 2, 25); 0.62	-	$C:(1,3) ;(1,3) ;(1,3) ;(1,2) ;(1,2)$ $\bmod 5$
7^{M}	SR7: (6, 6, 2, 18); 0.56	2×A2; 0.55	G: $(0,1) ;(0,3) ;(0,5) \bmod 6$
8^{M}	SR13: (12, 6, 2, 36); 0.52	$2 \times A 26 ; 0.39$	G: $(0,1) ;(0,3) ;(0,5) \bmod 12$
9^{*}	C10: (13, 6, 2, 39); 0.50	A36; 0.50	(1, 3); (1, 6); (1, 7) mod 13
10^{M}	SR15: (16, 8, 2, 64); 0.52	A57; 0.52	G: (0, 1); (0, 3); (0, 5); (0, 7) mod 16
11^{*}	C11: (17, 8, 2, 68); 0.50	A62; 0.51	$(1,4) ;(1,6) ;(1,7) ;(1,8) \bmod 17$
12^{M}	$\begin{aligned} & \text { SR17: }(20,10,2,100) \text {; } \\ & 0.51 \end{aligned}$	A81; 0.51	$G:(0,1) ;(0,3) ;(0,5) ;(0,7) ;(0,9)$ $\bmod 10$
13^{*}	C12: ($5,3,3,5$); 0.81		$C:(1,2,4) \bmod 5$
14^{*}	C15: (5, 9, 3, 15); 0.83	-	(1,3, 5); (1, 3, 5); (1, 2, 5) mod 5
15^{*}	R42: (6, 3, 3, 6); 0.78	B1, 0.78	$G:(1,2,4) \bmod 6$
16	H1: (7, 3, 3, 7); 0.78	B2; 0.78	$B:(1,2,4) \bmod 7$
17^{*}	R54: (8, 3, 3, 8); 0.75	B3; 0.75	G: $(1,2,4) \bmod 8$
$18^{\text {DN }}$	R55: (8, 6, 3, 16); 0.75	B5; 0.75	G: $(1,2,3) ;(1,3,6) \bmod 8$
19*	R58: (8, 9, 3, 24); 0.76	$3 \times B 3 ; 0.75$	$G:(1,2,3) ;(1,2,5) ;(1,3,6) \bmod 8$
$20^{M D}$	SR23: (9, 3, 3, 9); 0.73	B9; 0.72	$\begin{aligned} & G:(3,5,8) ;(2,6,8) ;(2,5,9) ; \\ & 1 \leftrightarrow 3,4 \leftrightarrow 6,7 \leftrightarrow 9(P C) \end{aligned}$
21	H2: (9, 4, 3, 12); 0.75	-	Add the blocks: $(1+3 x, 2+3 x, 3+3 x)$; $0 \leq x \leq 2$ to the solution in Serial No. 20
22^{M}	SR25: (9, 9, 3, 27); 0.73	$3 \times B 9 ; 0.72$	G: $(0,1,2) ;(0,4,8) ;(0,5,7) \bmod 9$
$23^{M D}$	R68: (9, 10, 3, 30); 0.74	-	G:(1,2, 3); (1, 2, 6); (1, 3, 5); (1, 4, 7) mod 9
24	H26: (10, 9, 3, 30); 0.74	B14; 0.70	$\begin{aligned} & B:(\infty, 0,5) ;(0,1,4) ;(0,2,3) ;(0,2,7) \bmod \\ & 9 \end{aligned}$
25^{*}	C16: (13, 3, 3, 13); 0.67	B50; 0.67	$C:(1,3,9) \bmod 13$
26	H9: (13, 6, 3, 26); 0.72		B: $(1,3,9) ;(2,5,6) \bmod 13$
27^{*}	C19: (13, 9, 3, 39); 0.72	B54; 0.72	$\begin{aligned} & C:(1,12,13) ;(3,10,13) ;(4,9,13) \\ & \bmod 13 \end{aligned}$
28^{*}	R80: (14, 9, 3, 42); 0.67	B64; 0.67	$\begin{aligned} & G:(1,2,8) ;(1,8,9) ;(1,3,8) ;(1,8,10) ;(1, \\ & 4,8) ;(1,8,11) ; 1 \leftrightarrow 7,8 \leftrightarrow 14(P C) \end{aligned}$
29^{*}	R81: (15, 6, 3, 30); 0.71	B75; 0.71	$G:(1,4,15) ;(2,8,15) \bmod 15$
30^{*}	R83: (15, 9, 3, 45); 0.71	B77; 0.71	$\begin{aligned} & G:(1,7,13) ;(1,4,5) ;(1,3,8) \bmod 15 \\ & G:(1,2,5) ;(1,3,8) ;(1,4,10) \bmod 15 \end{aligned}$
31	H14: (15, 7, 3, 35); 0.71	B76; 0.71	$\begin{aligned} & B:\left(1_{1}, 4_{1}, 0_{2}\right) ;\left(2_{1}, 3_{1}, 0_{2}\right) ;\left(1_{2}, 4_{2}, 0_{3}\right) ; \\ & \left(2_{2}, 3_{2}, 0_{3}\right) ;\left(1_{3}, 4_{3}, 0_{1}\right) ;\left(2_{3}, 3_{3}, 0_{1}\right) ; \end{aligned}$

			$\left(0_{1}, 0_{2}, 0_{3}\right) \bmod 5$
32^{*}	LS18: (16, 3, 3, 16); 0.63	C1; 0.63	$\begin{aligned} & \text { L: }(7,10,16) ;(4,6,13) ;(4,7,9) ; \\ & (2,9,16) ; 1 \leftrightarrow 4,5 \leftrightarrow 8,9 \leftrightarrow 12,13 \leftrightarrow 16(\mathrm{PC}) \\ & \hline \end{aligned}$
33*	R86: (16, 6, 3, 32); 0.70	$2 \times C 1 ; 0.63$	$G:(1,2,11) ;(1,3,6) \bmod 16$
34^{*}	R87: (16, 9, 3, 48); 0.71	C1; 0.63	$G:(1,5,13) ;(1,2,11) ;(1,3,6) \bmod 16$
35^{*}	R89: (18, 9, 3, 54); 0.70	C11; 0.61	$\begin{aligned} & G:(1,11,13) ;(1,10,14) ;(1,15,18) ; \\ & (1,16,17) ;(1,2,5) ;(1,3,12) ; \\ & 1 \leftrightarrow 9,10 \leftrightarrow 18(P C) \end{aligned}$
36^{F}	$\begin{aligned} & \text { R89a: }(18,10,3,60) \text {; } \\ & 0.69 \end{aligned}$	-	$\begin{aligned} & G:(A 1, A 2, B 1) ;(B 1, B 2, A 1) ;(A 1, A 8, B 1) ; \\ & (B 1, B 8, A 4) ;(A 1, A 6, B 4) ;(B 1, B 6, A 1) ; \\ & \frac{1}{3}\{(A 1, A 4, A 7),(B 1, B 4, B 7)\} \\ & \bmod 9 \end{aligned}$
37^{*}	R91: (21, 9, 3, 63); 0.70	$3 \times C 32 ; 0.60$	$G:(1,2,11) ;(1,3,7) ;(1,4,9) \bmod 21$
38	H38: (21, 10, 3, 70); 0.70	-	$\begin{aligned} & \hline B:\left(1_{1}, 6_{1}, 0_{2}\right) ;\left(2_{1}, 5_{1}, 0_{2}\right) ;\left(3_{1}, 4_{1}, 0_{2}\right) ; \\ & \left(1_{2}, 6_{2}, 0_{3}\right) ;\left(2_{2}, 5_{2}, 0_{3}\right) ;\left(3_{2}, 4_{2}, 0_{3}\right) ;\left(1_{3}, 6_{3}, 0_{1}\right) ; \\ & \left(2_{3}, 5_{3}, 0_{1}\right) ;\left(3_{3}, 4_{3}, 0_{1}\right) ;\left(0_{1}, 0_{2}, 0_{3}\right) \bmod 7 \\ & \hline \end{aligned}$
39^{*}	R92: (24, 9, 3, 72); 0.69	$3 \times C 52 ; 0.58$	$G:(1,2,12) ;(1,3,8) ;(1,4,10) \bmod 24$
40^{*}	LS22: (25, 6, 3, 50); 0.67	$2 \times C 60 ; 0.57$	$\begin{aligned} & \text { L: (1, 5, 25); }(9,14,15) ;(18,23,24) ;(2,7, \\ & 8) ;(11,16,17) ;(1,3,13) ;(12,15,22) ;(6, \\ & 21,24) ;(8,10,20) ;(4,17,19) ; 1 \leftrightarrow 5,6 \leftrightarrow 10, \\ & 11 \leftrightarrow 15,16 \leftrightarrow 20,21 \leftrightarrow 25(\mathrm{PC}) \end{aligned}$
41^{*}	C20: (37, 9, 3, 111); 0.67	-	$\begin{aligned} & (1,10,26) ;(1,31,34)(1,11,37) \\ & \bmod 37 \end{aligned}$
42^{*}	R94: (6, 4, 4, 6); 0.89	-	$G:(1,2,4,6) \bmod 6$
$43^{\text {DB }}$	SR36: (8, 4, 4, 8); 0.84	B6; 0.85	$G:(2,3,4,5) ;(1,6,7,8) ; 1 \leftrightarrow 4,5 \leftrightarrow 8(P C)$
44^{*}	R98: (8, 8, 4, 16); 0.85	$2 \times B 6 ; 0.85$	$G:(1,2,3,5) ;(1,2,4,6) \bmod 8$
$45^{M D}$	SR39: (8, 8, 4, 16); 0.84	$2 \times B 6 ; 0.85$	$G:(1,4,6,7) ;(1,2,3,4) \bmod 8$
46^{*}	R104: (9, 4, 4, 9); 0.80	B12; 0.83	$\begin{aligned} & G:(1,2,4,7) \bmod 9 \\ & J:(1,2,4,5) \bmod 9 \end{aligned}$
47^{*}	R105: (9, 8, 4, 18); 0.80	$2 \times B 12 ; 0.83$	$\begin{aligned} & G:(1,2,4,7) ;(1,2,5,8) \bmod 9 \\ & 2 \text { copies of } J:(1,2,4,5) \bmod 9 \end{aligned}$
48	H20: (9, 8, 4, 18); 0.84	$2 \times B 12 ; 0.83$	$B:(0,1,2,4) ;(0,1,4,6) \bmod 9$
$49^{\text {DB }}$	R106: (10, 8, 4, 20); 0.82	$2 \times B 18 ; 0.83$	$\begin{aligned} & G:(3,4,5,6) ;(1,8,9,10) ;(2,4,5,6) ; \\ & (1,7,9,10) ; 1 \leftrightarrow 5,6 \leftrightarrow 10(P C) \end{aligned}$
50*	R109: (12, 4, 4, 12); 0.81	-	$G:(1,2,5,7) \bmod 12$
51^{F}	$\begin{aligned} & R 109 a: ~(12, ~ 7, ~ 4, ~ 21) ; ~ \\ & 0.82 \end{aligned}$	-	$\begin{aligned} & G:(A 1, A 2, A 3, B 4) ;(A 1, A 3, B 1, B 6) ; \\ & (A 1, A 4, B 2, B 6) ; \frac{1}{2}(B 1, B 2, B 4, B 5) \bmod 6 \end{aligned}$
$52^{M D}$	R110: (12, 8, 4, 24); 0.81	B39; 0.82	$G:(1,2,5,7) ;(1,2,8,10) \bmod 12$
53^{F}	$\begin{aligned} & \text { R110b: }(12,10,4,30) \\ & 0.81 \end{aligned}$	$2 \times B 37 ; 0.81$	$\begin{aligned} & \text { G: }(A 1, A 2, A 3, A 6) ;(A 1, A 3, B 4, B 6) ; \\ & (B 1, B 2, B 3, A 6) ;(B 1, B 3, A 4, B 6) ; \\ & (A 1, A 2, B 3, B 5) ;(B 1, B 2, A 3, A 5) ; \\ & \text { (mod 5) and } 6 \text { invariant } \end{aligned}$
54	H3: (13, 4, 4, 13); 0.81	B55; 0.81	$B:(0,1,3,9) \bmod 13$
55^{*}	C21: (13, 8, 4, 26); 0.80	B56; 0.81	$C:(1,4,12,13) ;(1,4,10,13) \bmod 13$
56^{*}	R112: (14, 4, 4, 14); 0.80	B65; 0.80	$G:(1,2,5,7) \bmod 14$
$57^{M D}$	R113: (14, 8, 4, 28); 0.80	B67; 0.80	$G:(1,2,5,7) ;(1,2,10,12) \bmod 14$
58^{F}	$\begin{aligned} & R 113 a:(14,10,4,35) \\ & 0.80 \end{aligned}$	B69; 0.80	$\begin{aligned} & G:(A 1, A 2, A 4, B 7) ;(B 1, B 2, B 7, A 7) ; \\ & (A 1, A 2, B 1, B 2) ;(A 1, A 3, B 1, B 3) ; \\ & (A 1, A 4, B 1, B 4) \bmod 7 \end{aligned}$
59*	R114: (15, 4, 4, 15); 0.80	B79; 0.80	$G:(1,3,4,12) \bmod 15$
60^{*}	R115: (15, 8, 4, 30); 0.73	B81; 0.80	$\begin{aligned} & G:(1,2,6,11) ;(1,6,7,11) ;(1,6,11,12) ; \\ & (1,6,8,11) ;(1,6,11,13) ;(1,3,6,11) ; 1 \leftrightarrow \end{aligned}$

			$\begin{aligned} & 5,6 \leftrightarrow 10,11 \leftrightarrow 15(P C) \\ & J:(1,2,5,6) ;(1,3,9,11) \bmod 15 \end{aligned}$
$61^{M D}$	R116: (15, 8, 4, 30); 0.80	B81; 0.80	$G:(0,1,3,7) ;(1,3,4,12)$ mod15
62^{*}	R117: (15, 8, 4, 30); 0.80	B81; 0.80	$G:(1,3,11,15) ;(1,5,7,15) \bmod 15$
63^{*}	LS38: (16, 8, 4, 32); 0.80	$2 \times C 2 ; 0.79$	$\begin{aligned} & \hline L:(5,6,8,11) ;(1,5,9,13) ;(1,4,10,15) ;(7, \\ & 13,14,16) ;(9,10,12,15) ;(1,2,7,12) ;(1,5, \\ & 9,13) ;(1,3,6,16) ; \\ & 1 \leftrightarrow 4,5 \leftrightarrow 8,9 \leftrightarrow 12,13 \leftrightarrow 16(\mathrm{PC}) \\ & \hline \end{aligned}$
64^{*}	C22: (17, 8, 4, 34); 0.79	$2 \times C 7 ; 0.78$	$C:(2,9,11,17) ;(1,4,5,17) \bmod 17$
65^{A}	$\begin{aligned} & C 22 A:(17,10,5,34) \\ & 0.85 \end{aligned}$	$2 \times C 8 ; 0.84$	$C:(0,5,12,14,3) ;(0,7,10,11,6) \bmod 17$
66^{F}	$\begin{aligned} & R 123 a:(18,10,4,45) \\ & 0.79 \end{aligned}$	-	$\begin{aligned} & \hline G:(A 1, A 2, A 3, B 4) ;(A 1, A 3, B 5, C 4) ; \\ & \frac{1}{2}(A 1, A 4, B 2, B 5) \operatorname{perm} A, B, C \bmod 6 \end{aligned}$
67	SR46: (20, 5, 4, 25); 0.78	-	By deleting the treatments $21,22,23,24,25$ from SR60
68^{F}	$\begin{aligned} & \text { R124a: (22, 8, 4, 44); } \\ & 0.77 \end{aligned}$	$2 \times C 41 ; 0.76$	$G:(A 1, A 3, A 4, B 1) ;(A 1, A 7, B 1, B 8)$ perm A, B and $\bmod 11$
69^{F}	$\begin{aligned} & R 126 a:(24,9,4,54) \\ & 0.77 \end{aligned}$	-	$\begin{aligned} & G:(A 1, A 2, A 9, B 1) ;(B 1, B 2, B 9, A 1) ; \\ & (A 1, A 4, B 1, B 11) ;(B 1, B 4, A 1, A 11) ; \\ & \frac{1}{2}(A 1, A 7, B 1, B 7) \bmod 12 \end{aligned}$
70	H22: (25, 8, 4, 50); 0.78	$2 \times C 61 ; 0.75$	$\begin{aligned} & B:[(0,0) ;(1,0) ;(0,1) ;(4,4)] \\ & \bmod (5,5) ; \\ & {[(0,0) ;(2,0) ;(0,2) ;(3,3)] \bmod (5,5)} \\ & \hline \end{aligned}$
71^{*}	R128: (26, 8, 4, 52); 0.78	$2 \times C 68 ; 0.74$	$\begin{aligned} & G:(2,4,10,14) ;(1,16,19,20) ;(3,6,7,14) \\ & (1,15,17,23) ; 1 \leftrightarrow 13,14 \leftrightarrow 26(P C) \end{aligned}$
72^{F}	$\begin{aligned} & R 128 a:(26,10,4,65) \\ & 0.76 \end{aligned}$	-	$\begin{aligned} & G:(A 1, A 6, A 8, B 1) ;(B 1, B 6, B 8, A 1) ; \\ & (A 1, A 2, B 1, B 4) ;(B 1, B 2, A 1, A 4) ; \\ & (A 1, A 5, B 1, B 5) \bmod 13 \\ & \hline \end{aligned}$
73^{*}	$\begin{aligned} & R 132: \quad(30,10,4,75) \\ & 0.78 \end{aligned}$	-	$\begin{aligned} & G:(1,3,15,20) ;(5,16,18,30) ;(1,5,11, \\ & 17) ;(2,16,20,26) ;(1,9,16,24) ; \\ & 1 \leftrightarrow 15,16 \leftrightarrow 30(P C) \end{aligned}$
74^{*}	R133: (8, 5, 5, 8); 0.90	-	$G:(1,2,3,5,7) \bmod 8$
75^{*}	R134: $(8,5,5,8) ; 0.91$	-	$G:(1,3,4,5,6) \bmod 8$
$76^{\text {DN }}$	R136: (8, 10, 5, 16); 0.91	-	$G:(1,5,6,7,8) ;(1,3,5,6,8) \bmod 8$
77^{*}	R137: (9, 5, 5, 9); 0.89	-	$G:(1,3,4,6,7) \bmod 9$
78^{*}	R138: (9, 10, 5, 18); 0.89	-	$G:(1,3,4,6,7) ;(1,3,4,6,9) \bmod 9$
79^{*}	$R 139:(10,5,5,10) ; 0.88$	B21; 0.88	$G:(1,2,3,6,8) \bmod 10$
80*	$\begin{aligned} & R 141: \quad(10,10,5,20) \\ & 0.89 \end{aligned}$	$2 \times B 21 ; 0.88$	$G:(1,2,3,4,7) ;(1,2,4,6,8) \bmod 10$
81	H5: (11, 5, 5, 11); 0.88	B27; 0.88	$B:(1,3,4,5,9) \bmod 11$
82^{*}	R143: (12, 5, 5, 12); 0.81	B43; 0.87	$\begin{aligned} & G:(1,2,4,7,10) \bmod 12 \\ & J:(1,2,3,5,8) \bmod 12 \end{aligned}$
83*	R144: (12, 5, 5, 12); 0.87	B43; 0.87	$G:(1,2,4,9,12) \bmod 12$
84*	R145: (12, 5, 5, 12); 0.87	B43; 0.87	$G:(1,2,4,6,7) \bmod 12$
85*	$\begin{aligned} & R 146: \quad(12,10,5,24) \text {; } \\ & 0.81 \end{aligned}$	$2 \times B 43 ; 0.87$	$\begin{aligned} & G:(1,2,4,7,10) ;(1,3,4,7,10) \bmod 12 \\ & J: 2 \text { copies of }(1,2,3,5,8) \bmod 12 \end{aligned}$
$86^{M D}$	$\begin{aligned} & R 147: \quad(12,10,5,24) \\ & 0.87 \end{aligned}$	$2 \times B 43 ; 0.87$	$\begin{aligned} & G:(0,1,2,4,9) ;(0,1,2,5,10) \bmod 12 \\ & J: 2 \text { copies of }(1,2,3,5,8) \bmod 12 \end{aligned}$
87*	$\begin{aligned} & R 148: \quad(12,10,5,24) \\ & 0.87 \end{aligned}$	$2 \times B 43 ; 0.87$	$\begin{aligned} & G:(1,2,3,6,12) ;(1,3,6,8,12) \bmod 12 \\ & J: 2 \text { copies of }(1,2,3,5,8) \bmod 12 \end{aligned}$
88*	$\begin{aligned} & R 149:(15,10,5,30) \\ & 0.82 \end{aligned}$	$2 \times B 82 ; 0.85$	$\begin{aligned} & G:(1,2,6,7,11) ;(1,3,6,8,11) \\ & \bmod 15 \end{aligned}$

			$J: 2$ copies of $(1,2,3,5,11) \bmod 15$
89*	$\begin{aligned} & R 150: \quad(15, \quad 10, \quad 5, \quad 30) \\ & 0.86 \end{aligned}$	B82; 0.85	$G:(1,2,3,5,8) ;(1,2,5,9,11) \bmod 15$
90^{S}	$\begin{aligned} & R 150 a:(15,10,5,30) ; \\ & 0.84 \end{aligned}$	B82; 0.85	$\begin{aligned} & G:(1,2,4,7,11) ;(1,2,4,10,13) \\ & \bmod 15 \end{aligned}$
91*	$\begin{aligned} & R 152:(20,10,5,40) ; \\ & 0.74 \end{aligned}$	-	$\begin{aligned} & G:(1,2,6,11,16) ;(1,6,7,11,16) ; \\ & (1,6,11,12,16) ;(1,6,11,16,17) ; \\ & (1,6,8,11,16) ;(1,6,11,13,16) ; \\ & (1,6,11,16,18) ;(1,3,6,11,16) ; \\ & 1 \leftrightarrow 5,6 \leftrightarrow 10,11 \leftrightarrow 15,16 \leftrightarrow 20(P C) \end{aligned}$
92	H7: (21, 5, 5, 21); 0.84	C34; 0.84	$B:(3,6,7,12,14) \bmod 21$
$93{ }^{F}$	$\begin{aligned} & \text { R152a: }(22,10,5,44) \\ & 0.84 \end{aligned}$		$G:(\mathrm{A} 1, A 2, A 3, A 6, B 9)(A 1, A 3, A 8, B 2$ $B 10$); perm A, B and $\bmod 11$
94*	R153: (24, 5, 5, 24); 0.83	-	$G:(1,2,5,10,12) \bmod 24$
$95^{M D}$	$\begin{aligned} & R 154:(24,10,5,48) ; \\ & 0.83 \end{aligned}$	$2 \times C 54 ; 0.83$	$\begin{aligned} & G:(1,2,5,10,12) ;(1,2,4,12,21) \\ & \bmod 24 \end{aligned}$
96	SR60: (25, 5, 5, 25); 0.83	C62; 0.83	$\begin{aligned} & G:(1,6,11,16,21) ;(1,7,13,19,25) ; \\ & (1,10,14,18,22) ;(1,9,12,20,23) ; \\ & (1,8,15,17,24) ; 1 \leftrightarrow 5,6 \leftrightarrow 10,11 \leftrightarrow 15 \text {, } \\ & 16 \leftrightarrow 20,21 \leftrightarrow 25(P C) \end{aligned}$
97	H11: (25, 6, 5, 30); 0.83	-	Add the blocks: $(1+5 x, 2+5 x, 3+5 x, 4+5 x$, $5+5 x) ; 0 \leq x \leq 4$ to the solution in Serial No. 96
98*	$\begin{aligned} & \text { R159: }(35,10,5,70) ; \\ & 0.82 \end{aligned}$	-	$G:(2,5,6,11,21) ;(7,10,11,16,26) ;$ $(12,15,16,21,31) ;(1,17,20,21,26) ;$ $(6,22,25,26,31) ;(1,11,27,30,31) ;$ $(1,6,16,32,35) ;(3,4,6,11,21) ;$ $(8,9,11,16,26) ;(13,14,16,21,31) ;$ $(1,18,19,21,26) ;(6,23,24,26,31) ;$ $(1,11,28,29,31) ;(1,6,16,33,34) ;$ $1 \leftrightarrow 5,6 \leftrightarrow 10,11 \leftrightarrow 15 \quad 16 \leftrightarrow 20, \quad 21 \leftrightarrow 25$, $26 \leftrightarrow 30,31 \leftrightarrow 35(P C)$
99*	$\begin{aligned} & R 160:(39,10,5,78) ; \\ & 0.82 \end{aligned}$	-	$\begin{aligned} & G:(2,4,10,14,27) ;(1,15,17,23,27) ; \\ & (1,14,28,30,36) ;(1,14,29,32,33) ; \\ & (1,16,19,20,27) ;(3,6,7,14,27) ; \\ & 1 \leftrightarrow 13,14 \leftrightarrow 26,27 \leftrightarrow 39(P C) \end{aligned}$
100	H42: (41, 10, 5, 82); 0.82	-	$B:(1,10,16,18,37) ;(5,8,9,21,39) \bmod 41$
101*	R166: (10, 6, 6, 10); 0.90	-	$G:(1,2,3,5,7,9) \bmod 10$
102^{F}	$\begin{aligned} & R 167 a:(12,9,6,18) ; \\ & 0.91 \end{aligned}$	$3 \times D 5 ; 0.89$	$\begin{aligned} & G:(A 1, A 2, A 4, A 6, B 2, B 3) ; \\ & (B 1, B 2, B 4, B 6, A 2, A 3) ; \\ & (A 1, A 2, A 4, B 1, B 2, B 4) \bmod 6 \\ & \hline \end{aligned}$
103^{*}	C23: (13, 6, 6, 13); 0.90	-	$C:(1,2,4,7,9,13) \bmod 13$
104*	R168: (15, 6, 6, 15); 0.82	-	$G:(1,2,4,7,10,13) \bmod 15$
105	H10: (16, 6, 6, 16); 0.89	${ }^{-}$	$\begin{aligned} & B:(1,0,0,0) ;(0,1,0,0) ;(0,0,1,0) \\ & (0,0,0,1) ;(1,1,0,0) ;(0,0,1,1) \\ & \bmod (2,2,2,2) \end{aligned}$
106	SR72: (18, 6, 6, 18); 0.90	C14; 0.88	$\begin{aligned} & G:(1,4,7,10,13,16) ;(1,4,8,11,15,18) ; \\ & (1,6,8,12,14,16) ;(1,6,9,11,13,17) ;(1, \\ & 5,7,12,15,17) ;(1,5,9,10,14,18) ; 1 \leftrightarrow 3, \\ & 4 \leftrightarrow 6,7 \leftrightarrow 9,10 \leftrightarrow 12,13 \leftrightarrow 15,16 \leftrightarrow 18,19 \leftrightarrow 21 \\ & (P C) \end{aligned}$
$107{ }^{\text {MD }}$	R170: (27, 6, 6, 27); 0.86	C77; 0.86	$G:(0,9,12,13,16,18) \bmod 27$
$108^{M D}$	R171: $(28,6,6,28) ; 0.86$	C85; 0.86	$G:(0,1,4,15,20,22) \bmod 28$
109	SR76: (30, 10, 6, 50);	$5 \times$ D59; 0.55	By deleting the treatments 31, 32, 33, 34, 35

	0.86		from SR86a
110	H12: (31, 6, 6, 31); 0.86	-	B: $(1,5,11,24,25,27) \bmod 31$
111	SR77: (42, 7, 6, 49); 0.85	-	By deleting the treatments $43,44,45,46,47$, 48, 49 from SR87
$112 *$	LS82: (49, 6, 6, 49); 0.84	-	$\begin{aligned} & L:(9,19,28,32,38,43) ;(2,13,19,24,39, \\ & 499) ;(7,9,20,26,31,49) ;(7,15,25,34,38, \\ & 44) ;(2,12,21,25,31,36) ;(7,13,18,33,36, \\ & 45) ;(3,8,23,33,42,46) ; 1 \leftrightarrow 7,8 \leftrightarrow 14, \\ & 15 \leftrightarrow 21,22 \leftrightarrow 28,23 \leftrightarrow 29,29 \leftrightarrow 35,36 \leftrightarrow 42, \\ & 43 \leftrightarrow 49(\mathrm{PC}) \end{aligned}$
113*	R172: (9, 7, 7, 9); 0.96		$G:(1,2,3,5,6,8,9) \bmod 9$
114*	R173: (12, 7, 7, 12); 0.90	-	$G:(1,2,3,5,7,9,11) \bmod 12$
115^{*}	R174: (12, 7, 7, 12); 0.92		$G:(1,2,4,5,7,8,11) \bmod 12$
116*	R175: (12, 7, 7, 12); 0.93	-	$G:(1,2,3,4,6,7,11) \bmod 12$
117^{*}	R176: (12, 7, 7, 12); 0.93	-	$G:(1,4,5,6,7,8,11) \bmod 12$
$118^{M D}$	R177: (14, 7, 7, 14); 0.92	-	$G:(0,1,2,5,7,8,12) \bmod 14$
119	H16: (15, 7, 7, 15); 0.92	B188; 0.92	B: $(0,1,2,4,5,8,10) \bmod 15$
120^{*}	LS83: (16, 7, 7, 16); 0.91	C16; 0.92	$L:(4,8,12,13,14,15,16) ;(4,8,9,10,11$, 12, 16); (4, 5, 6, 7, 8, 12, 16); (1, 2, 3, 4, 8, $12,16) ; 1 \leftrightarrow 4,5 \leftrightarrow 8,9 \leftrightarrow 12,13 \leftrightarrow 16$ (PC)
121^{*}	R178: (18, 7, 7, 18); 0.82	C15; 0.90	$\begin{aligned} & \hline G:(1,2,4,7,10,13,16) \bmod 18 \\ & J:(1,2,3,4,6,9,13) \bmod 18 \\ & \hline \end{aligned}$
$122^{\text {MD }}$	R179: (20, 7, 7, 20); 0.90	C29; 0.90	$G:(0,1,2,4,8,11,16) \bmod 20$
$123{ }^{\text {DN }}$	$\begin{aligned} & \hline \text { R180a: (21, 7, 7, 21); } \\ & 0.90 \end{aligned}$	C36; 0.90	$G:(1,2,5,7,11,12,14) \bmod 24$
124^{F}	$\begin{aligned} & \text { R180b: }(24,7,7,24) ; \\ & 0.89 \end{aligned}$	C56; 0.89	$\text { G: }(A 1, A 2, A 4, A 5, B 6, B 8, C 7) \text { perm } A, B, C$ and $\bmod 8$
125*	C25: (29, 7, 7, 29); 0.88		$C:(1,7,16,20,23,24,25) \bmod 29$
$126^{M D}$	R182: (33, 7, 7, 33); 0.88	-	$\begin{aligned} & \hline G:(2,4,5,6,10,12,23) ; \\ & (1,13,15,16,17,21,23) ; \\ & (1,12,24,26,27,28,32) ; \\ & 1 \leftrightarrow 11,12 \leftrightarrow 22,23 \leftrightarrow 33(P C) \\ & \hline \end{aligned}$
127^{F}	$\begin{aligned} & \text { R182a: (35, 7, 7, 35); } \\ & 0.87 \end{aligned}$	-	$G:(A 1, A 2, A 4, B 7, C 7, D 7, E 7)$ perm A, B, C, D, E and $\bmod 7$
128	$\begin{aligned} & \text { SR86a: }(35,10,7,50) ; \\ & 0.88 \end{aligned}$	-	By deleting the treatments $36,37,38,39,40$ from $\operatorname{SR95a}$
129**	R183: (48, 7, 7, 48); 0.87	-	$G:(1,2,5,11,31,36,38) \bmod 48$
130	SR87: (49, 7, 7, 49); 0.87	-	$\begin{aligned} & \hline G:(1,8,15,22,29,36,43) ; \\ & (1,9,17,25,33,41,49) ; \\ & (1,14,20,26,32,38,44) ; \\ & (1,13,18,23,35,40,45) ; \\ & (1,12,16,27,31,42,46) ; \\ & (1,11,21,24,34,37,47) ; \\ & (1,10,19,28,30,39,48) ; \\ & 1 \leftrightarrow 7,8 \leftrightarrow 14, \quad 15 \leftrightarrow 21, \quad 22 \leftrightarrow 28, \quad 29 \leftrightarrow 35, \\ & 3642,43 \leftrightarrow 49(P C) \end{aligned}$
131	H24: (49, 8, 7, 56); 0.87	-	Add the blocks: $(1+7 x, 2+7 x, 3+7 x, 4+7 x$, $5+7 x, 6+7 x, 7+7 x) ; 0 \leq x \leq 6$ to the solution in Serial No. 130
132*	R186: (12, 8, 8, 12); 0.95	$2 \times D 7 ; 0.95$	$G:(1,3,4,5,6,7,10,11) \bmod 12$
133^{*}	R187: (14, 8, 8, 14); 0.90	$2 \times$ D11; 0.94	$\begin{aligned} & G:(1,2,3,5,7,9,11,13) \bmod 14 \\ & J: 2 \text { copies of }(1,2,3,5,8,9,10,12) \bmod 14 \end{aligned}$
134*	C26: (17, 8, 8, 17); 0.93		$C:(1,2,4,8,9,13,15,16) \bmod 17$

135*	$R 188:(21,8,8,21) ; 0.82$	C37; 0.92	$\begin{aligned} & G:(1,3,6,9,12,15,18,21) \bmod 21 \\ & J:(1,2,3,5,6,9,15,17) \bmod 21 \end{aligned}$
136	R189: (24, 8, 8, 24); 0.91	C57, 0.91	$\begin{aligned} & G:(2,3,4,5,6,7,13,19) ; \\ & (1,8,9,10,11,12,13,19) ; \\ & (1,7,14,15,16,17,18,19) ; \\ & (1,7,13,20,21,22,23,24) ; \\ & 1 \leftrightarrow 6,7 \leftrightarrow 12,13 \leftrightarrow 18,19 \leftrightarrow 24(P C) \end{aligned}$
$137{ }^{*}$	$\begin{aligned} & \text { LS101: }(25,8,8,25) ; \\ & 0.91 \end{aligned}$	C65; 0.91	$\begin{aligned} & L:(1,6,11,16,22,23,24,25) ; \\ & (1,6,11,17,18,19,20,21) ; \\ & (1,6,12,13,14,15,16,21) \\ & (1,7,8,9,10,11,16,21) ; \\ & (2,3,4,5,6,11,16,21) ; 1 \leftrightarrow 5,6 \leftrightarrow 10 \\ & 11 \leftrightarrow 1516 \leftrightarrow 20,21 \leftrightarrow 25(P C) \\ & \hline \end{aligned}$
138*	C27: (29, 8, 8, 29); 0.90	-	$C:(1,2,8,17,21,24,25,26) \bmod 29$
139	SR95: (32, 8, 8, 32); 0.90	$2 \times$ D66; 0.88	$G:(1,5,9,13,17,21,25,29) ;(1,8,11,13$, $18,23,26,32) ;(1,7,9,14,19,22,28,32)$; $(1,5,10,15,18,24,28,31) ;(1,6,11,14,20$, $24,27,29) ;(1,7,10,16,20,23,25,30) ;(1$, $6,12,16,19,21,26,31) ;(1,8,12,15,17$, $22,27,30) ; 1 \leftrightarrow 4,5 \leftrightarrow 8,9 \leftrightarrow 12,13 \leftrightarrow 16$, $17 \leftrightarrow 20,21 \leftrightarrow 24,25 \leftrightarrow 28,29 \leftrightarrow 32(P C)$
140	$\begin{aligned} & \text { SR95a: }(40,10,8,50) \text {; } \\ & 0.89 \end{aligned}$	$5 \times D 84 ; 0.62$	By deleting the treatments $41,42,43,44,45$ from SR103a
141^{F}	$\begin{aligned} & \text { R189a: (42, 8, 8, 42); } \\ & 0.88 \\ & \hline \end{aligned}$	$2 \times$ D89; 0.89	$G:(A 1, A 2, A 4, B 7, C 7, D 7, E 7, F 7)$ perm A, B, C, D, E, F and $\bmod 7$
142	H25: (57, 8, 8, 57); 0.89	-	$B:(1,6,7,9,19,38,42,49) \bmod 57$
143*	$R 191:(63,8,8,63) ; 0.89$	-	$G:(1,6,8,14,38,48,49,52) \bmod 63$
$144{ }^{*}$	R193: (12, 9, 9, 12); 0.97	$3 \times D 8 ; 0.97$	$G:(1,2,3,5,6,8,9,11,12) \bmod 12$
145*	R194: (15, 9, 9, 15); 0.94	$3 \times$ D14; 0.94	$G:(1,2,4,5,7,8,11,13,14) \bmod 15$
$146{ }^{*}$	$R 195:(16,9,9,16) ; 0.90$	-	$G:(1,2,4,6,8,10,12,14,16) \bmod 16$
147	H30: (19, 9, 9, 19); 0.94	C24; 0.94	$B:(1,4,5,6,7,9,11,16,17) \bmod 19$
$148^{\text {DN }}$	$\begin{aligned} & \text { R197a: } \quad(20,9,9,20) ; \\ & 0.93 \\ & \hline \end{aligned}$	C30; 0.93	$G:(1,2,3,4,6,10,15,17,18) \bmod 20$
$149 *$	R198: (24, 9, 9, 24); 0.82	C58; 0.93	$\begin{array}{\|l\|} \hline G:(1,2,4,7,10,13,16,19,22) \bmod 24 \\ J:(1,2,3,4,7,12,15,19,21) \bmod 24 \\ \hline \end{array}$
$150{ }^{*}$	$\begin{aligned} & \text { LS117: } \quad(25,9,9,25) \\ & 0.92 \end{aligned}$	-	$\begin{aligned} & L:(1,2,3,4,5,6,11,16,21) ; \\ & (1,6,7,8,9,10,11,16,21) ; \\ & (1,6,11,12,13,14,15,16,21) ; \\ & (1,6,11,16,17,18,19,20,21) ; \\ & (1,6,11,16,21,22,23,24,25) ; 1 \leftrightarrow 5, \\ & 6 \leftrightarrow 10,11 \leftrightarrow 1516 \leftrightarrow 20,21 \leftrightarrow 25(\mathrm{PC}) \\ & \hline \end{aligned}$
151	$\begin{aligned} & \text { SR102: }(27,9,9,27) \text {; } \\ & 0.92 \end{aligned}$	$3 \times$ D52; 0.89	G: $(1,4,7,10,13,16,19,22,25) ;(1,6,8$, $10,15,17,19,24,26) ;(1,5,9,10,14,18$, 19, 23, 27); (1, 4, 7, 12, 15, 18, 20, 23, 26); $(1,6,8,12,14,16,20,22,27) ;(1,5,9,12$, $13,17,20,24,25) ;(1,4,7,11,14,17,21$, 24, 27); ($1,6,8,11,13,18,21,23,25)$; (1, 5, $9,11,15,16,21,22,26) ; 1 \leftrightarrow 3,4 \leftrightarrow 6,7 \leftrightarrow 9$, $10 \leftrightarrow 12,13 \leftrightarrow 15 \quad 16 \leftrightarrow 18,19 \leftrightarrow 21, \quad 22 \leftrightarrow 24$, $25 \leftrightarrow 27(P C)$
152	R200: (28, 9, 9, 28); 0.91	C87; 0.92	$\begin{aligned} & G:(2,3,4,5,6,7,8,15,22) ; \\ & (1,9,10,11,12,13,14,15,22) \end{aligned}$

			$\begin{aligned} & \hline(1,8,16,17,18,19,20,21,22) ; \\ & (1,8,15,23,24,25,26,27,28) \\ & 1 \leftrightarrow 7,8 \leftrightarrow 14,15 \leftrightarrow 21,22 \leftrightarrow 28 \text { (PC) } \\ & \hline \end{aligned}$
153	H34: (37, 9, 9, 37); 0.91		B: $(1,7,9,10,12,16,26,33,34) \bmod 37$
$154{ }^{\text {DN }}$	$\begin{aligned} & \text { R200c: }(40,9,9,40) ; \\ & 0.91 \end{aligned}$	-	$G:(1,3,4,6,10,17,18,22,35) \bmod 40$
155	$\begin{aligned} & \text { SR103a: }(45,10,9,50), \\ & 0.91 \end{aligned}$	-	By deleting the treatments $46,47,48,49,50$ from SR109a
156^{F}	$\begin{aligned} & \text { R200e: (49, 9, 9, 49); } \\ & 0.89 \end{aligned}$	-	$\text { G: }(A 1, A 2, A 4, B 7, C 7, D 7, E 7, F 7, G 7) ;$ $\operatorname{perm} A, B, C, D, E, F, G$ and $\bmod 7$
157	H37: (73, 9, 9, 73); 0.90	-	$B:(1,2,4,8,16,32,37,55,64) \bmod 73$
158*	R202: (80, 9, 9, 80); 0.90	-	$G:(1,3,6,10,22,44,57,58,75) \bmod 80$
$159 *$	$\begin{aligned} & \text { LS134: }(100,9,9,100) ; \\ & 0.89 \end{aligned}$	-	L: (63, 95, 59, 11, 42, 78, 87, 24, 36); (90, 29, 77, 43, 51, 8, 34, 92, 15); (37, 85, 16, 51, 69, 23, 42, 10, 98); (4, 62, 47, 21, 99, 13, 78, 85, 60); ($93,18,31,6,77,60,24,69,45$); ($55,39,21,68,86,93,7,12,80$); ($72,7,100,84,11,35,69,43,26$); (1, 26, 49, 68, 77, 32, 85, 14, 53); (16, 57, 84, 32, 8, 45, 99, 80, 63); (47, 74, 6, 98, 22, 70, 53, 35, 89); $1 \leftrightarrow 10,11 \leftrightarrow 20,21 \leftrightarrow 30, \ldots, 91 \leftrightarrow 100$
160^{*}	$\begin{aligned} & \text { R203: (12, 10, 10, 12); } \\ & 0.98 \end{aligned}$	-	$G:(1,2,3,4,6,7,8,10,11,12) \bmod 12$
161^{*}	$\text { R204: }(14,10,10,14) ;$	$2 \times$ D12; 0.97	$G:(1,2,3,4,6,7,8,10,12,14) \bmod 14$
$162^{M D}$	$\begin{aligned} & \text { R205: }(14,10,10,14) ; \\ & 0.97 \end{aligned}$	$2 \times$ D12; 0.97	$G:(0,1,3,5,6,7,8,9,10,11) \bmod 14$
163^{*}	$\begin{aligned} & \text { R206: }(18,10,10,18) \text {; } \\ & 0.90 \end{aligned}$	$2 \times$ D26; 0.95	$G:(1,2,4,6,8,10,12,14,16,18) \bmod 18$ $J: 2$ copies of $(1,2,3,4,7,10,11,12,13,16)$ $\bmod 18$
$164{ }^{F}$	$\begin{aligned} & \text { R206a: }(21,10,10,21) ; \\ & 0.94 \end{aligned}$	C39; 0.94	$G:(A 1, A 2, A 4, A 7, B 1, B 2, B 4, C 1, C 2, C 4) ;$ $\text { perm } A, B, C \text { and } \bmod 7$
$165^{\text {MD }}$	$\begin{aligned} & R 206 b:(21,10,10,21) ; \\ & 0.93 \end{aligned}$	C39; 0.94	$G:(0,1,3,4,6,9,10,12,15,18)$ $\bmod 21$
166*	$\begin{aligned} & \text { R207: }(27,10,10,27) ; \\ & 0.82 \end{aligned}$	C81; 0.93	$\begin{aligned} & \hline:(1,2,4,7,10,13,16,19,22,25) \bmod 27 \\ & J:(1,2,3,4,5,8,13,17,21,23) \\ & \bmod 27 \end{aligned}$
167^{F}	$\begin{aligned} & \text { R207a: }(28,10,10,28) ; \\ & 0.93 \end{aligned}$	C88; 0.93	$G:(A 1, A 2, A 4, B 1, B 2, B 4, C 1, C 2, C 4, D 7) ;$ $\text { perm } A, B, C, D \text { and } \bmod 7$
168	$\begin{aligned} & \text { R208: }(32,10,10,32) ; \\ & 0.92 \end{aligned}$	$2 \times$ D67; 0.92	$\begin{aligned} & \hline G:(2,3,4,5,6,7,8,9,17,25) ; \\ & (1,10,11,12,13,14,15,16,17,25) ; \\ & (1,9,18,19,20,21,22,23,24,25) ; \\ & (1,9,17,26,27,28,29,30,31,32) \\ & 1 \leftrightarrow 8,9 \leftrightarrow 16,17 \leftrightarrow 24,25 \leftrightarrow 32(P C) \\ & \hline \end{aligned}$
169^{*}	$\begin{aligned} & \text { LS136: }(36,10,10,36) ; \\ & 0.92 \end{aligned}$	$2 \times$ D79; 0.92	$L:(2,3,4,5,6,7,13,19,25,31) ;$ $(1,8,9,10,11,12,13,19,25,31) ;$ $(1,7,14,15,16,17,18,19,25,31) ;$ $(1,7,13,20,21,22,23,24,25,31) ;$ $(1,7,13,19,26,27,28,29,30,31) ;$ $(1,7,13,19,25,32,33,34,35,36) ;$ $1 \leftrightarrow 6,7 \leftrightarrow 12, \quad 13 \leftrightarrow 18,19 \leftrightarrow 24, \quad 25 \leftrightarrow 30$, $31 \leftrightarrow 36$

170^{4}	$\begin{aligned} & C 30:(37,10,10,37) ; \\ & 0.92 \end{aligned}$	-	$C:(0,1,16,34,26,9,33,10,12,7)$ $\bmod 37$
171	$\begin{aligned} & \text { SR109a: }(50,10,10,50) \\ & 0.92 \end{aligned}$	$5 \times D 108 ; 0.67$	$\begin{aligned} & \hline G:(1,10,12,17,25,26,33,39,44,48) ;(1,9, \\ & 15,19,21,28,32,40,42,48) ; \\ & (1,8,13,16,22,29,35,40,44,47) ; \\ & (1,7,11,18,23,29,32,39,45,50) ; \\ & (1,6,14,20,24,28,33,37,45,47) ; \\ & (1,6,11,16,21,26,31,36,41,46) ; \\ & (1,8,15,17,24,27,34,36,43,50) ; \\ & (1,10,14,18,22,30,34,38,42,46) ; \\ & (1,7,13,19,25,30,31,37,43,49) ; \\ & (1,9,12,20,23,27,35,38,41,49) \\ & 1 \leftrightarrow 5,6 \leftrightarrow 10,11 \leftrightarrow 15,16 \leftrightarrow 20, \quad 21 \leftrightarrow 25, \\ & 26 \leftrightarrow 30,31 \leftrightarrow 35,36 \leftrightarrow 40,41 \leftrightarrow 45,46 \leftrightarrow 50 \\ & (\mathrm{PC}) \end{aligned}$
172^{F}	$\begin{aligned} & R 208 a:(56,10,10,56) \\ & 0.89 \end{aligned}$	$2 \times D 125 ; 0.9$	$G:(A 1, A 2, A 4, B 7, C 7, D 7, E 7, F 7, G 7, H 7)$ perm A, B, C, D, E, F, G, H and $\bmod 7$
173	$\begin{aligned} & H 46: \quad(91,10,10,91) \\ & 0.91 \end{aligned}$	-	$B:(0,1,3,9,27,49,56,61,77,81)$ mod 91

*The cyclic solutions are reported in Clatworthy (1973). John numbers are from John et al. (1972). A part cycle, such as $\frac{1}{2}(B 1, B 2, B 4, B 5)$ for $R 109 a$, means that only half the six blocks are needed, since the same treatments would then recur [see Freeman (1976)]. $m \times$ No. X denotes design obtained by taking m copies of the design No. X.
$P C$: the initial blocks are developed in partial cycles, B : BIBD, G : Group divisible design, C : the cyclic design from Clatworthy and Agrawal (1987), L : Latin square type designs; J : the cyclic design from John et al. (1972).
$H X$ numbers are from Hall (1998) and $S R X, R X, L S X$ and $C X$ (in the second column of the table) numbers are from Clatworthy (1973) and Agrawal (1987).

The abbreviations $A, M, F, M D, S, D N$ and $D B$ stand for Agrawal (1987), Mukerjee et al. (1987), Freeman (1976), Midha and Dey (1995), Sinha (1989), Dey and Nigam (1985) and Dey and Balasubramanian (1991) respectively.

The overall efficiency of a partially balanced design is defined as the ratio of the average variance of a treatment comparison to the variance in a randomized block experiment with the same replication, assuming that the standard errors of individual plots are the same. The overall efficiency of a BIB design is obtained using $\lambda v / r k$ and the overall efficiency E of a two associate class PBIB design is calculated as [see Clatworthy (1973)]:

$$
E=\frac{(k-1)(v-1)}{n_{1}\left(k-c_{1}\right)+n_{2}\left(k-c_{2}\right)}
$$

where the computational constants c_{1}, c_{2} are obtained by means of the following relations:

$$
k^{2} \Delta=\left(r k-r+\lambda_{1}\right)\left(r k-r+\lambda_{2}\right)+\left(\lambda_{1}-\lambda_{2}\right)\left\{\left(r(k-1)\left(p_{12}^{1}-p_{12}^{2}\right)+\lambda_{2} p_{12}^{1}-\lambda_{1} p_{12}^{2}\right\}\right.
$$

$$
k \Delta c_{1}=\lambda_{1}\left(r k-r+\lambda_{2}\right)+\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{2} p_{12}^{1}-\lambda_{1} p_{12}^{2}\right)
$$

$k \Delta c_{2}=\lambda_{2}\left(r k-r+\lambda_{1}\right)+\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{2} p_{12}^{1}-\lambda_{1} p_{12}^{2}\right)$.
In case of GD designs, the expression for overall efficiency is given as [see Freeman (1976)]:

$$
E=\frac{v(v-1) \lambda_{2}\left\{\lambda_{1}+(m-1) \lambda_{2}\right\}}{r k\left\{(m-1) \lambda_{1}+(m v-2 m+1) \lambda_{2}\right\}}
$$

The cyclic solutions of BIB designs: $H 2, H 11, H 24$ and GD designs: $\operatorname{SR60}, S R 72, S R 87$, SR95, $S R 102, R 189, R 200, R 208$ are new. Clatworthy (1973) reported six, seven and eight initial blocks for the cyclic solution of $R 189, R 200$ and $R 208$ respectively whereas we have used four initial blocks only. For the design R68: the first three initial blocks give 9 blocks each and the fourth initial block gives three distinct blocks. Clatworthy (1973) did not report the solutions in cyclic form for Latin square designs except four. We have reported cyclic solutions for such designs. The cyclic block designs which are m - multiple of smaller block designs and are with non - repeated initial blocks are included in the above table. For each of these designs, Clatworthy (1973) reported a solution that is obtained by repeating the blocks of a smaller block design m times. A resolvable solution of SR109a may be found in Saurabh and Sinha (2022).

The GD scheme for the cyclic semi - regular GD designs: SR60, SR72, SR87, SR95, SR102, $S R 109 a$ and cyclic regular GD designs: $R 189, R 200, R 208$ is given as:

$$
\begin{array}{ccccc}
1 & 2 & 3 & \cdots & n \\
n+1 & n+2 & n+3 & \cdots & 2 n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
(m-1) n+1 & (m-1) n+2 & (m-1) n+3 & \cdots & m n
\end{array}
$$

for suitable choices of m and n.

Acknowledgement

The authors are thankful to the Editor-in-Chief and an anonymous referee for nice comments leading to improvement in the readability of the paper.

References

Agrawal, H. C. (1987). Construction of two-class cyclic partially balanced incomplete block designs. Journal of Statistical Planning and Inference, 16, 127-132.
Bailey, R. A. (1990). Cyclic Designs and Factorial Designs. Proceedings of the R.C. Bose symposium on Probability, Statistics and Design of Experiments, New Delhi, 27-30 December, 1988, Wiley Eastern, 51-74.
Clatworthy, W. H. (1973). Tables of Two-Associate-Class Partially Balanced Designs. National Bureau of Standards (U.S.), Applied Mathematics, Series 63.
Dean, A. M. and Lewis, S. M. (1980). A unified approach to generalized cyclic designs. Journal of Statistical Planning and Inference, 4, 13-23.
Dey, A. (1986). Theory of Block Designs. Wiley Eastern, New Delhi.
Dey, A. (2010). Incomplete Block Designs. Hindustan Book Agency, New Delhi.
Dey, A. and Balasubramanian, K. (1991). Construction of some families of group divisible designs. Utilitas Mathematica, 40, 283-290.
Dey, A. and Nigam, A. K. (1985). Constructions of group divisible designs. Journal of the Indian Society of Agricultural Statistics, 37, 163-166.
Freeman, G. H. (1976). A cyclic method of constructing regular group divisible incomplete block designs. Biometrika, 63, 555-558.
Hall, Marshal Jr. (1998). Combinatorial Theory. John Wiley, New York.

Jarrett, R. G. and Hall, W. B. (1978). Generalized cyclic incomplete block designs. Biometrika, 65, 397-401.
John, J. A., Wolock, F. W. and David, H. A. (1972). Cyclic Designs. Washington D. C.: National Bureau of Standards. Appl. Math. Ser. No. 62.
John, J. A. and Williams, E. R. (1995). Cyclic and Computer-Generated Designs. Chapman and Hall, London.
Lamacraft, R. R. and Hall, W. B. (1982). Tables of cyclic incomplete block designs: $r=k$. Australian Journal of Statistics, 24, 350-360.
Midha, C. K. and Dey, A. (1995). Cyclic group divisible designs. Calcutta Statistical Association Bulletin, 45, 179-180.
Mukerjee, R., Jimbo, M. and Kageyama, S. (1987). On cyclic semi-regular group divisible designs. Osaka Journal of Mathematics, 24, 395-407.
Nigam, A. K., Puri, P. D. and Gupta, V. K. (1988). Characterizations and Analysis of Block Designs. Wiley Eastern Limited, New Delhi.
Raghavarao, D. (1971). Constructions and Combinatorial Problems in Design of Experiments. John Wiley, New York.
Raghavarao, D. and Padgett, Lakshmi V. (2005). Block designs. Analysis, combinatorics and applications. Series on Applied Mathematics, 17, World Scientific, Singapore.
Saurabh, S. and Sinha, K. (2022). Some new resolvable group divisible designs. Communications in Statistics - Theory and Methods, 51(13), 4509-4514. doi.org/10.1080/ 03610926. 2020. 1817487.
Sinha, K. (1989). A method of construction of PBIB designs. Journal of the Indian Society of Agricultural Statistics, XLI, 313-315.

