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Abstract

Volatility is an important characteristic of time series. If the volatility of a series at
any time epoch is affected by its distant counterpart, then it is known as long memory in
volatility. The (FIGARCH) model is useful for addressing the long memory in volatility.
In this paper, for empirical illustration, the daily modal spot price of mustard from four
markets of Rajasthan namely Khedli (Laxmangarh), Atru, Nimbahera and Anoopgarh, are
used. The GARCH, EGARCH, APARCH, GJR-GARCH, and FIGARCH models are fitted
to the log return series of the selected datasets. It is seen that the FIGARCH model is the
best-fitted model for all the time series and it confirmed the presence of long memory in
volatility.
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1. Introduction

Time series analysis is used to identify patterns and trends in the dataset, and it
helps make predictions about future values. Time series modelling is a crucial aspect for un-
derstanding the price behaviour and movement of any economic goods including the prices
of agricultural commodities. The major breakthrough in time series modelling was first pio-
neered by [Box and Jenkins| (1970) through the introduction of the autoregressive integrated
moving average (ARIMA) model. The ARIMA model is based on the assumptions of lin-
earity and stationarity of the dataset and the homoscedasticity of the error variance. Lots
of applications of the ARIMA model can be found in the literature (Paul et al., 2014, 2020}
Agarwal et al., 2021)). Linear models take advantage of their analytical and implementable
easiness over the others. But it is irrational to assume a priori about the linear process for
time series. Volatility is the nonlinear aspect of time series. It is the degree of unexpected
variation of its realizations over a certain period. Engle| (1982) introduced the autoregressive
conditional heteroscedastic (ARCH) model for capturing the volatility of any time series.
Later, its generalization, i.e. generalized ARCH (GARCH) model was proposed by Boller-
slev| (1986) and [Taylor (1986)) independent of each other. Applications of the GARCH model
can be found in [Paul et al.| (2009, [2015), etc. The GARCH model is symmetric. It does not
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account for the sign of shocks and only takes into consideration the amount of shocks’ effects
on volatility. Hence, it cannot capture the asymmetric behaviour of price volatility, i.e.,
reactions to the volatility may differ depending on whether the positive and negative shocks
are of the same magnitude. The exponential GARCH (EGARCH) model (Nelson, [1991)),
Asymmetric Power ARCH (APARCH) model (Ding et al., 1993), and GJR-GARCH model
(Glosten et al., 1993) are better alternatives to the GARCH model for addressing asym-
metric volatility. Again, the realizations of a time series may have long term dependency.
In the presence of long term dependency, the autocorrelation function (ACF) and partial
autocorrelation function (PACF) are significant for a long lag. This is known as hyperbolic
decay. The long memory process can be present in both linear and nonlinear dynamics of
a time series. If long memory is present in the linear model then the autoregressive frac-
tionally integrated moving average (ARFIMA) model (Granger and Joyeuxl, [1980) is useful.
Fractional integration is a generalization of ordinary integration, where the integral is taken
to a fractional power. Some applications of the ARFIMA model can be found in [Paul (2014
and Rakshit et al. (2022). Similarly, the fractionally integrated GARCH (FIGARCH) model
(Baillie et al., 1996) is useful for capturing the long memory in volatility. |Paul et al.| (2016))
applied the FIGARCH model for modelling long memory in the volatility of the spot price
of gram in Delhi, India. In the presence of long memory both in the mean and variance
structure, Mitra et al.| (2018)) applied the ARFIMA-FIGARCH models for modelling the
potato price of the Agra and Amritsar markets, India.

Agriculture is the backbone of the Indian economy. Around 60% of the Indian popu-
lation depends on agriculture for their livelihood. As per the Second Advance Estimates of
National Income, 2022-23 released by the Ministry of Statistics and Programme Implemen-
tation (MoSPI), the share of Gross value added (GVA) of agriculture and allied sectors in
the total economy is 18.3% at current prices. The volatility study of the price series of agri-
cultural commodities is an important aspect to social science researchers (Paul and Garai,
2021; Rakshit et al., 2021 2023; (Garai et al., 2023). Mustard is an important oilseed crop
in India. It is grown in the rabi (winter) season and is a major source of edible oil for the
country. The oilcake from mustard seeds is used as a feed for livestock. In addition to its
edible oil, mustard has a number of other uses. The leaves of the mustard plant can be eaten
as a vegetable, and the flowers can be used to make mustard seed paste, which is used as a
condiment. Mustard seeds also have medicinal properties and have been used traditionally
to treat a variety of ailments, including arthritis, rheumatism, and respiratory problems.
Mustard cultivation provides livelihood opportunities for a large number of farmers, espe-
cially in the states of Rajasthan, Uttar Pradesh, Madhya Pradesh, and Punjab, where it
is extensively grown. Earlier, it is seen that the modelling and forecasting of rapeseed and
mustard prices helps in improving decision making in Rajasthan (Bhardwaj et al.,2015)). In
the present study, the modal daily spot price series of mustard for Khedli (Laxmangarh),
Atru, Nimbahera and Anoopgarh markets of Rajasthan are used. The GARCH, EGARCH,
APARCH, GJR-GARCH and FIGARCH models are applied to the selected time series. Sec-
tion 2 includes a description of the used models. The empirical illustration is given in Section
3 followed by concluding remarks in Section 4.
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2. Materials and methods
2.1. The ARCH and GARCH models

ARIMA is a linear model that cannot address the nonlinear dynamics of a time series.
Homoscedasticity in the error variance is a basic assumption of this model. By relaxing the
linear and homoscedasticity assumptions, the ARCH model is introduced by taking into
account substantial autocorrelations present in the squared residual series to capture the
nonlinear dynamics of a time series. A process {e;} is said to follow the ARCH (¢) model if
the conditional distribution of {&;} given the available information (¢;—1) up to ¢t — 1 time
epoch is represented as:

et ~ N(0,h) and & = \/h, (1)

where 14 is identically and independently distributed (IID) innovation with zero mean and
unit variance. The conditional variance h; of ARCH (¢) model is calculated as

q q
htZOéo—i-ZOéi&T?_i, ag > 0, o; > 0V 1and ZO(Z‘<1 (2)

i=1 i=1

The GARCH model is a more parsimonious version of the ARCH model where the
number of parameters to be estimated is less. Here, the conditional variance is treated
as a linear function of its own lags. The GARCH (p,q) model has the following form of
conditional variance

ht—a0+2a5tz+26]ht] (3)

7=1
provided op > 0,0, >0V i3; >0V j

a; and [; parameters indicate how previous shocks and volatility have influenced
current volatility, respectively. The GARCH (p, ¢) model is said to be weakly stationary if
and only if

ZO@ + Zﬁ] <1 (4)
i=1 j=1

The GARCH model only considers the dependencies of volatility on the magnitude
of the shocks, and it does not consider the sign of the shocks that influence the degree of
volatility. The EGARCH, APARCH, and GJR-GARCH models can be useful to overcome

this gap.

2.2. EGARCH model

The EGARCH model is introduced by defining the conditional variance in terms of
the logarithm function. The main advantage of this model over the GARCH model, aside
from addressing the asymmetric volatility, is that no restriction is imposed on the parameters
as the positivity of the conditional variance is always achieved. The conditional variance for
the EGARCH model is defined as

hlht— 040—|—Zﬁjlnht J+Z (Oél

7j=1

vl 75}?) (5)
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where, ~; is the asymmetric factor which explains the asymmetric effect due to external
shocks. For EGARCH (1,1) model conditional variance h; is reduced to

Et—1

Vi

€t—1

Inh; = oo+ filnhy_ + (041 + 7@) (6)

2.3. APARCH model

The APARCH model considers some asymmetric power to the conditional variance
h;. The conditional variance of the APARCH model is defined as

5 P s g
hi = a0+ 3 Bihi 4+ 3 ai(emi] = vee) (7)
j=1 i=1

where 7(—1 < v < 1) is the parameter for asymmetry and §(> 0) is the power term
parameter. The APARCH model is a general framework of models. Different orders of
GARCH models can be fitted within the APARCH model by defining specific values to the
parameters. For 6 = 2 and v = 0, the APARCH model is the same as the GARCH model.
The conditional variance hy for APARCH (1,1) model is reduced to

I I
he = ag+ Bihiy +an (le1| — ve-1)’ (8)

2.4. GJR-GARCH model

The GJR-GARCH model considers the impact of €2 ; on the conditional variance
based on the sign of £,_;. An indicator variable is introduced to capture the sign dependency.
The conditional variance of the GJR-GARCH model is defined as

p q
ht = Qg + Z ﬁjhtfj + Z Ckia’:“f_i + ’75?_1[,5_1 (9)

j=1 i=1

where 7(—1 < v < 1) is the asymmetric parameter and I;_; is the indicator variable, such
that
[t,1 =1 Zf -1 < 0

0 ife12>20
For GJR-GARCH (1,1) model conditional variance h; is reduced to

ht = Q) + 06151?,1 + 51]115_1 -+ 75?71[15—1 (10)

2.5. FIGARCH model

The FIGARCH model is useful when the volatility is symmetric i.e. positive and
negative shocks of the same magnitude exhibit the same response to volatility and the
volatility exhibits long term persistence. The FIGARCH model is derived by introducing
a fractional differencing parameter in the GARCH model after some algebraic operations.
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Tayefi and Ramanathan| (2012) provided a thorough review of the FIGARCH model. The
FIGARCH (p, d, q) model can be expressed as

1 —a(L)=B(L)](1—L)e =ag+[1—B(L)] (11)

where, o (L) and (3 (L) are polynomials in lag operator and (1— L)% is the fractional difference
operator. Here, d is a fraction and 0 < d < 1.

3. Empirical illustration
3.1. Data description

For empirical illustration purposes, the daily modal spot prices (Rs./q) of mustard for
four markets in Rajasthan namely Khedli (Laxmangarh), Atru, Nimbahera and Anoopgarh
are collected from the Ministry of Agriculture and Farmers’ Welfare, Government of India
for the study period of 1st January 2010 to 31st May 2023 (total number of observation is
4899). Since the square of return is regarded as the realization of volatility, the analysis is
done with the log return series of the selected time series data. For a time series {y;} the
log return series {r,} is calculated as

Yt
ry =In e (12)

The latest 250 realizations of the log return series of each of the selected markets are used as
the model validation set, while the remaining previous portion is used as the model building
set.

3.2. Descriptive statistics

The descriptive statistics of the selected price series are given in Table 1. The Khedli
market has the highest mean price, while the Nimbahera market has the lowest mean price.
The Atru market has the highest median price and the Nimbahera market is the lowest one.
Regarding the minimum price, the Khedli market minimum price is significantly lower than
the others. The Khedli market has the highest maximum price and the Nimbahera has the
lowest maximum price. All the selected price series are positively skewed and leptokurtic.
Figure 1 shows the time plots of the selected price series. The time plots of all the price
series show a similar pattern of price variation.

3.3. Test for stationarity

The stationarity of the time series is a prior assumption for the GARCH modelling.
Using the Augmented Dickey-Fuller (ADF) test (Dickey and Fuller, [1979)), Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test (Kwiatkowski et al.,1992), and the Phillips-Perron (PP)
test (Phillips and Perron, [1988), the stationarity of the log return series and the squared log
return series are tested (Table 2). For ADF and PP tests, the null hypothesis is that the
unit root is present in the time series. For the KPSS test, the null hypothesis is that the
unit root is not present in the time series. All three tests terminate the possibility of the
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Table 1: Descriptive statistics of selected price series
Statistics Khedli ~ Atru  Nimbahera Anoopgarh
Mean (Rs./q) 4040.02 3883.61 3748.34 3863.27
Median (Rs./q)  3523.35 3589.03  3475.82 3588.00
Minimum (Rs./q) 1055.00 2026.00  2000.00 2108.00
Maximum (Rs./q) 8300.00 8091.00  7715.00 8031.00
S.D. (Rs./q) 1215.30  1232.00 1175.12 1234.29
CV (%) 30.08 31.72 31.35 31.95
Skewness 1.45 1.15 1.00 1.11
Kurtosis 1.32 0.84 0.39 0.75
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Figure 1: Time plots of the daily price series

presence of a unit root in the log return series and the squared log return series (p-values
are given in parenthesis).

Table 2: Test for stationarity

Market Khedli Atru Nimbahera Anoopgarh
Series Log return Log return Log return Log return
ADF -23.44 -18.5 -18.89 -17.97

(0.01) (0.01) (0.01) (0.01)

KPSS 0.01 0.04 0.03 0.10

(0.10) (0.10) (0.10) (0.10)
PP -5674.1 -6079.5 -5850.8 -5724.6
(0.01) (0.01) (0.01) (0.01)
Series  Squared log return Squared log return Squared log return Squared log return
ADF -15.15 -14.81 -14.98 -15.85
(0.01) (0.01) (0.01) (0.01)
KPSS 0.39 0.25 1.22 0.41
(0.08) (0.10) (0.10) (0.07)
PP -2356.8 -2527 -2644 -2781.9
(0.01) (0.01) (0.01) (0.01)
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3.4. Test for long memory

The GPH test (Geweke and Porter-Hudak, |1983) is used to check the presence of
long memory in the log return series and the squared log return series (Table 3). It is seen
that the fractional differencing parameters for the log return series are not significant. But,
they are significant for their corresponding squared log return series. It implies that the long
memory is present in the squared log return series but not in the log return series.

Table 3: GPH test

Market Log return Squared log return
d s.e. Z d s.e. Z

Khedli -0.088 0.081 -1.085 0.211 0.073 2.884

Atru 0.157 0.088 1.776 0.128 0.065 1.976

Nimbahera -0.137 0.097 -1.403 0.24 0.106 2.259

Anoopgarh -0.095 0.096 -0.987 0.224 0.086 2.596

3.5. ACF and PACF plots

The ACF and PACF plots help to examine the statistical relationships between the
realizations of a time series through visualization. Figure 2 depicts the ACF and PACF plots
of the selected log return series and the ACF plots of the squared log return series. The
ACF and PACF plots of the log return series are decaying at exponential rates. It implies
the absence of long memory in the mean model. But, hyperbolic decay is visible in the ACF
plots of the squared log return series. It implies the presence of long memory in volatility.
The GPH test’s results also support the same conclusions.

3.6. Fitting of models

In the first step, the AR (1) model is fitted as the mean model in all the log return
series. After that, the residuals are obtained and tested for the presence of conditional
heteroscedasticity using the ARCH-LM test. The null hypothesis for this test is the absence
of the ARCH effect in the residual series. It is seen that the ARCH-LM test is significant
for all residual series and the presence of ARCH effect in all the residual series is confirmed.
After that, the GARCH, EGARCH, APARCH, GJR-GARCH, and FIGARCH models are
fitted to the residual series. The parameters are estimated using the maximum likelihood
estimation procedure. The best fitted model for all the time series is chosen based on the
degree of fitting in terms of three popularly used error functions namely Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE)
in the model building set. These error functions are calculated as

1
2

RMSE= 15200 (13)

1 & R
MAE:%ZW&—ZM (14)
t=1
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Figure 2: ACF and PACF plots

L& |y — 1
MAPE = ) =9l s 100 (15)

t=1 Yt

where k denotes the number of realizations used, y; is the observed value and ; is
the corresponding predicted value.

The estimated parameters of the best-fitted models are given in Table 4. It is seen
that the FIGARCH model is the best-fitted model for all the markets. For all the series
the parameters ay, f; and d are highly significant. This implies that the current volatility
significantly depends on previous volatility as well as previous shock. The presence of long
memory is also significant for all cases. Fitting performances of the used models in the model
building set in terms of RMSE, MAE and MAPE are given in Table 5. It is seen that for all
the markets the best fitted model is the AR (1)-FIGARCH (1, d, 1) model. The ACF and
PACF plots of the residual series, after fitting the AR (1)-FIGARCH (1, d, 1) model, for all
the markets, do not exhibit any systematic trend and almost all the correlations lie within
the 95% confidence interval.

In the model validation set, the rolling window forecast for 50 days, 100 days, 150
days, 200 days and 250 days are obtained and they are given in Table 6. It can be seen that
for Khedli and Anoopgarh markets the forecasting performance is improving by increasing
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Table 4: Estimate of parameters of the best-fitted models

Market Khedli Atru Nimbahera Anoopgarh
parameter AR(1) - FIGARCH AR(1) - FIGARCH AR(1l) - FIGARCH AR(1) - FIGARCH
(1,d, 1) (1, d, 1) (1, d, 1) (1, d, 1)
Mean Model
Constant 0.000 -0.001 -0.000 0.000
(0.000)*** (0.000)*** (0.000) (0.000)
AR(1) -0.550 -0.327 -0.410 -0.230
(0.000)*** (0.016)*** (0.016)*** (0.019)***
Variance Model
Constant 0.000 0.000 0.000 0.000
(0.000) (0.000)*** (0.000) (0.000)***
a 0.152 0.961 0.820 0.311
(0.000)*** (0.004)*** (0.194)*** (0.026)***
51 0.649 0.942 0.797 0.824
(0.000)*** (0.003)*** (0.219)*** (0.012)***
d 0.727 0.577 0.463 0.631
(0.000)*** (0.013)%** (0.050)*** (0.033)***

Table 5: Fitting performance of the selected models in the model building set

Market Model RMSE MAE MAPE (%)
AR(1-CARCH (1,1) _ 103.165 35.684  0.930
AR(1)-EGARCH(1,1)  107.785 36921  0.962

Khedli AR(1)-APARCH (1,1)  99.267 36.163  0.702

AR(1)-GJRGARCH (1,1) 98542 36.408  0.688
AR(1)-FIGARCH (1, d, 1) 67.986 23.223  0.575

AR(1)-GARCH (1,1 30.918 20478  0.520
AR(1)-EGARCH(1,1)  39.871 18858  0.478
Atru AR(1)-APARCH (1,1)  38.233 19.554  0.496

AR(1)-GJRGARCH (1,1)  39.344 20.167  0.512
AR(1)-FIGARCH (1, d, 1) 32.608 16.317  0.410
AR(1)-GARCH (1,1) _ 56.147 28414  0.755
AR(1)-EGARCH(1,1)  50.373 25513  0.678

Nimbahera ~ AR(1)-APARCH (1,1)  56.484 28.583  0.760
AR(1)-GJRGARCH (1,1)  59.615 30.157  0.802
AR(1)-FIGARCH (1, d, 1) 48.295 24.481 0.651
AR()-GARCH (1,I) _ 19.260 9.822  0.240
AR(1)-EGARCH(1,1)  16.133 8229  0.218

Anoopgarh ~ AR(1)-APARCH (1,1) 16.999  8.670 0.212
AR(1)-GJRGARCH (1,1) 18.385 9.376  0.229
AR(1)-FIGARCH (1, d, 1) 14.963 7.652  0.202

the forecast horizon. For the Atru market, the numerical values of these three error functions
first increase and then decrease. For the Nimbahera market, they decrease, then increase and
again then decrease. All these are because of the presence of long memory in volatility. Long
memory in volatility plays a crucial role in increasing the forecast efficiency while increasing
the forecast horizon at different levels.
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Table 6: Rolling window forecasting performance of best-fitted models in the
model validation set

Market Model Horizon RMSE  MAE MAPE (%)
20 138.469  89.017 1.595
100 131.694 87.371 1.529

Khedli AR (1) - FIGARCH (1,d,1) 150  129.799 86.693 1.488

200  124.836 85.922 1.472

250  117.413  81.497 1.427

50  75.871 61.047 1.054

100 84.717  66.929 1.145

Atru AR (1)-FIGARCH (1,d,1) 150  89.824  68.346 1.207

200 88569  65.951 1.206

250  87.919  65.031 1.202

50  202.693 116.820  2.039

100 166.421 102.061  1.748

Nimbahera AR (1) - FIGARCH (1, d,1) 150  185.467 113.154  2.072
200  241.414 114.319  2.249

250  218.968 101.744  2.024

50 141.472 106.313  1.874

100 131.277  98.890 1.719

Anoopgarh AR (1) - FIGARCH (1,d,1) 150  126.541 96.082 1.710
200  122.185 94.336 1.709

250  118.971 91.240 1.707

4. Conclusions

In this article, the mustard price volatility of four markets from the state of Rajasthan
is studied. The presence of long memory in volatility for these series is confirmed using the
GPH test. The GARCH, EGARCH, APARCH, GJR-GARCH and FIGARCH models are
fitted to the log return series of the selected markets and it is seen that the FIGARCH model
is the best fitted model for all the markets. The presence of long memory in volatility helps
increase the model forecasting efficiency on a larger horizon. A better understanding of price
volatility in the presence of long memory in volatility can help improve decision scenarios.
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