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Abstract
The interpretation of clinical laboratory results of patients depends crucially on an

established reference interval for each biochemical analyte. Often, the health status of a
patient is decided based on the values of multiple analytes, and this calls for the use of a
multivariate reference region, so that the possible cross-correlations among the analytes can
be taken into consideration. If multivariate normality can be assumed, one of the recom-
mendations in the laboratory medicine literature is to use an ellipsoidal prediction region
as a reference region. However, an ellipsoidal region cannot detect if a particular analyte
is within the normal range; a rectangular prediction region is necessary for this purpose.
Under multivariate normality, rectangular prediction regions are available in the literature,
and these can be used as reference regions for assessing the outlyingness of individual ana-
lytes. The present work is motivated by the need to construct such regions without making
the multivariate normality assumption. Two approaches are pursued in our work: based on
Box-Cox transformation of each marginal variable, and based on estimating each marginal
density using a kernel density estimator. A non-parametric bootstrap is then employed for
estimating the required prediction factors. Through simulations, it is noted that the result-
ing rectangular prediction regions meet the coverage probability requirements satisfactorily.
The methodology can also be adopted for computing one sided prediction limits, or a com-
bination of one-sided prediction limits for some variables, and two-sided prediction intervals
for the rest. Algorithms are provided to compute the regions, and illustrative examples are
also given.

Key words: Bootstrap; Box-Cox transformation; Kernel density estimator; One-sided pre-
diction limits; Two-sided prediction intervals.

1. Introduction

Reference intervals are used in numerous medical applications such as the interpre-
tation of blood tests, clinical urine tests, vital signs, and so forth. Due to the extensive
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applications of reference intervals in the field of laboratory medicine, Horn and Pesce (2005)
have called it “the most widely used medical decision-making tool.” A reference interval
is defined as the interval that contains 95% of the “central measurements” for a reference
population. Thus, the endpoints of a two-sided reference intervals are the 2.5th and 97.5th
percentiles of the reference population. If only a one-sided reference limit is of interest, then
the required reference limit is either the 95th percentile (for an upper reference limit), or the
5th percentile (for the lower reference limit).

Since the population percentiles are unknown in actual practice, reference ranges are
typically constructed based on data from a random sample of individuals (reference subjects).
The selection of reference subjects is obviously critically important, and the prevailing view
is that the reference subjects should consist of healthy subjects. For example, Wellek (2011)
mentions that a population suitable for establishing reference values should consist of people
free of the disease condition one aims to detect. A naive way to construct reference intervals
using the available data is to use estimated sample percentiles. Under such a scheme, the
percentage of the population covered by the resulting reference interval will be different from
95%. As an alternative to this, a common approach is to compute a 95% prediction interval
and use it as a reference interval. This approach has been recommended in practice; see
the document by the National Committee for Clinical Laboratory Standards (2010) and the
User’s Guide by Horn and Pesce (2005). Another option, advocated by authors such as Liu
et al. (2021) and Lucagbo and Mathew (2023) is to compute a 95% tolerance interval, which
can be used to assess the uncertainty in the estimated reference intervals. In this study, we
adopt the prediction interval criterion.

For complex diagnoses, such as for kidney function or liver function, several analytes
are needed to properly assess the health status of a patient. For such scenarios, the use of
separate univariate reference intervals is an inefficient way to proceed since such an approach
disregards the cross-correlations among the analytes. Moreover, it increases the risk of false-
positive diagnoses (Harris, 1981; Winkel et al., 1972). When multiple analytes are needed
to assess the health status of individuals, a multivariate reference region (MRR), which
accounts for the cross-correlations among analytes, is needed. Nonetheless, MRRs are not
without shortcomings. The conventional approach to compute MRRs, especially under the
assumption of multivariate normality, is to construct ellipsoidal regions. Unfortunately,
ellipsoidal reference regions are difficult to interpret. Moreover, ellipsoidal reference regions
tend to produce false negative results in the presence of only one or two extreme components
(Albert and Harris, 1987; Strike, 1991). Finally, ellipsoidal regions are unable to detect
component-wise outliers. In other words, whenever patients are diagnosed as non-healthy
based on an MRR, no conclusion can be drawn on which specific analyte/s have caused the
positive result. For this reason, Wellek (2011) notes that MRRs “have only a marginal role
in the practice of clinical chemistry and laboratory medicine.”

To address the above difficulties associated with ellipsoidal reference regions, this
paper aims to derive rectangular reference regions, which are easily interpretable regions
that can detect the outlyingness of specific analytes. In view of the fact that laboratory
test results are typically skewed (or at least not normally distributed), we shall derive such
regions under a nonparametric framework. Previous work on nonparametric reference regions
includes that of Wellek (2011) and Young and Mathew (2020). The work of Wellek (2011)
includes both parametric and nonparametric estimation of rectangular reference regions.
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Rectangular prediction regions are derived in Young and Mathew (2020); however, fairly
large sample sizes are required for meeting the coverage probability requirement.

In the present investigation, we aim to develop rectangular nonparametric prediction
regions to be used as reference regions. The methodologies described in this study are based
on either transforming the marginal data using a Box-Cox transformation, or estimating the
marginal densities through kernel density estimation. The accuracy of these approaches will
be assessed by reporting the relevant coverage probabilities. We investigate the performance
of the proposed methodologies using sample sizes starting from n = 50.

1.1. Rectangular prediction regions

We now define the criterion to be used in obtaining the rectangular nonparametric
reference region. Our goal is to find a rectangular reference region of the form (1)

[c1, d1] × [c2, d2] × · · · × [cp, dp] , (1)

subject to the prediction region criterion in (2)

P

( p⋂
i=1

{Xi ∈ [ci, di]}
)

= 1 − α. (2)

It should be clear that the set of intervals [ci, di], i = 1, 2, · · · , p, satisfying the above require-
ment is not unique. Nevertheless, it is to be expected that each marginal interval [ci, di],
i = 1, 2, · · · , p, can be appropriately specified if we know the marginal distributions. In the
absence of any information on the marginal distributions, we shall explore two options. The
first option is to apply separate Box-Cox transformations to each set of marginal data, so
that each marginal distribution is approximately normal. We can now specify a common
prediction factor on the transformed scale, which can be estimated via a nonparametric
bootstrap subject to the requirement in (2). Details of this appear in Section 2. The second
approach, described in Section 3, uses the kernel density estimate (KDE) of the marginal
densities, which also leads to a common prediction factor. In the same section, we also ex-
tend the KDE idea in order to construct mixed-sided prediction regions. These are regions
where some variables have an upper prediction limits and the rest have two-sided prediction
intervals. Section 4 gives numerical results on estimated coverage probabilities in order to
assess the accuracy of the proposed methodologies and illustrates the methodologies through
a real-life example. Section 5 gives some brief concluding remarks.

2. Nonparametric prediction regions using the Box-Cox transformation

Our first strategy to deal with the problem of computing nonparametric rectangular
prediction regions is to transform the marginal data so that it has a normal distribution,
approximately. Ichihara and Boyd (2010) note that “Since almost all distributions of labora-
tory test results are non-Gaussian, it is essential to convert these to a Gaussian distribution.”
They investigate transformation to normality using the Box-Cox transformation (Box and
Cox, 1964) and also a modified Box-Cox formula introduced by Ichihara and Kawai (1997).
The International Federation of Clinical Chemisty (IFCC) Expert Committee on Reference
Intervals has actually recommended the Box-Cox transformation to normality for the pur-
pose of computing reference intervals (Solberg, 1987). In other words, the idea of using the
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Box-Cox transformation in the context of computing reference intervals is already mentioned
in the literature, but only in the univariate context.

We shall employ the Box-Cox transformation to develop rectangular reference regions
in a nonparametric setup. The prediction factor is computed based on the transformed data,
under the assumption that the data are approximately normal. Here we want to point out
that we shall apply the Box-Cox transformation to the sample from each univariate marginal
distribution. In other words, the transformation is univariate, not multivariate. As will be
seen shortly, normality will not be fully utilized when we derive the prediction factor, since
we will be employing a nonparametric bootstrap procedure. However, normality is perhaps
necessary to justify the use of a common prediction factor.

Suppose that the data X1, X2, . . . , Xn consist of a random sample coming from an
unknown multivariate distribution with nonnegative support, where

Xi = (Xi1, Xi2, . . . , Xip)′

is a p-variate vector, i = 1, 2, . . . , n. For each fixed j = 1, 2, . . . , p, X1j, X2j . . . , Xnj, form a
random sample from the univariate marginal distribution of the jth component. We assume
that these random variables can be transformed as

Yij = gj (Xij) (3)

so that their distribution is approximately normal. The transformation could be different
for the different components. Once such a transformation has been identified, we can then
construct prediction regions for the transformed data Yij, i = 1, 2, . . . , n; j = 1, 2, . . . , p.
Since the transformed data are assumed to be approximately normal, we restrict the two-
sided prediction region to be of the symmetric form

Ȳj ± κ
√

Sy,jj (4)

for j = 1, 2, . . . , p, and our goal is to estimate κ. Here Ȳ =
(
Ȳ1, Ȳ2, . . . , Ȳp

)′
is the sample

mean vector, and Sy,jj is the jth diagonal element of the sample covariance matrix among
the transformed sample values Yi = (Yi1, Yi2, . . . , Yip)′, i = 1, 2, . . . , n.

Introduced by Box and Cox (1964), the Box-Cox transformation, as it has come to
be called in the statistical literature, is a well-known method to transform skewed data to
normality. For a random variable X that assumes positive values, the Box-Cox transformed
quantity, say Y , takes the form

Y =
{

Xλ−1
λ

, λ ̸= 0
log X, λ = 0

(5)

where λ > 1 for negatively skewed data and λ < 1 for positively skewed data. The value of
λ is to be estimated using the data on X. In this study, λ is estimated through maximum
likelihood.

Once a λj has been estimated based on X1j, X2j, . . . , Xnj, for each fixed j = 1, 2, . . . , p,
we shall choose the form of gj (·) in (3) to be

Yij = gj (Xij) =
{

X
λj

ij , λj ̸= 0
log Xij, λj = 0,

(6)
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instead of (5). Since Xij assumes positive values, if λj ̸= 0 it follows that Yij in (6) is always
positive. Therefore, the back-transformed value Y

1/λj

ij is always defined. This is not always
the case with (5), where the back-transformed value is (λY + 1)1/λ, which can be undefined
if λY + 1 < 0. For this reason, once the value of λj is identified, the power transformation
in (6) will be adopted. The next goal is to estimate κ to form prediction regions of the form
(4).

Let X = (X1, X2, . . . , Xp)′ be the future observation to be predicted, and let Y =
(Y1, Y2, . . . , Yp)′ =

(
Xλ1

1 , Xλ2
2 , . . . , Xλp

p

)′
be its transformed version. We shall find the value

of κ that satisfies

P
(
Yj ∈ Ȳj ± κ

√
Sy,jj ∀ j = 1, 2, . . . , p

)
= 1 − α.

That is,

P

∣∣∣∣∣∣Yj − Ȳj√
Sy,jj

∣∣∣∣∣∣ ≤ κ ∀ j = 1, 2, . . . , p

 = 1 − α.

Equivalently,

P

max
1≤j≤p

∣∣∣∣∣∣Yj − Ȳj√
Sy,jj

∣∣∣∣∣∣ ≤ κ

 = 1 − α. (7)

The choice of a common κ is justified in view of the approximate normality of the marginal
components of the Y . The statement (7) facilitates the estimation of κ via a nonparametric
bootstrap, by sampling with replacement from the collection {X1, X2, . . . , Xn}. Since the
λs are unknown parameters, they are also estimated in each bootstrap sample. Algorithm 1
gives the procedure to estimate κ; we shall denote the estimate by k.

2.1. Remarks on back-transforming the data

Caution must be taken in Step 10 of Algorithm 1, where the prediction region is
transformed back to the original scale. First of all, since for λj ̸= 0, Yij = X

λj

ij where Xijs
are positive, the prediction regions in the Yij scale should contain only nonnegative limits.
In some instances, however, the lower limit of an interval Ȳj − k

√
Sjj,y could be negative. In

such a case, we recommend that the lower limit just be changed to 0.

It is possible for λ̂j to be negative. Whenever this happens concurrently with a
negative lower limit, then the quantity

(
Ȳj − k

√
Sjj,y

)1/λ̂j

(10)

is undefined, even when the lower limit is changed to 0. The case where both lower limit and
λj are negative occurs rarely in the simulations, but it occurs more often when the sample
size is small than when large, presumably because λj cannot be estimated accurately from a
small sample. Such a phenomenon never occurred in the simulations included in this paper,
but the authors have seen it occur when the sample size is small (such as when n = 30).
Nonetheless, such an occurrence is still highly unlikely when p is small (e.g., 2 or 3). Since
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Algorithm 1 Nonparametric prediction regions using the Box-Cox transformation

1. Let X1, X2 . . . , Xn be the data and write Xi = (Xi1, Xi2, . . . , Xip)′, i = 1, 2, . . . , n.

2. For each j = 1, 2, . . . , p, estimate the Box-Cox transformation parameter λj for the observa-
tions X1j , X2j , . . . , Xnj . Let λ̂j be the estimated value of λj .

3. For each λ̂j in Step 2, compute

Yij =

X
λ̂j

ij , λ̂j ̸= 0
log Xij , λ̂j = 0

, i = 1, 2, . . . , n, j = 1, 2, . . . , p.

Define Yi = (Yi1, Yi2, . . . , Yip)′, i = 1, 2, . . . , n.

4. Take B random samples with replacement of size n+1 from the collection {X1, X2, . . . , Xn},
call these X∗

1b, X∗
2b, . . . X∗

nb, X∗
b , where b = 1, 2, . . . , B. Write X∗

b =
(
X∗

1b, X∗
2b, . . . , X∗

pb

)′
and

X∗
ib =

(
X∗

i1b, X∗
i2b, . . . , X∗

ipb

)′
, i = 1, 2, . . . , n, b = 1, 2, . . . , B.

5. For each bootstrap sample in Step 4, estimate the transformation parameter for the obser-
vations in the jth column of the data matrix, and denote this estimate by λ̂∗

jb.

6. For each λ̂∗
jb in Step 5, compute

Y ∗
ijb =


(
X∗

ijb

)λ̂∗
jb

, λ̂∗
jb ̸= 0

log X∗
ijb, λ̂∗

jb = 0
, and Y ∗

jb =


(
X∗

jb

)λ̂∗
jb

, λ̂∗
jb ̸= 0

log X∗
jb, λ̂∗

jb = 0
,

where i = 1, 2, . . . , n, j = 1, 2, . . . , p, b = 1, 2, . . . , B. Write Y ∗
ib =

(
Y ∗

i1b, Y ∗
i2b, . . . , Y ∗

ipb

)′
and

Y ∗
b =

(
Y ∗

1b, Y ∗
2b, . . . , Y ∗

pb

)′
.

7. Compute k∗
b = max

1≤j≤p

∣∣∣∣Y ∗
jb−Ȳ ∗

jb√
S∗

b,jj

∣∣∣∣ , b = 1, 2, . . . , B, where Ȳ ∗
jb is the jth element in the sample

mean of Y ∗
1b, Y ∗

2b, . . . , Y ∗
nb; Y ∗

jb is the jth component of Y ∗
b ; and S∗

b,jj is the jth diagonal
element in the sample covariance matrix of Y ∗

1b, Y ∗
2b, . . . Y ∗

nb.

8. Compute k as the (1 − α)-quantile of k∗
1, k∗

2, . . . , k∗
B.

9. The prediction region for the transformed data is given by[
Ȳ1 ± k

√
Sy,11

]
×
[
Ȳ2 ± k

√
Sy,22

]
× · · · ×

[
Ȳp ± k

√
Sy,pp

]
, (8)

where Ȳj and Sy,jj are respectively the jth element and jth diagonal element in the sample
mean vector and sample covariance matrix of Y1, Y2, . . . , Yn.

10. Finally, the prediction region for the original data is given by

[
Ȳ1 ± k

√
Sy,11

]1/λ̂1
×
[
Ȳ2 ± k

√
Sy,22

]1/λ̂2
× · · · ×

[
Ȳp ± k

√
Sy,pp

]1/λ̂p

, (9)

where we define [a, b]1/q =
[
a1/q, b1/q

]
if q > 0 ,

[
b1/q, a1/q

]
if q < 0, and

[
ea, eb

]
if q = 0.
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(10) is undefined when we run into this situation, we can address this problem by redefining
the interval corresponding to the particular component of X, say the jth. For example, it
is reasonable to redefine it as [(

Ȳj + k
√

Sjj,y

)1/λ̂j

, ∞
)

.

We therefore end up with a prediction region that is a mix of one and two-sided intervals
(called a mixed-sided reference region in Section 5). It is not clear how we can compare
expected volumes in such a scenario.

The reference region given in (9) can also exhibit erratic behaviors, for example,
when at least one of Ȳj − k

√
Sjj,y and Ȳj + k

√
Sjj,y is very close to 0 and λ̂j < 0. Ideally,

having a large sample size is the best remedy to avoid the above undesirable behaviors of
reference regions. When this is not possible (for example, due to cost considerations), we
would like to recommend the following: instead of back-transforming to the original scale,
do a “forward-transform” of the future observation to see if it falls inside the reference range
in the transformed scale. That is, whenever λ̂j ̸= 0, consider the transformation

(X1, X2, . . . , Xp)′ 7−→
(
X λ̂1

1 , X λ̂2
2 , . . . , X λ̂p

p

)′

and when λ̂j = 0, use Xj 7−→ log Xj, and then use the region in (8) as the reference region,
instead of (9). We emphasize that the limits in (8) are always defined.

2.2. One-sided prediction regions

Modifications of Algorithm 1 that are necessary to compute one-sided regions are
straightforward whenever we do not run into problems involving the sign of λj or the lower
limit, or when we choose to adopt the reference region in the transformed scale. To compute
a one-sided upper prediction region, we first estimate the prediction factor κ that satisfies

P
(
Yj ≤ Ȳj + κ

√
Sy,jj ∀ j = 1, 2, . . . , p

)
= 1 − α

⇐⇒ P

max
1≤j≤p

Yj − Ȳj√
Sy,jj

≤ κ

 = 1 − α. (11)

Condition (11) implies that the modification is to be done in Step 7 of Algorithm 1, in which
the quantity kb will be redefined as

kb = max
1≤j≤p

Y ∗
jb − Ȳ ∗

jb√
S∗

jj,b

.

For a (1 − α)-one-sided upper prediction region, we can take k to be the (1 − α)-quantile of
k1, k2, . . . , kB, and the prediction region in the Y -scale is given by(

−∞, Ȳ1 + k
√

S11,y

]
× · · · ×

(
−∞, Ȳp + k

√
Spp,y

]
.
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If λ̂j > 0 for all j = 1, . . . , p, the prediction region in the X-scale can then be defined as(
−∞,

(
Ȳ1 + k

√
S11,y

)1/λ̂1
]

× · · · ×
(

−∞,
(
Ȳp + k

√
Spp,y

)1/λ̂p

]
.

When λ̂j < 0, the corresponding univariate reference limit simply becomes a lower limit
instead of an upper limit. Finally, if λ̂j = 0, then the corresponding interval becomes(

−∞, exp
(
Ȳj + k

√
Sjj,y

)]
.

Similarly, for a (1 − α)-one-sided lower prediction region, we note that the prediction factor
should satisfy

P
(
Ȳj + κ

√
Sy,jj ≤ Yj ∀ j = 1, 2, . . . , p

)
= 1 − α

⇐⇒ P

 min
1≤j≤p

Yj − Ȳj√
Sy,jj

< κ

 = α.

Thus we change the definition of kb in Step 7 of Algorithm 1 to be

kb = min
1≤j≤p

Y ∗
jb − Ȳ ∗

jb√
S∗

jj,b

,

and then we take the estimated prediction factor k to be the α-quantile of k1, k2 . . . , kB. The
prediction region in the Y -scale is given by[

Ȳ1 + k
√

S11,y, ∞
)

× · · · ×
[
Ȳp + k

√
Spp,y, ∞

)
.

If λ̂j > 0 for all j = 1, 2, . . . , p, then in the X-scale the (1 − α)-one-sided lower prediction
region is given by[(

Ȳ1 + k
√

S11,y

)1/λ̂1
, ∞

)
× · · · ×

[(
Ȳp + k

√
Spp,y

)1/λ̂p

, ∞
)

,

and we deal with a zero or negative λ̂j analogously.

3. Nonparametric prediction regions using kernel density estimation

We shall now explore an alternative approach to construct nonparametric rectangular
prediction regions. The approach consists of obtaining a kernel density estimate of the un-
known probability density function, and then use the probability integral transform based on
the estimated density function to derive a rectangular prediction region. Such an approach
provides us with a justification for using common prediction limits for each marginal com-
ponent in the transformed scale, quite analogous to the use of a common prediction factor κ
in the transformed scale in Section 2. An inverse transformation can then be used to obtain
the required prediction limits in the original scale. We shall now present the details.
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3.1. One-sided upper and lower prediction regions

We shall first present our approach for computing upper prediction limits; the case of
lower prediction limits can be handled similarly. The case of two-sided prediction regions will
be explained later. Suppose we want to compute upper one-sided prediction limits for the
components of the random vector X = (X1, X2, . . . , Xp)′, using the sample X1, X2, . . . , Xn

from the distribution of X. Thus we have to use the data to estimate γ1, γ2, . . . , γp that
satisfy

P (X1 ≤ γ1, X2 ≤ γ2, . . . , Xp ≤ γp) = 1 − α. (12)

If we can find one-to-one transformations Yj = gj (Xj) , j = 1, 2, . . . , p, so that
Y1, Y2, . . . , Yp are identically distributed random variables, then it makes sense to have a
common upper limit ζ that satisfies

P (Y1 ≤ ζ, Y2 ≤ ζ, . . . , Yp ≤ ζ) = P
(

max
1≤j≤p

Yj ≤ ζ
)

= 1 − α. (13)

If the distribution functions Fj (x) of all the Xjs, j = 1, 2, . . . , p, were completely known, then
an obvious transformation that one can use is Yj = gj (Xj) = Fj (Xj), j = 1, 2, . . . , p. Clearly,
the transformed random variables Fj (Xj) , j = 1, 2, . . . , p, are identically distributed as
U (0, 1) random variables. However, since the Fj (Xj) , j = 1, 2, . . . , p are unknown, the idea
is to estimate them marginally using kernel density estimation (KDE). Call the estimated
distribution functions F̂j, j = 1, 2, . . . , p, and let z be an estimate of ζ satisfying (13), where
Yj = F̂j, j = 1, 2, . . . , p. We can now obtain estimates of the upper limits γj, j = 1, 2, . . . , p,
satisfying (12) as γ̂j = cj = F̂ −1

j (z) , j = 1, 2, . . . , p. Obviously, since the upper limits so
computed are estimates obtained from the data, we do not expect (12) to hold exactly. We
shall explore this shortly based on numerical results.

Kernel density estimation is a nonparametric statistical method used to estimate
an unknown PDF or CDF. Whenever we have a random sample X1, X2, . . . , Xn from a
continuous univariate distribution with an unknown density function f (x), the kernel density
estimate of f (x), say f̂ (x), is given by:

f̂ (x) = 1
n

n∑
i=1

1
h

K
(

x − Xi

h

)

where h denotes the bandwidth, which can be thought of as a smoothing parameter. The
kernel function K (·) satisfies K (·) ≥ 0 and

∞�
−∞

K (t) dt = 1.

In this study, we shall use the Gaussian kernel K (t) = ϕ (t), where ϕ (·) is the standard
normal density function. Our interest is in estimating the CDF, say F (·). The corresponding
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estimate, say F̂ (t), is given by:

F̂ (t) =
� t

−∞
f̂ (u) du =

� t

−∞

1
n

n∑
i=1

1
h

K
(

u − Xi

h

)
du

=
� t

−∞

1
n

n∑
i=1

1
h

ϕ
(

u − Xi

h

)
du = 1

n

n∑
i=1

Φ
(

t − Xi

h

)
, (14)

where Φ (·) denotes the standard normal CDF. Moreover, our choice for the bandwidth h
will be Silverman’s Rule of Thumb, given by

h = 0.9 min (S, IQR/1.34) n−1/5. (15)

This bandwidth appears to be the preferred choice whenever K (·) is chosen to be the Gaus-
sian kernel (Silverman, 1986).

We point out that since F̂j is a one-to-one function, F̂ −1
j (z) always exists and hence

the resulting region based on KDE always has defined limits, unlike the case for Box-Cox
transformation. Algorithm 2 gives the steps necessary to compute nonparametric one-sided
upper and lower prediction limits using KDE. In order to understand Step 5 in the algorithm,
we recall that when we have a random sample of univariate observations X1, X2, . . . , Xn,
and we want to construct a 100(1 − α)% nonparametric upper prediction limit for a future
observation, the upper prediction limit is given by the rth order statistic X(r), where r =
⌈(1 − α) (n + 1)⌉. Similarly, to construct a 100(1 − α)% lower prediction limit for a future
observation, the required limit is given by X(r), where r = ⌊α (n + 1)⌋ (Meeker et al., 2017).

3.2. Two-sided prediction regions

We shall now develop the methodology to compute nonparametric two-sided pre-
diction regions using kernel density estimation. In constrast to (12), we need to estimate
γ11, γ21, . . . , γp1 and γ12, γ22, . . . , γp2 that satisfy the condition:

P (γ11 ≤ X1 ≤ γ12, γ21 ≤ X2 ≤ γ22, . . . , γp1 ≤ Xp ≤ γp2) = 1 − α. (16)

Similar to the development of one-sided prediction regions, if the distribution func-
tions Fj (x), j = 1, 2, . . . , p, were completely known, then we can use the transformation
Yj = Fj (Xj) and find the common upper and lower prediction limits ζ1 and ζ2 satisfying

P (ζ1 ≤ Yj ≤ ζ2, j = 1, 2, . . . , p) = 1 − α. (17)

Since Yj, j = 1, 2, . . . , p are all U (0, 1) random variables, and since the U (0, 1)
distribution is symmetric, it makes sense to set ζ1 = 1 − ζ2. Thus, write (17) as

P (1 − ζ2 ≤ Yj ≤ ζ2, j = 1, 2, . . . , p) = P (max {Yj, 1 − Yj} ≤ ζ2, j = 1, 2, . . . , p) (18)

= P
(

max
1≤j≤p

max {Yj, 1 − Yj} ≤ ζ2

)
= 1 − α. (19)

As in the one-sided case, since Fj (x) , j = 1, 2, . . . , p, are unknown, we estimate them via
KDE. Let F̂j, j = 1, 2, . . . , p, be the estimated CDFs and let z be the estimate of ζ2 that
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Algorithm 2 Nonparametric one-sided upper (lower) prediction regions based on KDE

1. Let X1, X2, . . . , Xn be the random sample, where each Xi = (Xi1, Xi2, . . . , Xip)′ , i =
1, 2, . . . , n is a (p × 1) column vector of measurements from the ith subject.

2. For each j = 1, 2, . . . , p, estimate the distribution function of the jth component using
KDE (see (14)).The data used to estimate Fj are X1j, X2j, . . . , Xnj. Call the estimated
CDF F̂j.

3. Compute Yij = F̂j (Xij) for each Xij, i = 1, 2, . . . , n, and j = 1, 2, . . . , p.

4. Compute zi = max
1≤j≤p

Yij

(
zi = min

1≤j≤p
Yij

)
, for each i = 1, 2, . . . , n.

5. Compute the nonparametric (1 − α) upper (lower) prediction limit of the z1, z2, . . . , zn.
Denote this upper (lower) limit by z; thus z = z(r), where r = ⌈(1 − α) (n + 1)⌉
(r = ⌊α (n + 1)⌋).

6. Now compute for cj = F̂ −1
j (z) , j = 1, 2, . . . , p.

7. The (1 − α)-nonparametric upper (lower) prediction region is given by

(−∞, c1] × (−∞, c2] × · · · × (−∞, cp] ([c1, ∞) × [c2, ∞) × · · · × [cp, ∞)) .

satisfies (19). We can estimate the prediction limits in (16) as γ̂j1 = F̂ −1
j (1 − z) and γ̂j2 =

F̂ −1
j (z), j = 1, 2, . . . , p. Algorithm 3 gives the procedure to compute the nonparametric two-

sided prediction region using KDE. Step 6 of Algorithm 3 is motivated by the fact that ζ2 has
been expressed in (19) as the (1 − α)-quantile of the random variable max

1≤j≤p
max {Yj, 1 − Yj}.

Here we would like to make an important remark concerning Step 6 in Algorithm 2.
The computation of the order statistic-based nonparametric upper prediction limit in Step
6 requires the independence of z1, z2, . . . , zn. However, these quantities are not independent
since the F̂js are not independent. In formulating the algorithm, we have simply ignored
this. The estimated coverage probabilities that we shall shortly report will indicate the effect
of ignoring the lack of independence among z1, z2, . . . , zn.

3.3. Mixed-sided nonparametric prediction regions using kernel density esti-
mation

In many applications, we are interested in prediction regions that are a combination
of one-sided and two-sided intervals, since some variables may require two-sided reference
limits while others are appropriately bounded by one-sided reference limits. We shall refer to
such regions as mixed-sided prediction regions. For example, we may be interested in finding
the region [c1, d1] × (−∞, d2] such that

P (c1 ≤ X1 ≤ d1, X2 ≤ d2) = 1 − α.
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Algorithm 3 Nonparametric two-sided prediction regions based on KDE

1. Let X1, X2, . . . , Xn be the random sample, where each Xi = (Xi1, Xi2, . . . , Xip)′ , i =
1, 2, . . . , n, is a (p × 1) column vector of measurements from the ith subject.

2. For each j = 1, 2, . . . , p, estimate the distribution function of the jth component using
KDE (see (14)).The data used to estimate Fj are X1j, X2j, . . . , Xnj. Call the estimated
CDF F̂j.

3. Compute Yij = F̂j (Xij) for each Xij, i = 1, 2, . . . , n, and j = 1, 2, . . . , p.

4. Compute Uij = max {Yij, 1 − Yij} for each Yij, i = 1, 2, . . . , n, and j = 1, 2, . . . , p.

5. Compute zi = max
1≤j≤p

Uij, for each i = 1, 2, . . . , n.

6. Compute the nonparametric (1 − α) upper prediction limit of the z1, z2, . . . , zn. Denote
this upper limit by z; thus z = z(r), where r = ⌈(1 − α) (n + 1)⌉.

7. Compute cj = F̂ −1
j (1 − z) and dj = F̂ −1

j (z), j = 1, 2, . . . , p.

8. The (1 − α)-nonparametric two-sided prediction region is given by

[c1, d1] × [c2, d2] × · · · × [cp, dp] .

We now take up the problem of computing mixed-sided nonparametric prediction
regions. Suppose our data consists of the random sample X1, X2, . . . , Xn, where each Xi is
p-variate. Moreover, let X = (X1, X2, . . . , Xp)′ be the observation that we wish to predict
and assume that it has the same distribution as the Xis and is independent of them. Without
loss of generality, we develop a procedure to compute two-sided prediction limits for the first
p1 components of X and upper prediction limits for the remaining p − p1 components.
In doing so, we use a KDE-based approach since this approach generally shows superior
performance over the Box-Cox transformation-based approach, as we have seen in Section 4.

Let Fj (·) be the CDF of Xj, j = 1, 2, . . . , p. If we can find scalar quantities u, u′,
and v, all three being functions of X1, X2, . . . , Xn, that satisfy

PX,X1,...,Xn

(
F −1

j (u′) ≤ Xj ≤ F −1
j (u) , ∀j = 1, . . . , p1

and Xj ≤ F −1
j (v) , ∀j = p1 + 1, . . . , p

)
= 1 − α, (20)

then the region[
F −1

1 (u′) , F −1
1 (u)

]
×· · ·×

[
F −1

p1 (u′) , F −1
p1 (u)

]
×
(
−∞, F −1

p1+1 (v)
]
×· · ·×

(
−∞, F −1

p (v)
]

(21)

is a (1 − α)-mixed-sided nonparametric prediction region for X. The condition in (20) is
equivalent to

PX,X1,...,Xn (u′ ≤ Fj (Xj) ≤ u, ∀j = 1, . . . , p1

and Fj (Xj) ≤ v, ∀j = p1 + 1, . . . , p) = 1 − α. (22)
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Since each Fj (Xj) follows a U (0, 1) distribution, we can choose u′ = 1 − u. Furthermore,
since infinitely many possible values of u and v can satisfy (22), we shall impose a constraint
on u and v so as to arrive at a unique solution. The constraint to be imposed is that the
marginal probabilities in (22) should be equal. This amounts to choosing u and v such that
v = 2u−1. We can see this by observing that if U and V are U (0, 1) random variables, then
imposing the condition P (1 − u ≤ U ≤ u) = P (V ≤ v) implies v = 2u − 1. Substituting
these expressions for u′ and v, (22) becomes

PX,X1,...,Xn (1 − u ≤ Fj (Xj) ≤ u, ∀j = 1, 2, . . . , p1

and Fj (Xj) ≤ 2u − 1, ∀j = p1 + 1, . . . , p) = 1 − α. (23)

Since

1 − u ≤ Fj (Xj) ≤ u, ∀j = 1, 2, . . . , p1

⇐⇒ max
{

max
1≤j≤p1

Fj (Xj) , max
1≤j≤p1

(1 − Fj (Xj))
}

≤ u, (24)

Fj (Xj) ≤ 2u − 1, ∀j = p1 + 1, . . . , p ⇐⇒ max
p1+1≤j≤p

{
1 + Fj (Xj)

2

}
≤ u (25)

then we can write (23) as

PX,X1,...,Xn (max {h1 (X) , h2 (X) , h3 (X)} ≤ u) = 1 − α, (26)

where

h1 (X) = max
1≤j≤p1

Fj (Xj)

h2 (X) = max
1≤j≤p1

(1 − Fj (Xj))

h3 (X) = max
p1+1≤j≤p

{
1 + Fj (Xj)

2

}
.

From (26) we can conclude that u is a (1 − α)-upper prediction limit of

max {h1 (X) , h2 (X) , h3 (X)} .

Since the distribution functions Fj (·) are unknown, we estimate them using KDE. Algorithm
4 gives the steps to compute the mixed-sided nonparametric prediction region using KDE.

3.4. KDE with logarithmic transformation

Studies such as Geenens and Wang (2016) and Jones et al. (2018) suggest that
whenever the density is supported on the set of positive real numbers, we should first apply
a logarithmic transformation on the observations before estimating the density function.
Geenens and Wang (2016) argue that the KDE approach to estimate the density of a positive
random variable is inadequate due to the boundary bias problem and the fact that such a
density might have a long right tail. Charpentier and Flachaire (2014) also mention that
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Algorithm 4 Mixed-sided nonparametric prediction regions based on KDE

1. Let X1, X2, . . . , Xn be the random sample, where each Xi = (Xi1, Xi2, . . . , Xip)′ , i =
1, 2, . . . , n is a (p × 1) column vector of measurements from the ith subject.

2. For each j = 1, 2, . . . , p, estimate F̂j via KDE using X1j, X2j, . . . , Xnj.

3. Compute Yij = F̂j (Xij) for all j = 1, 2, . . . , p, and i = 1, 2, . . . , n.

4. Compute ui = max
{

max
1≤j≤p1

Yij, max
1≤j≤p1

(1 − Yij) , max
p1+1≤j≤p

(
1+Yij

2

)}
, for each i =

1, 2, . . . , n.

5. Compute the nonparametric (1 − α)-upper prediction limit of the u1, u2, . . . , un. De-
note this upper limit by u; thus u = u(r), where r = ⌈(1 − α) (n + 1)⌉.

6. Compute cj = F̂ −1
j (1 − u) and dj = F̂ −1

j (u), j = 1, 2, . . . , p1; and dj = F̂ −1
j (2u − 1),

j = p1 + 1, . . . , p.

7. The (1 − α)-mixed-sided nonparametric prediction region is given by [c1, d1] × · · · ×
[cp1 , dp1 ] × (−∞, dp1+1] × · · · × (−∞, dp].

doing a preliminary logarithmic transformation before applying KDE can provide a better
fit for heavy-tailed densities.

To apply this idea to the proposed KDE-based procedure, we can modify Algorithm
2 (or Algorithm 3 for the two-sided case) by taking the logarithm component-wise of each
Xi, i = 1, 2, . . . , n in Step 1 before proceeding to the other steps, and then exponentiating
each limit in Step 6 of Algorithm 2 (or Step 7 Algorithm 3 ) to get the reference limits in the
original scale. We shall refer to this procedure as the KDE with log transform procedure.

4. Numerical results and an example

In order to evaluate the performance of the proposed procedures to construct predic-
tion regions in the nonparametric case, simulations will be carried out to estimate coverage
probabilities and expected volumes for data generated from a multivariate lognormal dis-
tribution with mean vector in the logarithmic scale of 0, and covariance matrix in the
logarithmic scale Σ = (1 − ρ) Ip + ρ1p1′

p where ρ = 0.5, and 1p is the (p × 1) column vector
of 1s and Ip is the (p × p) identity matrix. We use the R package compositions of van den
Boogaart and Tolosana-Delgado (2008) to generate samples from the multivariate lognormal
distribution. We examine the performance for sample sizes n = 50, 100, and 200 and refer
to these as small, moderate and large sample sizes. We also use dimensions p = 2 and
3 since most applications of MRRs involve only at most three analytes. For the Box-Cox
transformation-based procedure, we use B = 500 bootstrap samples to estimate the predic-
tion factor. For the KDE-based procedure, the inverse function in Step 6 of Algorithm 2
and Step 7 in Algorithm 3 and all other occurrences of the inverse function in this study are
computed using the R package GoFKernel of Pavia (2015). The coverage probabilities are
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based on 5000 simulated samples, and the results are given in Table 1.

From the numerical results in Table 1, we can see that the coverage probabilities of the
proposed methodologies are generally close to the nominal level of 0.95, even for a sample of
size n = 50. Furthermore, it seems that the KDE-based procedure is slightly more accurate
than the Box-Cox transformation-based procedure. It is worth comparing our sample sizes
with those of Young and Mathew (2020), who also propose nonparametric reference regions.
Young and Mathew (2020) examine the performance of their procedure only for sample sizes
300 and 1000. We note that for these dimensions, the coverage probabilities for n = 100 in
Table 1 are already comparable to Young and Mathew’s results for n = 300.

Table 2 gives the expected volumes obtained from the proposed methodologies. Table
2 shows that for both the Box-Cox transformation-based procedure and the KDE-based pro-
cedure, the expected volume decreases with the sample size. We can see that the KDE-based
prediction regions have smaller expected volumes than the Box-Cox transformation-based
prediction regions. This implies that the KDE-based procedure results in better precision in
estimating the prediction region. On the basis of the results in Tables 1 and 2, the KDE-based
procedure has better overall performance than the Box-Cox transformation-based procedure.
We note that in computing the expected volume for the Box-Cox transformation-based pro-
cedure, we replaced any negative lower limit with zero except when λ̂j = 0, in which case
a negative lower limit is kept negative. In Table 3 we present the results of the proposed
KDE-based one-sided lower and upper prediction regions. The results show accurate cover-
age, even for small sample sizes.

Table 1: Estimated coverage probabilities of the nonparametric rectangular pre-
diction regions based on Box-Cox transformation and KDE for nominal level =
0.95

Box-Cox KDE
p = 2 p = 3 p = 2 p = 3

n = 50 0.9344 0.9396 0.9582 0.9414
n = 100 0.9408 0.9396 0.9472 0.9428
n = 200 0.9480 0.9398 0.9428 0.9460

Table 2: Expected volumes of the nonparametric two-sided prediction regions
based on Box-Cox transformation and KDE for nominal level = 0.95

Box-Cox KDE
p = 2 p = 3 p = 2 p = 3

n = 50 116.06 2,476.42 95.41 1061.11
n = 100 96.67 1,582.25 60.11 823.90
n = 200 89.76 1,342.86 53.02 660.93
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Table 3: Estimated coverage probabilities of the nonparametric one-sided lower
and upper prediction regions based on KDE for nominal level = 0.95

Lower Upper
p = 2 p = 3 p = 2 p = 3

n = 50 0.9588 0.9594 0.9518 0.9512
n = 100 0.9430 0.9436 0.9526 0.9526
n = 200 0.9476 0.9452 0.9464 0.9488

4.1. Comparison of nonparametric procedures when sampling from a highly
skewed distribution

We now compare the performances of the KDE-based procedures (both with and
without a preliminary log transformation) and the Box-Cox transformation approach to
compute prediction regions when we sample from a highly skewed distribution. In the
simulations, we generate the data from a gamma distribution with density function given in
(27)

f (x) = 1
ληΓ (η)xη−1e−x/λ, x ≥ 0, (27)

with shape parameter η = 0.04 and scale parameter λ = 1. This distribution has skewness
2/

√
η = 10. Table 4 shows the estimated coverage probabilities. We can see that Box-Cox

transformation-based procedure results in estimated coverage probabilities very close to 0.95.
On the other hand, the usual KDE procedure on the original data is too conservative. While
in the previous results, we have seen that the KDE-based procedure outperforms the Box-
Cox transformation-based procedure, Table 4 suggests that the Box-Cox-based procedure
is more robust to highly skewed distributions, and the KDE-based procedure breaks down
under such extreme skewness. Nonetheless, the KDE with log transform procedure rectifies
the coverage.
Table 4: Estimated coverage probabilities of the Box-Cox transformation-based
and the KDE-based two-sided prediction regions under highly skewed distribu-
tions

Box-Cox transformation KDE KDE with log transform
n = 50 0.9424 0.9934 0.9668
n = 100 0.9500 0.9898 0.9514
n = 200 0.9490 0.9936 0.9564

4.2. An example: assessment of liver function

To apply the proposed procedure to compute nonparametric rectangular prediction
regions, we use the liver function data from Appendix 4.2 of Harris and Boyd (1995). The
measurements are from single blood specimens taken from 596 male medical students during
the years 1987-1991 at the University of Virginia. Among the measurements taken from
each subject are two liver enzymes: alanine transaminase (ALT) in U/L and aspartate
transaminase (AST) in U/L. After the removal of three outliers, the summary statistics are
given in Table 5.
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Table 5: Summary statistics for measurements on ALT and AST taken from the
liver function data of Harris and Boyd (1995)

Analyte Mean Median S.D. Skewness
ALT 26.97 23.00 17.83 3.63
AST 23.66 22.00 9.51 1.80

Figure 1 shows the density plots for these two analytes. Clearly, both analytes are
skewed to the right. Table 5 above also shows that the sample coefficient of skewness is pos-
itive. Thus, we use our proposed procedures to compute nonparametric prediction regions.
The resulting MRRs using both the Box-Cox transformation and KDE-based approaches are
given in Table 6. According to Mayo Clinic (2020), the normal levels for ALT and AST are,
respectively, 7-55 and 8-48. Therefore, while the lower limits of the MRR for our proposed
procedures agree closely with the lower limits of the reference intervals used in practice, the
upper limits are quite different. We hasten to say that these enzymes can be erratically
large, in some conditions they can be in the 1000s range (eMedicine Health, 2020). Figure 1
also shows that there are several outlying measurements for ALT, and this could be a factor
leading to the unexpectedly high upper reference limit for ALT.

Figure 1: Density plot of ALT and AST
Table 6: MRR for liver function data computed as a two-sided prediction region
using Box-Cox transformation and KDE

Analyte Box-Cox KDE
ALT 7.2-84.8 7.1-79.1
AST 9.0-54.8 8.8-52.0
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4.3. Numerical results on mixed-sided nonparametric prediction regions

We shall now evaluate the performance of our proposed procedure to compute mixed-
sided nonparametric prediction regions using KDE, described in Section 3. We generate
data from the same distribution used in previous subsections. That is, we estimate coverage
probabilities for data generated from a multivariate lognormal distribution with mean 0 and
covariance matrix Σ = (1 − ρ) Ip + ρ1p1′

p, where ρ = 0.5 on the logarithmic scale. The 95%
prediction regions will be computed based on 5000 simulated samples. Moreover, we use
sample sizes n = 50, 100, 200, and (p, p1) = (2, 1) and (3, 2). Table 7 shows the results.
It appears that a sample of size n = 50 is sufficient for the proposed methodology to yield
accurate results.

Table 7: Estimated coverage probabilities of the mixed-sided nonparametric
prediction regions based on KDE for nominal level = 0.95

p = 2, p1 = 1 p = 3, p1 = 2
n = 50 0.9548 0.9448
n = 100 0.9510 0.9450
n = 200 0.9510 0.9502

5. Discussion

The problem of constructing multivariate reference regions has received proper at-
tention in the literature only recently, except the computation of traditional ellipsoidal pre-
diction regions under the multivariate normality assumption. There are two difficulties
associated with the latter region; first, the multivariate normality assumption is not always
valid and second, ellipsoidal regions are not appropriate for deciding which among several
analytes are outside the normal range. The nonparametric rectangular regions that we have
constructed address both of these issues satisfactorily. A different construction of nonpara-
metric rectangular prediction regions is described in Young and Mathew (2020); however, the
resulting region exhibits satisfactory coverage probabilities only under relatively large sample
sizes. While our work is focused on the computation of rectangular prediction regions only,
an important issue is whether a prediction region is appropriate for the purpose for which a
reference region is to be used. Some of the recent literature has emphasized tolerance regions,
and rectangular tolerance regions are indeed available in the parametric setup of multivari-
ate normality, and in a nonparametric scenario; see Lucagbo and Mathew (2023) and Young
and Mathew (2020). Here we do want to note that some laboratory medicine experts have
pointed out the role of prediction intervals and regions; see Horn and Pesce (2005), National
Committee for Clinical Laboratory Standards (2010), and Trost (2006). In particular, while
discussing ellipsoidal regions, Trost (2006, p. 38) notes that “Reference intervals referred to
in this document are arguably the closest to prediction intervals since we want exactly 95%
of the future observations from reference individuals to fall inside the bounds”. We shall not
further consider the issue of what criterion is appropriate for the construction of a reference
region; this clearly requires input from experts in laboratory medicine.

In our work we have employed two approaches for computing a nonparametric rect-
angular prediction regions: using the Box-Cox transformation and using kernel density esti-
mation. Estimated coverage probabilities lead us to the conclusion that both approaches are
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satisfactory. Based on estimated coverage probabilities and expected volumes, our overall
recommendation is the solution based on kernel density estimates. A problem of consider-
able interest in the context of reference regions is the computation of such regions that are
covariate dependent, perhaps using a multivariate regression model. We hope to address this
problem in the near future.
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