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Abstract
We solve an unsolved problem posed in Sarkar (2020), which proposed a reward-earning

binary random walk game on a parity dial whose twelve nodes, when read clockwise, are
labeled as (1, 11, 3, 9, 5, 7, 6, 8, 4, 10, 2, 0). Starting from Node 0, at each step the player
tosses a fair coin and moves one step clockwise (if heads) or counterclockwise (if tails). The
player pays 25c + k cents if she intends to capture c nodes and toss the coin k times. When
the c non-zero nodes are captured or when the k tosses are over the game ends; and the
player earns as many nickels as the sum of the labels of the captured nodes. The player’s
objective is to determine (c, k) to minimize the expected percentage loss.

Here we consider a more complex game in which the player is offered several options
for a partial refund on each unused toss on payment of an additional upfront overhead fee.
Which partial refund offer should she choose? Having chosen the refund option, how should
she determine (c, k) to minimize the expected percentage loss?

Under partial refund offers, the player may choose a higher c and a higher k compared
to those in the no refund scenario. The optimal choice is discovered through computer
simulation, leaving open the theoretical development. Lessons learned from such games
empower all parties engaged in the marketplace to determine when to intervene and how to
make decisions to benefit from an opportunity and/or prevent a catastrophe.
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1. Introduction

It ought to be a common knowledge that when a casino offers you a game of chance and
you agree to play, on average you should expect to lose money: For otherwise, the Casino
would simply toss the game out. You willingly accept this anticipated loss in exchange
for deriving some entertainment pleasure and experiencing the excitement of winning a big
windfall (although that would happen only rarely). The casino must make money even after
paying windfalls, costs, staff salaries, subsidies and taxes. The lure of a game is irresistible
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when the game appears to be in favor of the player for then the casino can entice more players
play it more often, and earn more profit for itself. The casino, of course, knows the exact
long run prospects of each game it offers. Sarkar (2020) proposed and analyzed such a game,
but left as unsolved a more realistic, and more complex, problem of how to choose among
several refund policies. Here we take up that generalized problem and discover the optimal
choice for the player.

Both the original game and the generalized game serve as models for entrepreneurial
decisions and consumer choices. In repeated plays of the game, the optimal choice for each
party may be discovered by utilizing the theory of stochastic processes. We direct interested
readers to Ross (1996) and Medhi (1982) to encounter the general theory of stochastic
processes, to Lovasz (1993) to learn about random walks on graphs, and to Maiti and Sarkar
(2019) to study symmetric random walks on paths and cycles. However, to communicate
better with researchers outside mathematical sciences, here we rely on computer simulations
to discover the optimal choices. Lessons learned from the game will empower all parties
engaged in the marketplace to determine when and how to intervene in order to maximally
benefit from an opportunity and/or prevent a catastrophe.

In Section 2, we describe the original game proposed in Sarkar (2020) and summarize
the optimal choice for the player. In Section 3, we describe the modified game and an
expedited search algorithm to conduct the simulation study. In Section 4, we study each
refund option and discover the optimal choice of (c, k) through simulation. Section 5 gives
the properties of the optimal game within the optimal refund option. Section 6 translates the
lessons learnt from this generalized game of reward-earning binary random walk to decision
making in the marketplace.

All computations are done using the freeware R, and codes are given in the Annexure.

2. The Original Game

Figure 1: The usual dial of a clock and the parity dial

On a circle there are twelve nodes labeled (1, 11, 3, 9, 5, 7, 6, 8, 4, 10, 2, 0) going clockwise,
as shown in Figure 1. The labels are obtained from the usual dial of a clock by changing
the top node from 12 to 0 and by interchanging nodes within pairs (2, 11), (4, 9), and (6, 7).
Thus, all odd values are on the right half while all even values are on the left half of the dial.
Hence, this dial is called the parity dial.
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To understand the nature and properties of a binary random walk on any dial, we refer
the interested reader to Sarkar (2006). If this random walk also produces earned rewards
when a specific node is visited it becomes a reward-earning random walk. Such a reward-
earning binary random walk on the parity dial studied in Sarkar (2020): A player pays an
admission price of 25c + k cents, where c is the number of nodes she intends to visit and
capture and k is the number of times she wishes to toss a fair coin. The player begins at
Node 0. After each toss, the player moves one step clockwise if the outcome is heads (with
probability half), or one step counterclockwise if the outcome is tails; and she captures a
node on the first visit to it. The game ends as soon as either c nodes (other than Node 0)
are captured or k tosses are over. Then the player will earn as many nickels as the sum of
the labels of the captured nodes. How should the player determine c and k?

The choice of c = 1 is immediately ruled out because then the player must choose
k = 1, and pay 26 cents per play. She will earn either one or two nickels with probability
half each, or on average, (5 + 10)/2 = 7.5 cents. Therefore, she will lose 18.5 cents—a
whopping 71.2% loss! Next, for c = 2, Sarkar (2020) proves that the optimal choice of k is
6; and in that case, the player stands to lose about 11.7 cents or 21% of her wager of 56
cents. Thereafter, for 3 ≤ c ≤ 11, he obtains the optimal k via simulation (based on 105

iterations). We summarize his results in Table 1.

Table 1: For the game with no refund, the optimal k’s for each 3 ≤ c ≤ 11,
determine the optimal choice of (c, k) as (6, 28) with an expected loss of 9.69%
(marked by a †).

cents
c k price E[rew] E[loss] E[%loss]
3 10 85 70.13 14.87 17.50
4 16 116 102.27 13.73 11.84
5 22 147 131.53 15.47 10.53
† 6 28 178 160.76 17.24 † 9.69

7 36 211 189.72 21.28 10.09
8 44 244 220.29 23.71 9.72
9 54 279 248.65 30.35 10.88

10 64 314 279.96 34.04 10.84
11 72 347 304.72 42.28 12.18

Based on Table 1, we learn that the gambler’s best choice game is (c = 6, k = 28); and
with this choice, she faces a 9.69% expected loss. A gambler with a tolerance limit of 10%
loss can play this game. The only other choice within her tolerance limit is (c = 8, k = 44)
with a 9.72% loss. It is somewhat perplexing that (c = 7, k = 36) results in a higher expected
loss of 10.09% than either (c = 6, k = 28) or (c = 8, k = 44). But this can be explained by
noting that the node labels an odd distance away from Node 0 are typically smaller than
node labels at an even distance.
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3. The Generalized Game with Refund Options

To understand the need and the nature of the generalized game, let me paraphrase
a very productive conversation I had with one attentive listener when I gave a talk on the
above-stated original game at the 2020 Pune Conference of the SSCA. During high tea after
the conference ended, among other things, this compassionate (to a gambler who would play
this game) and extravagantly helpful (to me) gentleman spoke to me thus:

“When the gambler captures c nodes, she is happy. But wouldn’t she feel poorly
about forfeiting all the unused tosses she already has paid for?”

“Indeed, she would. That is the very essence of the decision-making problem in
choosing both c and k optimally. Having chosen a c, if the gambler picks too small a
k, she will likely not have captured all c nodes when she has tossed k times. On the
other hand, if she picks too large a k, by the time she has captured c nodes she would
have many unused tosses which she would forfeit. She must choose k cautiously.”

“You mentioned offering a guaranteed refund in exchange for the unused tosses. If
you refund a full penny for every unused toss, the game surely becomes more attractive
to the player. It may even become favorable to the gambler! Is that something the
Gambling House will allow?”

“A guaranteed refund does not mean a full refund. If it did, then the gambler would
simply pay for k = 1000 (or a large number thereabouts) knowing that there is no risk
of losing the excess payment. She would recover it all as soon as she captures c nodes,
which will happen with almost certainty. For all practical purposes, one can think as if
the player pays 25c at the start of the game and then pays one penny before each toss
until c nodes are captured, requiring a random number of tosses Kc. Alternatively,
the payment of 25c + Kc can be determined when the game ends. In either case, the
problem changes to choosing c alone. Furthermore, the Gambling House will likely
charge the player an upfront fee to purchase this option to get a 100% refund.”

I had not calculated the optimal c under the full refund scenario with or without any
fee since a 100% refund option was not on my mind prior to this conversation. Therefore,
I could not talk about the optimal choice of c, except to say that it is likely to be an even
number 6 or more, and to reiterate that that is not what I meant by a guaranteed refund.

For the benefit of my readers, I have since then carried out that missing simulation. R
codes are given in the Annexure. Table 2 summarizes the expected percentage loss for various
choices of c under 100% refund at overhead fees 0, 5, 10, . . . , 30 cents. I should point out that
in this scenario, the (random) number of tosses is not right truncated by a predetermined k
as in the original game; hence, the price paid is genuinely random (and it is determined when
the game ends with c nodes captured). Hence, the expected percentage loss is calculated
only after the game ends using the formula

E[%loss]= 100 × E[loss] + overhead fee
E[price] + overhead fee

Bear in mind that the very definition of expected loss has changed! One could pretend
as if 100 extra tosses are paid for and the extra payment is recovered as refund, in which
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Table 2: Determining optimal c (marked by a ∗) under a 100% refund option
bought upfront on payment of some overhead fee

cents E[%loss] when overhead fee is (in cents)
c E[price] E[rew] E[loss] 0 5 10 15 20 25 30
3 81.00 72.51 8.48 10.48 15.67 20.31 24.46 28.20 31.58 34.67
4 110.02 105.97 4.05 3.68 7.87 11.71 15.24 18.50 21.52 24.31
5 139.99 137.51 2.48 1.77 5.16 8.32 11.28 14.05 16.66 19.11
6 171.03 170.02 1.01 0.59 3.41 6.08 8.61 11.00 13.27 15.43
7 202.94 201.24 1.71 0.84 3.23 5.50 7.67 9.74 11.72 13.61
8 235.90 235.06 0.83 ∗0.35 ∗2.42 ∗4.40 6.31 8.14 9.90 11.59
9 270.10 265.52 4.58 1.70 3.48 5.21 6.87 8.47 10.02 11.52

10 305.01 299.98 5.03 1.65 3.24 4.77 ∗6.26 ∗7.70 ∗9.10 ∗10.46
11 341.19 330.00 11.19 3.28 4.68 6.03 7.35 8.64 9.88 11.10

case the percentage loss can be reduced artificially, since the denominator increases by 100
but the numerator remains the same. More extremely, if 1000 tosses are paid for then the
percentage loss is driven down to almost zero! Notwithstanding, to compare different values
of c, invoking monotonic relation, our adopted definition of expected percentage loss works
just fine. For the 100% refund option with an overhead fee of 14 cents or less (details are
not shown), the best choice is c = 8 (and a very large k), but for a fee of 15 cents or more, it
is c = 10. As anticipated, as the overhead fee increases, so does the player’s percentage loss.

An astute reader can anticipate how our post-conference conversation ended:

”If not a 100% refund of the price of the unused tosses, what then do you mean by
a guaranteed refund?”

”A guaranteed refund means a percentage of the purchase price of the unused tosses
will be refunded if the player had bought this option by paying an additional overhead
fee at the very outset of the game. For instance, in the original game, the guaranteed
refund is 0% for an overhead fee of 0 cents: The gambler gets nothing back on the
unused tosses; and pays no extra fee. The Gambling House could offer several options:
(1) 50% refund for a fee of 5 cents; (2) 60% refund for a fee of 7 cents; (3) 70% refund
for a fee of 10 cents; (4) 80% refund for a fee of 15 cents. In each case, we would
ask what is the optimum choice of (c, k)? When we answer these questions, we can
determine which of the four offers of guaranteed percentage refund is optimum.”

In this paper, I will answer the optimal choices in the modified game that offers a
partial refund of unused tosses for a modest fee upfront. A player who was intending to
play the original (c = 6, k = 28) game, when offered the modified game with partial refund,
has some incentive to pay for a few extra tosses at the outset in hope of improving her
chance of capturing all c = 6 nodes; and yet should she capture them early, she can recover
a percentage of her wager. What should be her best choice now? If this offer were available
at no overhead fee, the player would lower her expected percentage loss below that in the
original game (where it was 9.69%). But the presence of an overhead fee makes it challenging
to anticipate the expected percentage loss without studying the process in more details.
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Moreover, the offer of a partial refund may cause the player to rethink how many nodes
she should set out to capture. This paper is devoted to answering the optimal choice among
the four percentage refunds—50%, 60%, 70%, 80%—with associated overhead fees 5, 7, 10,
15 cents, respectively—and the corresponding optimal choice of (c, k).

4. Optimal Games Under Different Percentage Refunds

Suppose that the Gambling House offers the gambler for an upfront payment of 5 cents,
a 50% refund on the purchase price of all unused tosses by the time the player captures c
nodes. How should the player determine (c, k)? We leave to the reader to check that, as it
was in the original game, choosing c = 1 or c = 2 is not good for the gambler.

Proceeding in a routine manner, for every fixed 3 ≤ c ≤ 11, one can simulate the
expected loss for various choices of k ≥ c. However, a smarter search algorithm can be
implemented: Sarkar (2020) argued that for each contemplated c, the player is better off
choosing an even k ≥ c. Roughly speaking, this is because on the parity dial nodes at an
odd distance away from Node 0 have smaller labels compared to nodes at an even distance
away. Below we exhibit the simulation results for the choice of c = 8, and 50 ≤ k ≤ 60,
demonstrating that indeed k ought to be chosen an even number because for each odd k,
the expected percentage loss is lower at both of its even neighbors.

Table 3: For 50% refund at 5 cents, expected reward and expected loss for c = 8
and 50 ≤ k ≤ 60, exhibit that even values of k are preferable.

cents E[%loss]
c k price E[rew] E[loss] k odd k even
8 50 255 233.54 21.46 8.42
8 51 256 234.29 21.71 8.48
8 52 257 235.54 21.46 8.35
8 53 258 236.26 21.74 8.43
8 54 259 237.55 21.45 8.28
8 55 260 238.25 21.75 8.37
8 56 261 239.47 21.53 ∗8.25
8 57 262 239.90 22.10 8.44
8 58 263 240.82 22.18 8.43
8 59 264 241.64 22.36 8.47
8 60 265 242.62 22.38 8.44

Moreover, having found the optimal k for a specific c, say kc, the search for the optimal
k for (c + 1) can be expedited by taking k even, and not just larger than (c + 1) but larger
than kc. Henceforth, for all percentage refund options, we shall only look at even k > kc−1
corresponding to each contemplated c. In Tables 4 and 5, for the partial refund options
(1)–(4) we document the expected percentage loss corresponding to each c ∈ {3, 4, . . . , 11}
and selected k’s that help us determine the optimal (c, k). Finally, using Tables 4 and 5, we
choose the best among the four positive refund options (1)–(4).
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Table 4: Expected percentage losses for 3 ≤ c ≤ 11 and selected even k’s de-
termine the optimal (c, k), under refund options (1) and (2). For each refund
option, min E[%loss] within c is marked by ∗, and the minimum overall by #.

(1) 50% refund at 5 cents (2) 60% refund at 7 cents
c k price E[rew] E[loss] E[%loss] c k price E[rew] E[loss] E[%loss]
3 8 88 68.88 19.12 21.73 3 12 94 74.92 19.08 20.30
3 10 90 72.14 17.86 19.85 3 14 96 76.75 19.25 ∗20.05
3 12 92 74.35 17.65 ∗19.19 3 16 98 78.24 19.76 20.17
3 14 94 75.91 18.09 19.25 3 18 100 79.53 20.47 20.47
3 16 96 77.18 18.82 19.60 3 20 102 80.84 21.16 20.74
4 16 121 105.48 15.52 12.83 4 18 125 108.51 16.49 13.20
4 18 123 107.75 15.25 12.40 4 20 127 110.50 16.50 ∗12.99
4 20 125 109.53 15.47 ∗12.38 4 22 129 112.22 16.78 13.01
4 22 127 110.95 16.05 12.64 4 24 131 113.76 17.24 13.16
4 24 129 112.47 16.53 12.81 4 26 133 115.18 17.82 13.40
5 22 152 135.54 16.46 10.83 5 24 156 138.87 17.13 10.98
5 24 154 137.99 16.01 10.39 5 26 158 141.06 16.94 10.72
5 26 156 139.92 16.08 ∗10.31 5 28 160 143.17 16.83 ∗10.52
5 28 158 141.62 16.38 10.37 5 30 162 144.88 17.12 10.57
5 30 160 143.32 16.68 10.43 5 32 164 146.44 17.56 10.71
6 32 187 170.11 16.89 9.03 6 34 191 173.54 17.46 9.14
6 34 189 172.28 16.72 ∗ 8.85 6 36 193 175.55 17.45 9.04
6 36 191 174.07 16.93 8.86 6 38 195 177.52 17.48 8.96
6 40 195 177.21 17.79 9.12 6 40 197 179.16 17.84 ∗ 9.06
6 38 193 175.61 17.39 9.01 6 42 199 180.77 18.23 9.16
7 40 220 200.09 19.91 9.05 7 42 224 203.88 20.12 8.98
7 42 222 202.28 19.72 ∗ 8.88 7 44 226 205.81 20.19 8.93
7 44 224 204.09 19.91 8.89 7 46 228 207.88 20.12 ∗ 8.82
7 46 226 205.88 20.12 8.90 7 48 230 209.66 20.34 8.84
7 48 228 207.56 20.44 8.96 7 50 232 211.35 20.65 8.90
8 50 255 233.57 21.43 8.40 8 54 261 239.55 21.45 8.22
8 52 257 235.58 21.42 8.33 8 56 263 241.40 21.60 8.21
8 54 259 237.50 21.50 8.30 8 58 265 243.29 21.71 8.19
8 56 261 239.40 21.60 #∗ 8.28 8 60 267 245.20 21.80 #∗ 8.16
8 58 263 240.85 22.15 8.42 8 62 269 246.81 22.19 8.25
9 60 290 263.10 26.90 9.28 9 66 298 271.11 26.89 9.02
9 62 292 265.04 26.96 9.23 9 68 300 273.11 26.89 ∗ 8.96
9 64 294 266.98 27.02 ∗ 9.19 9 70 302 274.80 27.20 9.01
9 66 296 268.71 27.29 9.22 9 72 304 276.72 27.28 8.97
9 68 298 270.42 27.58 9.26 9 74 306 278.33 27.67 9.04
10 72 327 297.21 29.79 9.11 10 76 333 303.69 29.31 8.80
10 74 329 299.15 29.85 9.07 10 78 335 305.75 29.25 ∗ 8.73
10 76 331 301.05 29.95 ∗ 9.05 10 80 337 307.38 29.62 8.79
10 78 333 302.88 30.12 9.05 10 82 339 309.38 29.62 8.74
10 80 335 304.48 30.52 9.11 10 84 341 311.00 30.00 8.8
11 86 366 328.17 37.83 10.34 11 90 372 335.15 36.85 9.91
11 88 368 330.38 37.62 10.22 11 92 374 336.85 37.15 9.93
11 90 370 332.22 37.78 ∗10.21 11 94 376 338.76 37.24 9.91
11 92 372 333.74 38.26 10.29 11 96 378 340.62 37.38 ∗ 9.89
11 94 374 335.34 38.66 10.34 11 98 380 342.31 37.69 9.92
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Table 5: Expected percentage losses for 3 ≤ c ≤ 11 and selected even k’s de-
termine the optimal (c, k), under refund options (3) and (4). For each refund
option, min E[%loss] within c is marked by ∗, and the minimum overall by #.

(3) 70% refund at 10 cents (4) 80% refund at 15 cents
c k price E[rew] E[loss] E[%loss] c k price E[rew] E[loss] E[%loss]
3 14 99 77.55 21.45 21.67 3 22 112 85.29 26.71 23.85
3 16 101 79.20 21.80 21.59 3 24 114 86.88 27.12 23.79
3 18 103 80.77 22.23 ∗21.58 3 26 116 88.52 27.48 23.69
3 20 105 82.24 22.76 21.68 3 28 118 90.12 27.88 23.63
3 22 107 83.63 23.37 21.84 3 30 120 91.68 28.32 ∗23.60
4 20 130 111.54 18.46 14.20 4 26 141 118.38 22.62 16.04
4 22 132 113.54 18.46 ∗13.99 4 28 143 120.15 22.85 15.98
4 24 134 115.11 18.89 14.10 4 30 145 121.85 23.15 ∗15.97
4 26 136 116.87 19.13 14.07 4 32 147 123.49 23.51 15.99
4 28 138 118.35 19.65 14.24 4 34 149 125.07 23.93 16.06
5 28 163 144.46 18.54 11.38 5 34 174 151.79 22.21 12.76
5 30 165 146.39 18.61 ∗11.28 5 36 176 153.71 22.29 12.67
5 32 167 148.13 18.87 11.30 5 38 178 155.50 22.50 ∗12.64
5 34 169 149.89 19.11 11.31 5 40 180 157.04 22.96 12.75
5 36 171 151.51 19.49 11.40 5 42 182 158.81 23.19 12.74
6 38 198 179.28 18.72 9.45 6 46 211 188.85 22.15 10.50
6 40 200 181.21 18.79 ∗ 9.40 6 48 213 190.64 22.36 10.50
6 42 202 182.94 19.06 9.44 6 50 215 192.51 22.49 ∗10.46
6 44 204 184.77 19.23 9.43 6 52 217 194.24 22.76 10.49
6 46 206 186.40 19.60 9.51 6 54 219 195.95 23.05 10.53
7 48 233 211.84 21.16 9.08 7 58 248 223.73 24.27 9.79
7 50 235 213.64 21.36 9.09 7 60 250 225.54 24.46 9.79
7 52 237 215.57 21.43 ∗ 9.04 7 62 252 227.48 24.52 ∗ 9.73
7 54 239 217.34 21.66 9.06 7 64 254 229.07 24.93 9.82
7 56 241 219.15 21.85 9.07 7 66 256 230.89 25.11 9.81
8 58 268 245.87 22.13 8.26 8 70 285 260.11 24.89 8.74
8 60 270 247.84 22.16 8.21 8 72 287 262.02 24.98 8.70
8 62 272 249.71 22.29 #∗ 8.20 8 74 289 263.87 25.13 ∗ 8.69
8 64 274 251.38 22.62 8.19 8 76 291 265.68 25.32 8.70
8 66 276 253.39 22.61 8.26 8 78 293 267.24 25.76 8.76
9 72 307 279.68 27.32 8.90 9 82 322 292.56 29.44 9.14
9 74 309 281.39 27.61 8.94 9 84 324 294.30 29.70 9.17
9 76 311 283.46 27.54 ∗ 8.85 9 86 326 296.18 29.82 ∗ 9.15
9 78 313 285.11 27.89 8.91 9 88 328 297.96 30.04 9.16
9 80 315 286.95 28.05 8.90 9 90 330 299.63 30.37 9.20
10 84 344 314.41 29.59 8.60 10 100 365 333.37 31.63 8.67
10 86 346 316.45 29.55 8.54 10 102 367 335.23 31.77 8.66
10 88 348 318.38 29.62 ∗ 8.51 10 104 369 337.33 31.67 #∗ 8.58
10 90 350 320.02 29.98 8.57 10 106 371 338.65 32.35 8.72
10 92 352 321.70 30.30 8.61 10 108 373 340.42 32.58 8.73
11 98 383 345.96 37.04 9.67 11 112 402 363.42 38.58 9.60
11 100 385 347.67 37.33 9.70 11 114 404 365.38 38.62 9.56
11 102 387 349.84 37.16 ∗ 9.60 11 116 406 367.17 38.83 ∗ 9.56
11 104 389 351.32 37.68 9.69 11 118 408 368.85 39.15 9.59
11 106 391 353.13 37.87 9.68 11 120 410 370.66 39.34 9.60
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From Tables 4 and 5, we note that for the partial refund options of 50%, 60%, 70%
and 80% on payment of 5, 7, 10, 15 cents, respectively, the optimal (c, k) are (8, 56), (8, 60)
(8, 62) and (10, 104). Recall that in the original game with no refund the optimal game was
(6, 28). Thus, as the refund percentage increases, the gambler not only may choose to buy
more tosses, but also commit to capturing more nodes! The safety net of getting a partial
refund on prepaid excess tosses, makes the player more inclined to targeting a higher c and
choosing a higher k.

5. Properties of the Optimal Game Under the Optimal Refund Option

In the previous section, we learned that among the various refund options offered to
the gambler, the best is Option (2): 60% refund on payment of 7 cents. For this case, the
optimum (c, k) is (8, 60). This optimal game has admission price 25×8+60+7 = 267 cents.
For this optimum game, we exhibit some characteristics such as the number of tosses until
the game ends, the probability distribution of the number of nodes captured, the probability
distribution of the farthest node captured going clockwise from Node 0, and the probability
distribution of the reward earned (plus refund).

Based on a simulation of 106 (one million=ten lakhs) iterations of game (8, 60), we can
estimate the number of tosses until the game ends by capturing all 8 nodes using Figure 2.

Figure 2: The number of tosses until game (8, 60) ends by capturing 8 nodes.
About 11.6% of times the game captures fewer than 8 nodes in 60 tosses.

The probability of capturing 8 nodes in 8, 9 or 10 tosses are respectively 2−7, 2−8, 2−6.
This is supported by the simulation where out of 106 iterations the frequencies of 8, 9, 10
tosses are respectively 7790, 3896, 15632 (P-values of chi-square tests with one degree of
freedom are respectively .8027, .8758, .9582). We leave it to the inquisitive reader to explain
a curious feature observed in Figure 2: The relative frequencies for odd number of tosses are
smaller when compared to those of their two immediate neighboring even values!

The number of tosses until game (8, 60) ends with 8 nodes captured is shown in Fig-
ure 2. In 115,872 more iterations (not shown in Figure 2) fewer than 8 nodes are captured
in 60 tosses. For these iterations, how many nodes are actually captured? The answer is
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given in Table 6, which also shows the corresponding probabilities, which are correct to three
decimal places because their 95% confidence intervals are at most 0.001 wide (see Devore
and Berk, 2007, for example). All 8 vertices are captured 88.4% of times; 7 nodes 7.2% of
times and 6 or fewer nodes 4.4% of times.

Table 6: The simulated distribution of the number of nodes captured by game
(8, 60) shows about 11.6% of time not all 8 nodes are captured.

# nodes 1 2 3 4 5 6 7 8 sum
frequency 0 0 9 841 8823 34224 71975 884128 1000000

probability .000000 .000000 .000009 .000841 .008823 .034224 .071975 .884128 1.000000

Using the information in Figure 2 and Table 6, the number of tosses until game (8, 60)
ends has the following summary statistics (see R code in the Annexure):

N=106, Min=8, Q1=21, Q2=31, Mean=33.88, Q3=46, Max=60, SD=15.50

The probability distribution of the number of tosses left over when the game ends is
obtained simply by subtracting from 60 the number of tosses needed to capture 8 nodes (and
adding 0.115872 to the probability that no toss is left over). Thereafter, one can construct
the probability distribution of the refund amount by multiplying the number of leftover
tosses by the refund percentage.

Also, based on this same simulation, and using the built-in kernel density estimator
in R (see Silverman, 1986), the estimated probability density function of the reward earned
(plus refund) is shown in Figure 3, with its summary statistics given by

N=106, Min=64.4, Q1=235.2, Q2=248.2, Mean=245.2, Q3=264.2, Max=286.2, SD=27.82

Figure 3: The reward (plus refund) distribution in game (8, 60) exhibits
mean=245.2 (the + sign), SD=27.82, a 20.4% chance of winning (reward > 267
cents (the vertical line)), and an expected percentage loss of 8.18.
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Using the estimated density function given in Figure 3, we can infer (see Rohatgi,
2003, for example) some probabilities the gambler would like to know. While on average the
gambler loses 8.18% of her wager of 267 cents per game, about 20.4% of the time she earns
more reward (plus refund) than the wager. Thus, the game does not always end in a loss for
the player. Moreover, a gambler who has a tolerance limit of 10% loss, actually earns back
more than 90% of her wager (or 240.3 cents) about 66.1% of times, making the game quite
attractive to her!

Finally, note that Option (3), which offers a 70% refund on payment of 10 cents over-
head fee, is a close second best when the player chooses (c = 8, k = 62), with an expected
loss of 8.20%. We leave it to the interested reader to study its properties by adapting the R
codes given in the Annexure.

6. Lessons Learnt From The Game

The problem studied in Sarkar (2020) was formulated in response to an invitation to
deliver a keynote speech at the 2nd International Conference on “Frontiers of Operations
Research & Business Studies” held during 27–28 December 2019, at the Calcutta Business
School. The mission of FORBS (see FORBS, 2019) is described as follows:

Most often organizations are confronted with questions like how to make a good de-
cision? What is really a good decision? What constitutes a poor decision? Is there any
pattern in the decisions made? In the quest for finding answers to these questions, the
contributions of several disciplines like statistics, mathematics, sociology, economics,
information technology, operations research and behavioral science need to be acknowl-
edged. In other words “Decision Sciences incorporate an economic framework—a con-
sistent, rational and objective system to “price” each possible outcome, taking into
account risks and rewards.”

Sarkar (2020) demonstrated the essential elements of optimal decision making in a
rather simple model: Choose (c, k) to minimize the expected percentage loss in the reward-
earning binary random walk game on the parity dial. Here we have expanded that problem
to incorporate one more layer of complexity: First choose the refund policy offered at sev-
eral different options with associated overhead fees, and then choose (c, k) to minimize the
expected percentage loss.

We showed that when the gambler judiciously buys the optimal option for partial
refund, the game may become more favorable to the gambler than playing the original game
with no refund. However, we will be remiss if we did not mention that the Gambling House
still has the last laugh: It can, for instance, raise the overhead fee for each refund option
by, say, 5 cents. Then the best option for the gambler will be the original game with an
expected percentage loss of 9.79. The other refund options (1)–(4) has expected percentage
loss of 10.00, 9.853, 9.852, 9.805, respectively. To calculate these percentage losses, simply
take the ratio of expected loss and price after adding to both quantities the change in the
overhead fee, as in Table 2. See R codes in the Annexure. However, to keep the gambler
playing, the Gambling House cannot remain totally adversarial; it must keep the overhead
price in check. It is precisely this tension that keeps decision making exciting and intriguing.
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The reward-earning random walk game, translates in the marketplace into a decision
about investing sufficient resources to ensure a good chance of fulfilling the mission of a
venture. However, to avoid letting the unused part of the investment go to waste, the
entrepreneur will act prudently by purchasing an insurance to protect the resource. Thus, the
refund option can be thought of as an insurance policy. Should the entrepreneur accomplish
the goal of the venture and still have some resources left over, she will at least get back
a predetermined percentage as refund. The insurance company that underwrites such an
insurance plan likely has a market where they can resell the leftover resources and pass on
(part of) the proceeds to the insuree.

The central message of the reward-earning random walk games is that while facing un-
certainty of outcomes, an entrepreneur can and should make the best decision based on the
information available, and adjust the decision should the conditions change. A careful and
adequate planning and flexibility in decision making are necessary to maximize the expected
return from a venture.
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ANNEXURE

We document the R codes used to prepare Tables 2–6 and draw Figures 2 and 3.
### Table 2: Simulate expected nb of tosses, price reward, loss and %loss
## with 0% refund at 0 cents overhead fee
k=1000 # a very large number of tosses
reward=function(c,k){ # c=vertices to capture, k=tosses allowed

rf=c(1,11,3,9,5,7,6,8,4,10,2,0)
ber=2*rbinom(k,1,1/2)-1; cber=c(0,cumsum(ber));
(nv=cummax(cber)-cummin(cber)); l=sum(nv<c); l1=l+1

if(l<=k){cber=cber[1:l1]}
maxv=max(cber); vv=seq(min(cber),max(cber))
visited=vv*(vv>0)+(vv+12)*(vv<=0);
nvv=length(visited); rew=5*sum(rf[visited])
c(nvv,maxv,rew,l) }

el=matrix(0,9,6) # initialize E[%loss] matrix
for (i in 1:9){

data=replicate(10ˆ5,reward(i+2,k))
price=0+25*(i+2) + mean(data[4,]) # no fee yet
rew=mean(data[3,]); loss=price-rew
el[i,]=(c( round(i+2,0), round(k,0), round(price,2),

round(rew,2),round(loss,2), round(100*loss/price,2) ) }
el # calculate more columns as (E[loss]+fee)/(E[price]+fee)

### Tables 3, 4 and 5: How much is the random reward?
reward=function(c,k){ # c=vertices to capture, k=tosses allowed

rf=c(1,11,3,9,5,7,6,8,4,10,2,0) # nickels at the nodes
ber=2*rbinom(k,1,1/2)-1; cber=c(0,cumsum(ber));
(nv=cummax(cber)-cummin(cber)) # nb of non-zero vertices
l=sum(nv<c) # nb tosses until capture c nodes
l1=l+1; if(l<=k){cber=cber[1:l1]} # cber has an initial 0
maxv=max(cber); vv=seq(min(cber),max(cber)) # vertices captured
visited=vv*(vv>0)+(vv+12)*(vv<=0) # recode vertices captured
nvv=length(visited) # nb of nodes visited (includes Node 0)
rew=5*sum(rf[visited]) + (k-l)*0.60 # add refund (% of excess tosses)
c(nvv-1,maxv,rew,l) } # outputs

## (refund %, payment)=(.50, 5), (.60, 7), (.70, 10), (.80, 15)
## simulate expected nb of tosses, price, reward, loss and %loss
c=8 # 2, 3, 4, ..., 11
for (k in seq(58,62,2)){ # try a range of values of k (even)

price=10+25*c+k # overhead fee + admission
data=replicate(10ˆ5,reward(c,k))
rew=mean(data[3,]); loss=price-rew
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print(c( round(c,0), round(k,0), round(price,2),
round(rew,2),round(loss,2), round(100*loss/price,2) )) }

### Figures 2, 3 and Table 6: Properties of the optimum game
## (refund 60%, overhead 7 cents) (c=8, k=60)
c=8; k=60
data=replicate(10ˆ6,reward(c,k))
summary(data[4,]) # nb of tosses=61 means < 8 nodes captured

# Figure 2.
plot(table(data[4,])[1:53], las=1, ylab=’’, xlab=’tosses’,

main="Number of tosses until game (8, 60) captures 8 nodes",
sub="11.6% of time 60 tosses capture fewer than 8 nodes")

prop.test(7790,10ˆ6,1/128) # test P{ntoss=8)=2/2ˆ8=1/2ˆ7
prop.test(3896,10ˆ6,1/256) # test P{ntoss=9)=2/2ˆ9=1/2ˆ8
prop.test(15632,10ˆ6,1/64) # test P{ntoss=10)=2*8/2ˆ10=1/2ˆ6
nbtoss=data[4,]-(data[4,]==61) # nb tosses at game end (60 replaces 61)
summary(nbtoss); sd(nbtoss)

# Table 6.
summary(data[1,]); table(data[1,]) # nb of nodes captured

# Calculate E[%loss]
summary(data[3,]) # reward earned (plus refund)
price=25*c+k+7 # include overhead fee
rew=mean(data[3,]); loss=price-rew
print(c( round(c,0), round(k,0), round(price,2),

round(rew,2),round(loss,2), round(100*loss/price,2) ))

# Figure 3. Kernel Density Plot
d <- density(data[3,]) # returns density data
plot(d, las=1, xlim=c(100,300), ylab=’’,

main="Reward earned in 10ˆ6 plays of game (8, 60)",
sub="under 60% refund for 7 cents fee; price=267") # plots the results

abline(v=267); points(245.2,0, pch=3) # reference price and mean reward

sum(data[3,]>price)/10ˆ6 # prob of winning above the price
sum(data[3,]>0.90*price)/10ˆ6 # prob of earning above the 10% loss threshold

### What if the overhead fees change?
# Simply revise the expected % loss
eloss=c(21.60, 21.80, 22.29, 31.67)
price=c(261, 267, 272, 369)
for (i in -5:8){print((eloss+i)/(price+i))}


