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Abstract 

 
Genomic selection is a modified form of Marker Assisted Selection in which the 

markers from the whole genome is used to estimate Genomic Estimated Breeding Value 
(GEBV). The population of individuals with both phenotypic and genotypic data is used to 
estimate model parameters that are subsequently be used to calculate GEBVs of selection 
candidates having only genotypic data. These GEBVs are then further be used to select the 
individuals for the purpose of advancement in the breeding cycle. Several estimators are 
available to estimate GEBV. However, various issues such as high dimensionality of the data, 
multicollinearity among the markers, a smaller number of individuals and a greater number of 
markers (large p and small n problem) are the major challenges in estimation of GEBVs. This 
paper discusses most commonly used methods for estimation of GEBVs, viz., Ridge 
Regression, Genomic Best Linear Unbiased Prediction (GBLUP), Bayesian Alphabets and 
Least Absolute Shrinkage and Selection Operator (LASSO) with the aim to meet the 
challenges associated with estimation of GEBVs. Apart from this, some semi and non-
parametric methods of genomic selection have been discussed as well.  Moreover, another 
problem like presence of outliers in the data of genomic selection has also been conversed. 
Furthermore, a case study deals with non-linearity of the data has also been presented and 
illustrated using multi traits data. At the end, some future directives of research in this area are 
highlighted. 

 
Key words: Genomic estimated breeding values; Statistical models; Genomic best linear 
unbiased prediction (GBLUP); Bayesian methods; Least absolute shrinkage and selection 
operator (LASSO). 

 

1. Introduction 
 

Right from the beginning of agriculture, farmers used to select the best plants on the 
basis of their phenotypic characters such as higher yields, larger seeds, or sweeter fruits for 
the purpose of growing them for next season. In this way, they tried to alter the genetic 
makeup of plants. Afterward, farmers came to know about artificial mating of the plants by 
cross pollination, from which breeding approach emerged out. Breeding approach is basically 
a process by which humans use animals and plants to selectively develop particular 
phenotypic trait (characteristics) by choosing or selecting best males and females of animal or 
plant which can sexually reproduce and have offspring together. Breeding approach was more 
advanced than traditional approach. However, genetic gain through this technique was found 
to be very low, time-consuming and inefficient, especially when; the traits under 
consideration have low genetic variance (low heritability), traits are limited to particular sex 
(sex-limited traits) and when generation interval is large or traits appear late in the life. Other 
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limitation of this approach was that one does not know about the genetic basis of the 
transmission of traits from parents to their offspring consequently which causes the problem 
of Linkage drag (i.e., Transfer of genes governing undesirable trait along with the gene of 
interest).  

 
Later on demerits of breeding approach was overcome by Marker Assisted Selection 

(MAS) based breeding. Where molecular markers associated with the trait of interest are used 
to select the superior plant for breeding purpose. It is a simpler method as compared to 
phenotypic screening used in traditional breeding, especially for the traits which require 
laborious screening. Through this approach, time and resources may be saved as selection can 
be done even at seedling stage for the important trait like grain quality which appears late in 
their life cycle. It also enhances reliability as there is no environmental effects play a role in 
the selection as in the case of traditional breeding. According to one study, 8-38% extra 
genetic gain can be observed when marker information’s are included in Best Linear 
Unbiased Prediction (BLUP) methodology for the prediction of breeding value (Meuwissen et 
al., 1996). However, there are certain limitations of this approach such as Marker should be 
tightly linked to the trait of interest, it cannot be used in polygenic trait or Quantitative trait, 
where multiple minor genes play a role in governing the particular trait. But it is well known 
fact that most traits of economic interest in agriculture are quantitative in nature. Another 
problem related to this approach is that every marker needs to be statistically tested with 
respect to their association with the trait of interest which causes Multiple Hypothesis Testing 
Problem. 

 
In order to overcome the limitations of MAS, Meuwissen et al. (2001) proposed a 

variant of MAS that is known as Genomic Selection (GS). It is a form of marker-assisted 
selection in which genetic markers covering the whole genome are used to identify 
quantitative trait loci (QTL) which are in linkage disequilibrium (LD) with at least one 
marker. Genomic Selection has been successful and the main reason behind the success is that 
it incorporates all markers information in the prediction model. In this approach, a prediction 
equation on training population containing phenotypic as well as genotypic data is generated 
and subsequent prediction of the breeding values of the individuals (testing population) 
having only genotypic data is carried out. Breeding value calculated by prediction equation is 
termed as Genomic Estimated Breeding Value (GEBV) and depending on the outcomes of 
GEBV, the selection decision is made on the breeding population.  

 
This approach is better than the above-mentioned approaches as it offers more accurate 

prediction of Genomic Wide Estimated Breeding Value (GW-EBV) than MAS, consequently 
high accuracy in breeding values with respect to desired trait. Using this approach, there is a 
drastic reduction of breeding interval than traditional breeding, faster genetic gains (more than 
30% reported in animals) and long-term low cost of breeding which ultimately enhances the 
production and productivity which ensure the food and nutritional security. However, there 
are certain factors such as training population size, trait heritability, influence of Genotype-
Environment (G × E) interaction, marker density, effective population size of breeding 
population, (Genetic diversity of breeding population), genetic relationship between training 
population and selection candidates influences the accuracy of the prediction of GEBVs. 
Apart from this there are certain statistical issues or challenges such as large number of 
markers or predictors (p) as compared to small number of observations or samples (n), multi-
collinearity where markers are related with each other, presence of outliers/missing data, exist 
which should be taken care of.  
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In this paper, a brief review of the models used in the prediction of Genomic Estimated 
Breeding Values (GEBVs) has been presented. Starting with the very simple linear model to 
advance nonlinear/nonparametric models with the aim to meet various statistical challenges 
and issues arises during prediction of GEBVs have been briefly discussed in this paper.  Apart 
from this, a non-linear model called Multivariate Kernelized Least Absolute Shrinkage and 
Selection Operator (Multivariate Kernelized LASSO) has been suggested as a case study 
which takes care the problem of non-linearity as well as pleiotropy present in the data of 
genomic selection. As a concluding remark, some potential future research prospective in this 
area have been highlighted.  

 

2. Methods of Genomic Selection 
 

Predicting GEBVs on which selection of the suitable individuals is done in genomic 
selection starts with simple linear model.  

 
𝒀 =   𝑿𝜷 +  𝜺 

where Y =  𝑛 ×  1 vector of observations; 𝜷 =  𝑝 ×  1 vector of marker effects; 𝜺 =  𝑛 ×

 1 vector of random residual effects; 𝑿 =  design matrix of order 𝑛 ×  𝑝 and 𝜺~𝑁௡(𝟎, 𝜎௘
ଶ𝐈). 

 
One major problem in linear model is that number of markers exceed the number of 

observations (large p and small n problem (p >> n)and this creates a problem in parameter 
estimation.  Subset of the significant markers can be an alternative for dealing with large pand 
small n problem.  

 
Meuwissen et al. (2001) used a modification of least squares regression for GS. 

Performed least squares regression analysis on each maker separately with following model 
 

𝒀 =   𝑿𝑗𝛽𝑗 +  𝜺 
where,  
 

𝑿𝑗 = jth column of the design matrix 
𝛽𝑗 = genetic effect of jth marker 
 

Markers with significant effects are selected by plotting the log likelihood of this model 
against the position of the marker. The marker with significant effects (QTL) are further used 
for estimation of breeding value 

𝒀 =   𝑿𝜷 +  𝜺 
where,  

𝑿 = the design matrix of order n × q (q << p) 
𝜷 = vector of genetic effect of order q × 1 

 q = number of significant markers 
 

It is very likely that multicollinearity exist among markers (explanatory variables) and 
this can negatively affects the performance of variable selection methods. This problem is 
solved by using ridge regression (Meuwissen et al., 2001).  Here, the goal is to derive an 
estimator of 𝛽 with smaller variance than the least square estimator. Due to tradeoff between 
variance and bias of an estimator, there is a price to pay as ridge regression estimator of 𝜷 is 
biased. In Ridge Regression (RR), penalty function is added to normal equation. So instead of 
minimizing sum of square of residuals, it minimizes:  
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(𝒀 − 𝑿𝜷)ᇱ(𝒀 − 𝑿𝜷) + 𝜆𝜷ᇱ𝜷 

 
where  𝜆  is the penalty parameter and can be chosen by variety of ways, one solution is given 
by (Hoerl et al., 1975) 

𝜆 =
𝑝𝑠ଶ

൫𝜷෡൯
ᇱ
൫𝜷෡൯

 

𝜷෡ = (𝑿ᇱ𝑿 + 𝜆𝑰)ି𝟏𝑿ᇱ𝒀 
 

where, p = number of markers, s2 = estimate of error variance (𝑖. 𝑒. 𝜎ොଶ). 
 

Ruppert et al. (2003) showed that ridge regression is a special case of the Best Linear 
Unbiased Prediction (BLUP) where mixed linear model is implemented. Restricted Maximum 
Likelihood Estimation (REML) is a good choice for finding a realistic value for the penalty 
parameter and estimating the variance component.  Here objective is to minimize the 
function- 

 
(𝒀 − 𝑿𝜷 − 𝒁𝒖)ᇱ𝑹ି𝟏(𝒀 − 𝑿𝜷 − 𝒁𝒖) + 𝜷ᇱ𝑮ି𝟏𝜷 

 

where E(u) = 0 and E(e) = 0  and 𝑣𝑎𝑟 ቂ
𝒖
𝒆

ቃ = ቂ
𝑮  𝟎
𝟎  𝑹

ቃ 𝜎ଶ, G and R are known positive definite 

matrices and 𝜎ଶ is a positive constant. 
 

Similar to RR, Least Absolute Shrinkage and Selection Operator (LASSO) 
(Tibshirani1996; Usai et al., 2009) is other variant of penalized regression which can be 
obtained by altering the penalty function (i.e. by giving linear penalty). Objective function of 
this variant is defined as- 
 

(𝒚 − 𝑿𝜷)ᇱ(𝒚 − 𝑿𝜷) + 𝜆|𝜷ᇱ𝟏| 
 
This constraint shrinks some of the marker effects and sets some of them to zero. 
 

It may be possible that not all markers have equal variance. Therefore, variance of 
marker positions needs to be modeled. For this purpose, the Bayesian approach has been used. 
In this approach, it is assumed that there is prior distribution of marker effect. Where, 
inferences about model parameters are obtained on the basis of posterior distribution. Several 
variants of Bayes such as Bayes A, Bayes B, Bayes Cπ and Bayes Dπ were proposed for 
estimation of GEBVs (Meuwissen et al., 2001 and Habier et al., 2011). 
 

The Bayes A approach applies the same prior distribution for all of the variances of the 
marker positions whereas Bayes B assumes that not all markers contribute to the genetic 
variation. In Bayes A approach, inverse chi-squared probability distribution 𝜒ିଶ൫𝜗,  𝑆ଶ൯  can 
be used as the prior distribution. It is a conjugate prior as the posterior distribution is also an 
inverted chi-square distribution 𝜒ିଶ൫𝜗 + 𝑛௝ ,  𝑆ଶ + 𝛽ሖ௝𝛽௝൯ where nj is the number of haplotype 
effects at marker position. 
 

The Bayes B approach has a prior density on the variance that is a mixture. It has a high 
probability mass at 𝜎ఉ௝ = 0, it can be summarized as 𝜎ఉ௝ = 0 with prob = 𝜋 and 

𝜎ఉ௝ ~ 𝜒ିଶ൫𝜗,  𝑆൯ with prob = (1 –  𝜋).The choice of degrees of freedom and the scale 
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parameters of the scaled inverse chi-square distribution can influence the outcome (Gianola et 
al., 2009). 
 

Improved Bayesian methods were developed by Habier et al. (2011). Bayes Cπ and Dπ 
are the modification of Bayes A and Bayes B where the probability π of having a zero effect 
SNP is estimated. 

 
The presence of outliers in genomic as well as phenotypic data is a common 

phenomenon. The presence of outliers may distort the distribution and adversely affect the 
accuracy of genomic prediction. Presence of outliers in genomic data increases the 
computational time and when the size of outliers increases, the sample size increases and 
consequently genetic variance decreases. Rajaratnam et al. (2019) recently proposed an 
approach for detection of influential observation based on LASSO technique. They proposed 
four different measures i.e., df-model- it measures the change in model selected; df-lambda: it 
measures the change in tuning parameter λ, df-regpath: it measures the changes observed in 
LASSO regularization path and df-cvpath: it observes changes in LASSO cross-validation 
path.  

 
Df-Model: This measures the changes in model selection through LASSO when 

observation is discarded. To quantify this change, df-model for ith observation can be defined 
as: 

𝑤𝑑𝑓 − 𝑚𝑜𝑑𝑒𝑙(𝑖) =
𝛿(𝑖) − 𝐸{𝛿(𝑖)}

ඥ𝑣𝑎𝑟{𝛿(𝑖)}
 

 
where 𝛿(𝑖) = ∑ ห𝐼൛𝛽௝

^௟௔௦௦௢ = 0ൟ − 𝐼൛𝛽௝
^௟௔௦௦௢(𝑖) = 0ൟห

௣
௝ୀଵ  is termed as model difference and it 

simply measures the difference in the no. of selected variable for full model vs. when ith 

observation is dropped.  
 
Df-lambda: It measure the changes observed in regularization parameter λ for full 

LASSO model vs. when ith observation is dropped. Measuring this change is important 
because this parameter tells that at what extent selected LASSO model is shrinking the 
estimates. To quantify this change, df-lambda for ith observation can be defined as  

 

𝑑𝑓 − 𝑙𝑎𝑚𝑏𝑑𝑎(𝑖) =
𝜆መ − 𝜆መ(𝑖) − 𝐸൛𝜆መ − 𝜆መ(𝑖)ൟ

ට𝑣𝑎𝑟൛𝜆መ − 𝜆መ(𝑖)ൟ

 

This involves fitting LASSO,  𝑛 + 1 times then computes difference of  𝜆෡ − 𝜆መ(𝑖). 
𝐸൛𝜆መ − 𝜆መ(𝑖)ൟ and 𝑣𝑎𝑟൛𝜆መ − 𝜆መ(𝑖)ൟ can be simply estimated using sample mean and variance of n 
observed value of 𝜆෡ − 𝜆መ(𝑖), cut-off for df-lambda is justified at ±2. 

 
Df-Regpath: It measures the deviation in the LASSO regularization when an 

observation is dropped from LASSO path. If a significant deviation occurs from LASSO 
original path it means dropped observation could have huge impact on LASSO estimates 
which further may affect the conclusion and interpretation for LASSO solution. Df-Regpath 
for ith observation could be defined as 

𝑑𝑓 − 𝑟𝑒𝑔𝑝𝑎𝑡ℎ(𝑖) =
∆ଵ𝛽መ ௟௔௦௦௢(𝑖) − 𝐸൛∆ଵ𝛽መ ௟௔௦௦௢(𝑖)ൟ

ට𝑣𝑎𝑟൛∆ଵ𝛽መ ௟௔௦௦௢(𝑖)ൟ
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where  ∆ଵ𝛽መ ௟௔௦௦௢(𝑖) = ∫ ฮ𝛽መ ௟௔௦௦௢(𝑠) − 𝛽መ ௟௔௦௦௢(𝑠, 𝑖)ฮ𝑑𝑠

௨

௟
 and l, u are specified interval [l, u] 

defines possible λ values.𝛽መ ௟௔௦௦௢(𝑠) represents vectors of parameter estimates obtained at λ = s  
using LASSO with full model, whereas𝛽መ ௟௔௦௦௢(𝑠, 𝑖) represents vector of parameter estimates 
obtained at λ = s  by excluding ith observation from the model.  

 
Df-Cvpath: It measures the changes in predictive performance of LASSO when an 

observation is dropped from LASSO path. Quantifying this is crucial as if large change in 
predictive performance of LASSO, suggests that it has infrequent response hence observation 
has huge impact on LASSO solution. It generates a cross-validation error curve 𝛾(𝑠) which 
gives estimate of prediction error on test data after LASSO is trained on data for range of 
values for regularization parameter λ. df-cvpath for ith observation could be defined as 

 

𝑑𝑓 − 𝑐𝑣𝑝𝑎𝑡ℎ(𝑖) =
∆ఊ(𝑖) − 𝐸൛∆ఊ(𝑖)ൟ

ට𝑣𝑎𝑟൛∆ఊ(𝑖)ൟ

 

 
where ∆ఊ(𝑖) = ∫ ห𝛾(𝑠) − 𝛾൫𝑠,  𝑖൯ห

௨

௟
𝑑𝑠 and 𝛾൫𝑠,  𝑖൯ represents the cross-validation error when 

ith observation is dropped from path.  
 
These measures detect outlier from high dimensional genomic data based on LASSO 

regression. It can be observed that all these measures i.e., df-model, df-lambda, df-regpath and 
df-cvpath detect influential observations which affect model directly or indirectly, have 
difference in their results regarding detection of influential observations as they are used for 
optimizing different parameters (Budhlakoti et al., 2020a). To overcome these limitations, 
Budhlakoti et al. (2020b) have proposed a more robust measure for detection of influential 
observation by integrating above discussed measures using p-values based meta-analysis 
approach (Figure 1). It has been observed that this method significantly improves the 
prediction accuracy of genomic selection in the presence of outliers in the data. 

 
Figure 1: Workflow of the method developed by Budhlakoti et al. (2020) for detection of 

outlier in genomic selection 
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Genomic selection based on single trait (STGS) has been utilized successfully in recent 
years. But it is unable to perform well in the case of pleiotropy i.e., one gene links with 
multiple traits. A mutation in a pleiotropic gene may influence several traits simultaneously. It 
was found that traits with low heritability can borrow information from correlated traits and 
consequently achieve higher prediction accuracy. So Multi Trait Genomic Selection (MTGS) 
gave more accurate GEBVs than STGS for the trait with low heritability and for the trait 
having missing data. Jia et al. (2012) presented three multivariate linear models (i.e., GBLUP, 
Bayes A, and Bayes Cπ) and compared them to univariate models and a detailed comparison 
of various STGS and MTGS based methods also been deliberated by Budhlakoti et al. (2019). 
Moreover, the models, we generally use for GS are linear. But this assumption is generally 
violated. So nonlinear multi-trait-based approach may be more accurate for genomic 
selection. 

 
Multivariate LASSO 

 
This is an extension of simple LASSO model. Here the sharing involves which 

variables are selected, since when a variable is selected, a coefficient is fit for each response. 
Statistical formulation in this case is same as LASSO with some minor differences. It can be 
written in the form of simple statistical model as: 

 
𝒀 = 𝑿𝜷 + 𝒆 

 
Here all notations are as such in LASSO. Only difference is that Y is a matrix of 

responses instead of vector earlier. It minimizes following objective function: 
 

(𝒀 − 𝑿𝜷)ᇱ(𝒀 − 𝑿𝜷) + 𝜆|𝜷ᇱ𝟏| 
 

Kernelized Multivariate LASSO 
 
To take advantage of higher dimensional feature spaces, we can introduce the data via 

nonlinear functions. For example, we can replace the inner product of the data by a kernel 
function. 𝑘൫𝑿𝒊 , 𝑿𝒋 ൯ =  (𝛷(𝑿𝒊)ᇱ𝛷൫𝑿𝒋൯). Here we can apply so-called “kernel trick”; i.e. the 

fact that 𝛷(𝑿𝒊)
ᇱ𝛷൫𝑿𝒋൯ = 𝑘൫𝑿𝒊 , 𝑿𝒋  ൯, we can see that 𝛷𝛷ᇱrepresents the (𝑛 × 𝑛) Kernel 

Gram Matrix 𝑲 of the cross dot products between all mapped input data points {𝛷(𝑿𝒊)}௜ୀଵ
௡ .  

 
Some commonly used choice of kernel functions include: the Gaussian radial basis 

function k(x, z) = exp(– σ‖x - z‖
ଶ
), where σ is the bandwidth parameter, the Laplace radial 

basis function k(x, z) = exp(− σ‖x − z‖). 
 
Here, we have suggested kernelized Multivariate LASSO for estimation of GEBVs. For 

illustration of MTGS based methods we have considered Brasica napus dataset (Kole et al., 
2002). Dataset has 4 responses for 103 lines (individuals) genotyped for 300 markers. Lines 
are derived from two cultivars namely Stellar and Major. Marker genotypes are represented in 
0/1, where 0 represent a Stellar allele and 1 represent Major allele. First, we applied LASSO 
(Multiresponse) technique for MTGS to improve the GEBVs. We have observed reasonable 
accuracy gain for predicted breeding value i.e., GEBVs for various traits under study. Then to 
capture nonlinearity component in populations we have also used Kernelized LASSO 
(Multiresponse). Very good level of accuracy has been observed for most of the traits under 
study. 
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Figure 2: Performance Accuracy of the method of Multivariate Kernelized LASSO in 

four datasets of Brassica species 
 
These all above discussed methods performs satisfactory well only in case of additive 

genetic architecture i.e., partitioning of genetic variance into additive, dominance, additive × 
additive, additive × dominance, etc. But it only holds under conditions of linkage equilibrium, 
random mating of male and female parents, no inbreeding, no assortative mating, no natural 
or artificial selection and no genotyping errors. In breeding programs, these conditions are all 
violated. Epistatic interaction may play a crucial role for explaining genetic variation for 
quantitative traits, as ignoring this kind of interaction in the model may end up with lower 
genomic prediction accuracy (Cooper et al. 2002). Gianola et al. (2006) first used non-
parametric and semi-parametric methods for modeling complex genetic architecture, as they 
also include such type of higher order interaction in these models. Subsequently, several 
statistical methods were implemented to model both main and epistasis effects for genomic 
selection (Cai et al., 2011, Xu, 2007). Recently, some semi-parametric (Legarra et al., 2018) 
and other robust approaches (Tanaka 2020; Majumdar et al., 2019a; Majumdar et al., 2019b; 
Budhlakoti et al., 2020a; Budhlakoti et al., 2020b; Sehgal et al., 2020) have also been 
proposed and implemented in genomic selection. 

 
Gianola et al. (2006) proposed non-parametric and semi-parametric methods to model 

the relationship between the phenotype and the markers that are available within the GS 
framework. 
 
Nadaraya-Watson estimator 

 
𝑌௜ = 𝑔(𝑿𝒊) + 𝑒௜ 

 
where, 
𝑌௜ phenotypic measurement on individual i, 𝑖 = 1,2, … , 𝑛,  
𝑿𝒊 is a 𝑝 × 1 vector of dummy SNP covariates observed on individual i, 
𝑔(. ) is some unknown function relating genotypes to phenotypes, 𝑔(𝑿𝒊) = 𝐸(𝑌௜|𝑿𝒊)         
where, 𝐸(𝑌௜|𝑿𝒊) is a conditional expectation of 𝑌௜ relative to 𝑿𝒊 
𝑒௜ is a residual effect for ith individual and 𝑒௜~ (0, 𝜎ଶ). 
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The conditional expectation can be written

 
Reproducing Kernal Hilbert Space

 
In this semi-parametric kernel mixed model approach

model are combined with a mixed model framework by 
be written as: 

 
where 𝑖 = 1,2, … , 𝑛 and 𝛽 is a vector of fixed unknown effects (
individual), 𝒖 is a q × 1 vector which represent
incidence vectors, 𝑔(𝑿௜) is an unknown function of the SNP data and the vector of residuals, 
an 𝒆 is assumed to have a 𝑁(𝟎, 𝑰𝜎

 
Overall summary of the methods used in genomic selection is provided in the 
 

Figure 3:Overall summary of the methods used 
 
A detailed comparison of various non

different combination of population size and heritability using simulated data 
by Budhlakoti et al. (2020c). For detailed comparison and review of various genomic 
selection methods one can also refer to 

 
3. Future Research Direction 

 
Above mentioned methods of genomic selection mainly deals with genetic architecture 

containing additive effects, dominance effects

INNOVATIONS IN GENOMIC SELECTION: STATISTICAL PERSPECTIVE

The conditional expectation can be written as 

𝑔(𝑋) =
∫ 𝑌𝑝(𝑿, 𝒀)𝑑𝑌

𝑝(𝑿)
 

Reproducing Kernal Hilbert Space 

parametric kernel mixed model approach, features of a nonparametric 
model are combined with a mixed model framework by Gianola et al. (2006). The model can 

 
𝑌௜ = 𝒘ᇱ

𝒊𝜷 + 𝒛ᇱ
𝒊𝒖 + 𝑔(𝑿𝒊) + 𝑒௜ 

is a vector of fixed unknown effects (e.g., physical location of an 
vector which represents additive genetic effects, 𝒘𝐢 and 
is an unknown function of the SNP data and the vector of residuals, 

( 𝜎ଶ) distribution. 

Overall summary of the methods used in genomic selection is provided in the 

Overall summary of the methods used in Genomic Selection

A detailed comparison of various non-parametric methods for genomic selection 
different combination of population size and heritability using simulated data was prese

. For detailed comparison and review of various genomic 
selection methods one can also refer to Howard et al. (2014). 

Research Direction in This Area 

Above mentioned methods of genomic selection mainly deals with genetic architecture 
, dominance effects and somewhat epistatic effects. But in real 
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features of a nonparametric 
. (2006). The model can 

., physical location of an 
and 𝒛𝐢 are known 

is an unknown function of the SNP data and the vector of residuals, 

Overall summary of the methods used in genomic selection is provided in the Figure 3: 
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was presented 

. For detailed comparison and review of various genomic 

Above mentioned methods of genomic selection mainly deals with genetic architecture 
and somewhat epistatic effects. But in real 
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situation, more degree of epistatic effects are present. We need to develop some more 
advanced statistical models or methods which could efficiently deal with epistatic effects 
present in the data. Moreover, since genomic selection models are based on genotypic as well 
as phenotypic data, therefore there is also the possibility of environmental effects and their 
interaction with the genetic component. Therefore, it is imperative to develop a model for 
genomic selection by incorporating the environmental effects and their interaction with the 
genotypic effects. Furthermore, genotypic data generated for genomic selection are having lot 
of missing data. Therefore, it is also required to develop a method which could take care of 
incomplete data situation. Apart from this, role of epigenetics in genomic selection can also 
be possible. New research initiative should be taken where epigenetic effects for genomic 
selection can be modelled.   
 

References 

Budhlakoti, N., Mishra, D. C., Rai, A., Lal, S. B., Chaturvedi, K. K. and Kumar, R. R. (2019). 
A comparative study of single-trait and multi-trait genomic selection. Journal of 
Computational Biology, 26(10), 1100-1112. 

Budhlakoti, N., Rai, A. and Mishra, D. C. (2020a). Effect of influential observation in 
genomic prediction using LASSO diagnostic. Indian Journal of Agricultural 
Sciences,90(6), 1155-1159. 

Budhlakoti, N., Rai, A. and Mishra, D. C. (2020b). Statistical approach for improving 
genomic prediction accuracy through efficient diagnostic measure of influential 
observation. Scientific Reports, 10(1), 1-11. 

Budhlakoti, N., Rai, A., Mishra, D. C., Jaggi, S., Kumar, M. and Rao, A. R. (2020c). 
Comparative study of different non-parametric genomic selection methods under 
diverse genetic architecture. Indian Journal of Genetics, 80(4), 395-401. 

Cai, X., Huang, A. and Xu, S. (2011). Fast empirical Bayesian LASSO for multiple 
quantitative trait locus mapping. BMC Bioinformatics, 12(1), 1-13. 

Gianola, D., de Los Campos, G., Hill, W. G., Manfredi, E. and Fernando, R. (2009). Additive 
genetic variability and the Bayesian alphabet. Genetics, 183(1), 347-363. 

Gianola, D., Fernando, R. L. and Stella, A. (2006). Genomic-assisted prediction of genetic 
value with semiparametric procedures. Genetics, 173(3), 1761-1776. 

Habier, D., Fernando, R. L., Kizilkaya, K. and Garrick, D. J. (2011). Extension of the 
Bayesian alphabet for genomic selection. BMC Bioinformatics, 12(1), 1-12. 

Hoerl, A.E., Kennard, R.W. and Baldwin, K.F. (1975). Ridge regression: some simulation. 
Communications in Statistics, 4, 105–123. 

Howard, R., Carriquiry, A. L. and Beavis, W. D. (2014). Parametric and nonparametric 
statistical methods for genomic selection of traits with additive and epistatic genetic 
architectures. G3: Genes, Genomes, Genetics, 4(6), 1027-1046. 

Jia, Y. and Jannink, J. L. (2012). Multiple-trait genomic selection methods increase genetic 
value prediction accuracy. Genetics, 192(4), 1513-1522. 

Kole, C., Thormann, C. E., Karlsson, B. H., Palta, J. P., Gaffney, P., Yandell, B. and Osborn, 
T. C. (2002). Comparative mapping of loci controlling winter survival and related traits 
in oilseed Brassica rapa and B. napus. Molecular Breeding, 9(3), 201-210. 

Legarra, A. and Reverter, A. (2018). Semi-parametric estimates of population accuracy and 
bias of predictions of breeding values and future phenotypes using the LR 
method. Genetics Selection Evolution, 50(1), 1-18. 

Majumdar, S. G., Mishra, D. C. and Rai, A. (2020a). Effect of genotype imputation on 
integrated model for genomic selection. Journal of Crop and Weed, 16(1), 133-137. 



2021] INNOVATIONS IN GENOMIC SELECTION: STATISTICAL PERSPECTIVE  

 
 

111

Majumdar, S. G., Rai, A. and Mishra, D. C. (2020b). Integrated framework for selection of 
additive and nonadditive genetic markers for genomic selection. Journal of 
Computational Biology, 27(6), 845-855. 

Meuwissen T. H. and Goddard M. E. (1996). The use of marker haplotypes in animal 
breeding schemes. Genetics Selection Evolution, 28, 161-176. 

Meuwissen, T. H., Hayes, B. J. and Goddard, M. E. (2001). Prediction of total genetic value 
using genome-wide dense marker maps. Genetics, 157(4), 1819-1829. 

Rajaratnam, B., Roberts, S., Sparks, D. and Yu, H. (2019). Influence diagnostics for high-
dimensional lasso regression. Journal of Computational and Graphical Statistics, 28(4), 
877-890. 

Ruppert, D., Wand, M. P. and Carroll, R. J. (2003). Semiparametric Regression. 12, 
Cambridge University Press. 

Sehgal, D., Rosyara, U., Mondal, S., Singh, R., Poland, J. and Dreisigacker, S. (2020). 
Incorporating genome-wide association mapping results into genomic prediction models 
for grain yield and yield stability in CIMMYT spring bread wheat. Frontiers in Plant 
Science, 11, 197. 

Tanaka, E. (2020). Simple outlier detection for a multi‐environmental field 
trial. Biometrics, 76(4), 1374-1382. 

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal 
Statistical Society: Series B (Methodological), 58(1), 267-288. 

Usai, M. G., Goddard, M. E. and Hayes, B. J. (2009). LASSO with cross-validation for 
genomic selection. Genetics Research, 91(6), 427-436. 

Xu, S. (2007). An empirical Bayes method for estimating epistatic effects of quantitative trait 
loci. Biometrics, 63(2), 513-521. 

 


