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Abstract
The article investigates the simultaneous assessment of normality and homoscedasticity

in a one-way random effects model. Test procedures are developed assuming a smooth
alternative to the normal distribution, specified using Legendre polynomials and Hermite
polynomials. Score statistics are derived under both classes of alternatives, and a data
driven approach is used to determine the order of the polynomials. Numerical results are
reported in order to assess the accuracy of the chisquare distribution as the null distribution
of the score statistics. Estimated powers are reported in order to compare the score tests
derived under the alternatives based on Legendre polynomials and Hermite polynomials. An
example and the corresponding data analysis are reported in order to illustrate the results.
Possible extensions to other models involving random effects are briefly indicated.
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1. Introduction

Mixed and random effects models are among the most widely used tools in applied
work. While analyzing data using such models, the standard assumptions include normal-
ity of the random effects and the experimental error terms, as well as homoscedasticity
of the error distribution. The present work is focused on testing these assumptions under
the simplest random effects model, namely, the one-way random effects model. The usual
practice is to test these assumptions separately. For example, if normality can be assumed,
homoscedasticity can be assessed using a formal test such as Bartlett’s test. One can also
use a test that is less sensitive to the normality assumption, for example the Levene test
and the modified Levene test; see the article by Chang, Pal, and Lin (2017), and Section 3.4
in the book by Montgomery (2020). On the other hand, normality is often assessed using
formal tests or using a graphical method such as the normal probability plot, after assuming
homoscedasticity. It is certainly desirable to have test procedures that will permit us to
simultaneously assess homoscedasticity and normality. The present work aims to develop
such test procedures.
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In order to formally introduce the relevant hypothesis, consider data falling into a
groups (for example, corresponding to a treatments in a designed experiment). Suppose we
have nl observations available from the lth group, with ylj denoting the jth observation; j
= 1, 2, · · · , nl, l = 1, 2, · · · , a. We are allowing the nl’s to be unequal, so that we can
have unbalanced data. The one-way random model for the ylj, along with the normality
assumptions, is given by

ylj = µ+ αl + εlj, αl ∼ N(0, σ2
α), εlj ∼ N(0, σ2

l ), (1)

where all the random variables are assumed to be independent. Note that the error terms
(i.e., the εlj’s) have variance σ2

l , which could differ across the a groups. The αl’s in (1)
denote the random effects, l = 1, 2, · · · , a. If we write yl = (yl1, yl2, · · · , ylnl)′, then the
above assumptions imply

yl ∼ N
(
µ1nl , σ

2
l Inl + σ2

α1nl1
′
nl

)
, (2)

where 1r is an r×1 vector of ones. We note that the yl’s are independent for l = 1, 2, · · · , a.
Clearly, data analysis based on the one-way random model under the standard assumptions
of normality and homoscedasticity amounts to analyzing the data under the multivariate
normal model (2), having the structured covariance matrix as specified, and having σ2

l s all
equal. Thus testing homoscedasticity and normality under the one-way random effects model
is equivalent to testing the equality of the σ2

l along with the multivariate normality of the yl,
l = 1, 2, · · · , a, where the covariance matrix has the structure specified in (2). Consequently,
our normality assessment is for the multivariate normality of the yl, l = 1, 2, · · · , a, and
not for the univariate normality of the random effects and the error terms, even though the
latter implies the multivariate normal distribution in (2).

Our development relies on the specification of alternatives to normality to be the class
of smooth alternatives proposed by Neyman (1937). In general, suppose the problem is
to test if a continuous random variable Y follows a specified distribution having density,
say f(y,β), depending on an unknown parameter vector β. The alternative hypothesis is
specified in terms of a smooth alternative involving orthonormal polynomials, say {pi(y;β)},
i = 1, 2, · · · , that are orthonormal with respect to f(y;β). An order k smooth alternative,
say gk(y;θ,β), is given by

gk(y;θ,β) = C(θ,β) exp
{ k∑
i=1

θipi(y;β)
}
f(y;β). (3)

In (3), θ = (θ1, · · · , θk)′ is a vector of unknown parameters, and C(θ,β) is a normalizing
constant. As already noted, the {pi(y;β)} are orthonormal polynomials, orthonormal with
respect to the null density f(y;β). It should be clear that if θ is the null vector, then
gk(y;θ,β) in (3) reduces to the null density f(y;β). In other words, the null density is
embedded in the class of alternatives specified in (3), and testing for the goodness-of-fit of
the null density is equivalent to testing if the k−dimensional vector θ is the null vector. That
is, the goodness-of-fit problem is now reduced to that of testing a hypothesis concerning a
finite number of parameters.
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Several authors have derived score tests for testing goodness-of-fit under the Neyman
(1937) framework, and have investigated the theoretical properties of such tests for a vari-
ety of goodness-of-fit problems: see Ledwina (1994), Kallenberg and Ledwina (1995, 1997a,
1997b), Inglot and Ledwina (1996), Inglot, Kallenberg and Ledwina (1997), Kallenberg, Led-
wina and Rafajlowicz (1997) and Janic and Ledwina (2009). Most of these articles address
testing only the goodness of fit of a particular distribution; however, Kallenberg, Ledwina
and Rafajlowicz (1997) address the simultaneous testing of normality and independence in
a bivariate scenario. The simultaneous assessment of the various assumptions in a standard
linear model set up is taken up in Peña and Slate (2006), and the authors consider the Ney-
man (1937) framework in order to specify alternatives to normality. More recently, Yang and
Mathew (2018) have addressed the simultaneous testing of normality and homoscedasticity
in a fixed effects model when we have grouped data, similar to those in an ANOVA context
with fixed effects. A book-length discussion of smooth tests is available in Rayner, Thas and
Best (2009).

In the next section, we shall derive score tests for testing normality and homoscedas-
ticity in the set up of the model (2), assuming smooth alternatives of the type (3). We shall
consider two specifications for the smooth alternative based on two choices for the orthonor-
mal polynomials {pi(y;β)} in (3), namely, Legendre polynomials and Hermite polynomials.
Thus we have two score tests corresponding to the two specifications for the alternatives.
While specifying the alternatives, there is obvious arbitrariness in the choice of the order
of the Legendre polynomials and Hermite polynomials, i.e., the quantity k in (3). We shall
follow a data driven approach for choosing the order; an idea developed in Inglot, Kallenberg
and Ledwina (1994), and pursued in some of the later papers by the authors, cited earlier.
Our tests being based on score statistics, we can think of approximating the null distribution
with a chisquare distribution. Thus we shall report numerical results in order to assess the
accuracy of the chisquare distribution as the null distribution. The tests will be compared
using estimated powers. Data analysis based on an example will be reported in order to
illustrate the results.

2. Smooth Alternatives and Score Tests

Before we formally specify the alternative hypothesis, we shall consider an orthogonal
transformation of each of the data vectors yl in (2), l = 1, 2, · · · , a. Let Ql =

(
1√
nl

1nl , Q∗l
)

be an nl × nl Helmert matrix, and consider the transformation

vl = Q′lyl, l = 1, 2, · · · , a, (4)

so that E(vl) = (µ√nl, 0, · · · , 0)′ , V (vl) = σ2
l Inl + σ2

αdiag(nl, 0, 0, · · · , 0).
Clearly, testing multivariate normality of the yl’s is equivalent to testing the same for the
vl’s. Writing vl = (vl1, vl2, · · · , vlnl)′, we note that multivariate normality for the yl’s implies

vl1 ∼ N(µ√nl, σ2
l + nlσ

2
α), vlj ∼ N(0, σ2

l ), j = 2, 3, · · · , nl, (5)

l = 1, 2, · · · , a, where the vlj’s for j = 1, 2, · · · , nl, are also independent (in view of the
diagonal covariance matrix of vl, noted above). We also note that the vlj’s for j = 1, 2, · · · ,
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nl, are uncorrelated random variables, even if multivariate normality of the yl’s does not
hold.

In the remainder of this section we shall test the equality of the σ2
l ’s and the univari-

ate normality of the vlj’s against smooth alternatives defined through Legendre polynomials
and Hermite polynomials. We shall do so assuming that the vlj’s for j = 1, 2, · · · , nl,
are all independent. That is, we are testing if the the vlj’s for j = 1, 2, · · · , nl, are all
independent normally distributed against the alternative that they are independent having
a non-normal distribution defined through a smooth alternative. In other words, the class
of smooth alternatives that we are considering is somewhat restricted in view of the inde-
pendence assumption of the vlj’s under the alternative. The advantage of the independence
assumption is that the normality testing is now reduced to testing the univariate normality
specified in (5). It should be noted that in an article on normality testing in a two-way ran-
dom model with and without interaction, Xu, Li and Song (2013) reduced the problem to
that of testing univariate normality, after transforming the data to uncorrelated components
based on a transformation that depends on the unknown variance components. The authors
then replaced the unknown variance components with estimates, and applied standard uni-
variate normality tests, proceeding under the assumption that the transformed univariate
components are independent even under the alternative. The transformation that we have
used, based on the Helmert matrices Ql, is of course parameter free.

2.1. Smooth alternatives based on Legendre polynomials

Let

zl1 = vl1 − µ
√
nl√

σ2
l + nlσ2

α

, ul1 = Φ (zl1) , zlj = vlj/σl, and ulj = Φ (zlj) , j = 2, 3, · · · , nl, (6)

where the zlj’s are independent standard normal random variables for j = 1, 2, · · · , nl and l
= 1, 2, · · · , a, and Φ(.) denotes the standard normal cdf. In this subsection, we shall specify
smooth alternatives based on Legendre polynomials; we recall that these are polynomials
that are orthonormal with respect to the uniform distribution in the interval (0, 1). Let
bi(.), i = 1, 2, · · · , denote the system of Legendre polynomials. It is easily verified that if
y ∼ N(µ, σ2), then a system of orthonormal polynomials with respect to the N(µ, σ2) density
is obtained as bi

(
Φ
(
y−µ
σ

))
, i = 1, 2, 3, · · · . In view of this, we conclude that for each fixed

l and j, bi(ulj) = bi (Φ(zlj)), i = 1, 2, · · · , form a system of orthonormal polynomials with
respect to the standard normal distribution, where ulj = Φ (zlj), as defined in (6). While
specifying the smooth alternative, we will consider the case of only a common alternative
across the a different groups. It is certainly possible to have different alternatives across the
different groups, but we shall not consider this case.

In order to specify the likelihood function under a Legendre polynomial based smooth
alternative, we note that the smooth alternative in (3) is specified in terms of a parameter
vector θ = (θ1, · · · , θk)′, and the null density corresponds to θ being the null vector. Since
we need to specify smooth alternatives for vl1, l = 1, 2, · · · , a, and for vlj, j = 2, 3, · · · ,
nl, l = 1, 2, · · · , a, where these quantities are defined in (4) and (5), we shall use two
parameter vectors similar to θ. Thus let θ1 = (θ11, θ12, · · · , θ1k1)′, θ2 = (θ21, θ22, · · · , θ2k2)′,
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and θ = (θ′1,θ′2)′. The vector θ1 will be used to specify the smooth alternative for vl1, l =
1, 2, · · · , a, and the vector θ2 will be used to specify the smooth alternative for vlj, j = 2,
3, · · · , nl, l = 1, 2, · · · , a. Recall that we are assuming the independence of all the the vlj’s,
within and across the groups. The likelihood function under the assumption of a common
alternative across the groups can be specified as

L =
a∏
l=1

C(θ, µ,σ, σα) exp
{ k1∑
r=1

θ1rbr(ul1) +
nl∑
j=2

k2∑
s=1

θ2sbs(ulj)
}
fl1(vl1, µ, σl, σα)

nl∏
j=2

fl2(vlj, σl)
 ,

(7)
where σ = (σ1, σ2, · · · , σa)′, and for l = 1, 2, · · · , a, fl1(vl1, µ, σl, σα) and fl2(vlj, σl), respec-
tively, denote the normal density functions of vl1 and vlj (j=2, 3, · · · , nl), when normality
holds. The smooth alternatives that represent the departure from the normal distribution
have the order k1 for vl1 (l = 1, 2, · · · , a), and order k2 for vlj (l = 1, 2, · · · , a, j=2, 3, · · · ,
nl). The null hypothesis to be tested is that of normality and homoscedasticity. In terms of
the parameters in (7) the hypothesis can be stated as

H0 : θ = (θ′1,θ′2)′ = 0, and σ2
1 = σ2

2 = · · · = σ2
a. (8)

We shall find it convenient to transform the vector σ = (σ1, σ2, · · · ., σa)′ using an a×a
Helmert matrix Q = ((qlc)) having the first column equal to 1√

a
1a, as done in Yang and

Mathew (2018). We shall denote the transformed vector by η. That is,

η = Q′σ = (η1, η2, · · · , ηa)′. (9)

It is easy to see that σ2
1 = σ2

2 = · · · = σ2
a is equivalent to η2 = η3 = · · · = ηa = 0. The

log-likelihood function has the expression

lnL =
a∑
l=1

ln{C(θ, µ,σ, σα)}+
k1∑
r=1

θ1rbr(ul1) +
nl∑
j=2

k2∑
s=1

θ2sbs(ulj) + ln{fl1(vl1, µ, σl, σα)}

+
nl∑
j=2

ln{fl2(vlj, σl)}
 . (10)

In order to obtain the score statistic for testing the hypothesis in (8), we need the
elements of the score vector and its variance-covariance matrix, evaluated under the null
hypothesis. Explicit expressions can be obtained for these, and are given in the appendix.
We note that some of the covariances are zeros. In the case of balanced data (ie., all the
nl, l = 1, 2, · · · , a, are equal having a common value, say n), some additional covariances
become zeros. These are also noted in the appendix.

While computing the score statistic, the unknown parameters are obviously replaced
with their ML estimates under the null hypothesis. Thus we need the MLEs of µ, σ2 and σ2

α,
where σ2 is the common value of the σ2

l ’s, under the null hypothesis. In the case of balanced
data, we shall use the MLEs computed without imposing the nonnegativity constraint on the
σ2
α. If ȳ.. denotes the average of all the yljs, and SSe and SSα, respectively, denote the sums
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of squares due to error and due to the αi’s under the model (1), the MLEs in the balanced
case are given by

µ̂ = ȳ.., σ̂
2 = SSe

a(n− 1) and σ̂2
α = 1

n

[
SSα
a
− SSe
a(n− 1)

]
, (11)

where σ2 denotes the common value of the σ2
l s and n denotes the common value of the nls.

As we shall see, the lack of the nonnegativity of σ̂2
α will not present any problems for us,

since the estimator required in our application will be σ̂2 +nσ̂2
α, which is always nonnegative

(being equal to SSα/a). Similar explicit estimates can also be obtained in the unbalanced
case as follows. Define

ȳl =
nl∑
j=1

ylj/nl, ¯̄y = 1
a

a∑
l=1

ȳl, SSe =
a∑
l=1

nl∑
j=1

(ylj − ȳl)2,

ñ = a×
{ 1
n1

+ 1
n2

+ · · ·+ 1
na

}−1
, SSα = ñ

a∑
l=1

(ȳl. − ¯̄y)2, (12)

where we note that ñ is the harmonic mean of the nl’s. Such a formulation is due to Thomas
and Hultquist (1978); see also Krishnamoorthy and Mathew (2009, Chapter 4). It can be
verified that E(¯̄y) = µ, E(SSe) = (N − a)σ2 and E(SSα) = (a − 1)(ñσ2

α + σ2), where
N = ∑a

l=1 nl. The estimates of µ, σ2 and σ2
α that we shall use are given by

µ̂ = ¯̄y, σ̂2 = SSe/(N − a) and σ̂2
α = 1

ñ

[
SSα
a
− SSe
N − a

]
. (13)

It should be noted that the estimates in (13) are not the MLEs. In fact the MLEs have no
explicit expression and have to be numerically obtained in the unbalanced case. Nevertheless,
for convenience we shall use the estimates in (13).

In order to give an expression for the score statistic, let us write the parameters in the
order (θ′,η∗′

, η1, σα, µ)′, where η∗ = (η2, η3, · · · , ηa)′ (see (9)) and we recall the partitioning
of θ into the two components θ1 and θ2 of dimensions k1 × 1 and k2 × 1, respectively. Thus
the null hypothesis in (8) is equivalent to

H0 : θ = (θ′1,θ′2)′ = 0, and η∗ = 0. (14)

The null hypothesis involves (k1 +k2 +a−1) parameters; in addition, we have three nuisance
parameters, namely η1, σα and µ. Now the the score vector has dimension k1 + k2 + a + 2,
which is the total number of parameters under the model (7). Consequently, if V denotes
the variance-covariance matrix of the score vector, whose elements are arranged according
to the parameter order (θ′,η∗′

, η1, σα, µ)′, then clearly V has dimension (k1 + k2 + a+ 2)×
(k1 +k2 +a+2). The elements of the score vector, and those of V are given in the appendix,
where the expressions have been simplified assuming the null hypothesis (14).

Let us consider a partitioning of V as

V =
(
V11 V12
V21 V22

)
,
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where the dimension of V11 is (k1 + k2 + a − 1) × (k1 + k2 + a − 1), corresponding to the
parameters θ and η∗ in the null hypothesis (14), and the dimensions of the remaining blocks
of V should be clear. Let u denote the score vector and u1 denote the first (k1 + k2 + a− 1)
elements of u corresponding to the parameters θ and η∗, and define V11.2 = V11−V12V

−1
22 V21.

Recall that u1 and V11.2 are functions of the nuisance parameters η1, σα and µ; equivalently
σ, σα and µ (since, in view of (9), η1 =

√
a×σ under the null hypothesis). The score statistic

for testing the hypothesis (8), or equivalently (14), is given by
Ŝ = û′1V̂

−1
11.2û1, (15)

where we have used the notations û1 and V̂11.2 to emphasize that the unknown nuisance
parameters σ, σα and µ have been replaced by estimates computed assuming the null hy-
pothesis; we shall use the estimates of σ2, σ2

α and µ, exhibited earlier in this section. For
fixed k1 and k2, the score statistic Ŝ in (15) has an approximate chisquare distribution with
df = (k1 + k2 + a− 1) under the null hypothesis.

In order to implement the test based on the score statistic given in (15), it is necessary
to choose the orders k1 and k2 in the likelihood function (7). For this, we shall follow a data-
driven approach; i.e., estimate the orders based on the data, as done in Inglot, Kallenberg and
Ledwina (1994). Such an approach was also adopted in Yang and Mathew (2018) in a fixed
effects linear model. Here we shall only present the relevant expressions that will facilitate
the numerical computation of k1 and k2, referring to the original articles for details of the
methodology and the associated theoretical results. A brief explanation of the methodology
is also given in Yang (2016).

Referring to the quantities defined in (6), let

ẑl1 = vl1 − µ̂
√
nl√

σ̂2 + nlσ̂2
α

, ûl1 = Φ (ẑl1) , ẑlj = v̂lj/σ̂, and ûlj = Φ (ẑlj) , j = 2, 3, · · · , nl, (16)

where σ̂, σ̂α and µ̂ are the estimates obtained under the null hypothesis, and used in the
computation of the score statistic Ŝ in (15). Let Ĥ1,k1(σ̂, σ̂α, µ̂) and Ĥ2,k2(σ̂) be defined as

Ĥ1,k1(σ̂, σ̂α, µ̂) = 1
a

k1∑
i=1

{
a∑
l=1

bi (ûl1)
}2

Ĥ2,k2(σ̂) = 1
N − a

k2∑
i=1


a∑
l=1

nl∑
j=2

bi (ûlj)


2

, (17)

where N =
a∑
l=1

nl, the bi(.)’s are Legendre polynomials and the remaining quantities are

defined earlier in this section. We note that the divisor a in the expression for Ĥ1,k1 is the
number of ẑl1s, l = 1, 2, · · · , a, and the divisor N − a in the expression for Ĥ2,k2 is the
number of ẑljs, j = 2, 3, · · · , nl, l = 1, 2, · · · , a. Assuming upper bounds d1 for k1 and d2

for k2, the orders k1 and k2, say k̂1 and k̂2, are determined as follows:
k̂1 = min{k1 : 1 ≤ k1 ≤ d1, Ĥ1,k1(σ̂, σ̂α, µ̂)− k1 ln(a) ≥ Ĥ1,r(σ̂, σ̂α, µ̂)− r ln(a), r = 1, · · · , d1}
k̂2 = min{k2 : 1 ≤ k2 ≤ d2, Ĥ2,k2(σ̂)− k2 ln(N − a) ≥ Ĥ2,s(σ̂)− s ln(N − a), s = 1, · · · , d2}.

(18)
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In order to determine k̂1 and k̂2 according to the expressions in (18), we need to select
the bounds d1 and d2. For this, we shall make use of a result mentioned in Kallenberg and
Ledwina (1997b), citing Inglot, Kallenberg and Ledwina (1994), which states that the data
driven order converges to the value 1 in probability. Even though our set up is different
from that under which this result is proved, we proceed under the assumption that the data
driven approach is unlikely to yield values of k̂1 and k̂2 that are far removed from the value
1. In our simulations, we chose d1 = d2 = 6.

Algorithm 1 given below gives a summary of the steps necessary to implement our
proposed test for testing the null hypothesis in (8) against a Legendre polynomial based
smooth alternative.

Algorithm 1

1. Compute the estimates of µ̂, σ̂2 and σ̂2
α given in (13).

2. Compute the nl × 1 vectors vl = (vl1, vl2, · · · , vlnl)′ given in (7).

3. Compute the ûlj given in (16), which requires the quantities computed in the previous
two steps.

4. Compute k̂1 and k̂2 in (18) where Ĥ1,k1(σ̂, σ̂α, µ̂) and Ĥ2,k2(σ̂) are given in (17). For
the quantities d1 and d2 in (18), we recommend the values d1 = d2 = 6.

5. Compute the score vector and its variance-covariance matrix using the expressions
given in the appendix, and replace µ, σ2 and σ2

α with µ̂, σ̂2 and σ̂2
α, respectively. Let

the quantities so obtained be denoted by û and V̂ , respectively.

6. Partition û and V̂ as

û =
(
û′1, û

′
2

)′
and V̂ =

(
V̂11 V̂12

V̂21 V̂22

)
,

where û1 is a (k̂1 + k̂2 +a−1)×1 vector, and V̂11 is a (k̂1 + k̂2 +a−1)× (k̂1 + k̂2 +a−1)
matrix.

7. Compute V̂11.2 = V̂11 − V̂12V̂
−1

22 V̂21 and the score statistic Ŝ = û′1V̂
−1

11.2û1. Reject H0 in
(8) if the value of the score statistic exceeds the appropriate percentile of the chisquare
distribution with df = (k̂1 + k̂2 + a− 1).

For the case of balanced data, the nl’s have to be replaced with their common value,
say n, in all the expressions. As a result, some of the covariances will become zeros, and these
are noted in the appendix. It can then be verified that in the balanced case the matrix V̂11.2
is a block-diagonal matrix, with three diagonal blocks having dimensions k̂1× k̂1, k̂2× k̂2 and
(a− 1)× (a− 1), corresponding to θ1, θ2 and η∗, where η∗ = (η2, η3, · · · , ηa)′. Accordingly,
the score statistic splits into three components. Thus when the null hypothesis is rejected, it
is possible to draw conclusions on which component/components contributed to the rejection:
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the non-normality of vl1’s (l = 1, 2, · · · , a), the non-normality of vlj’s (j = 2, 3, · · · , nl, l =
1, 2, · · · , a), or the heteroscedasticity.

It turns out that the distributions of the score vector û1 and the submatrix of V̂11.2
corresponding to η∗ depend on σ and σα. However, in the balanced case we have

Var
(
∂ lnL
∂ηc

)
= 2

[
σ2

(σ2 + nσ2
α)2 + (n− 1)

σ2

]
= 2

[
1

σ2(1 + nλ)2 + (n− 1)
σ2

]
,

c = 1, 2, · · · , a, where λ=σ2
α

σ2 . We note that the above variance varies between (n − 1)/σ2

and n/σ2, as λ varies between 0 and ∞. Thus the impact of σ2
α on the score test appears to

be fairly small in the balanced case, and we may anticipate this to be so in the unbalanced
case as well. Later we shall examine this further through numerical results.

2.2. Smooth alternatives based on Hermite polynomials

We shall now consider the likelihood function under a smooth alternative based on
Hermite polynomials. The likelihood is similar to (7) except that Hermite polynomials are
used instead of Legendre polynomials. Thus let hi(z), i = 1, 2, · · · , denote the system of
Hermite polynomials. The log-likelihood is now given by

lnL =
a∑
l=1

ln{C(θ, µ,σ, σα)}+
k1∑
r=1

θ1rhr(zl1) +
nl∑
j=2

k2∑
s=1

θ2shs(zlj) + ln{fl1(vl1, µ, σl, σα)}

+
nl∑
j=2

ln{fl2(vlj, σl)}
 , (19)

where the zl1 and zlj are defined in (6). The components of the score vector (under the null
hypothesis) can be derived similar to the Legendre case, and are given in the appendix. The
elements of the variance covariance matrix of the score vector are also given in the appendix.
The score statistic can be worked out similar to (15). It can also be verified that the matrix
analogous to V11.2 is a block diagonal matrix, having three diagonal blocks. Furthermore,
in the balanced case, V11.2 will reduce to a completely diagonal matrix. Recall that under
the Legendre polynomial based alternative, V11.2 simplified to a block diagonal matrix only
under balanced data.

We can compute data driven choices of the orders k1 and k2 under the Hermite poly-
nomial based smooth alternative also. For this we need to define quantities analogous to
those in (17), with the Legendre polynomial terms replaced by the corresponding Hermite
polynomial based terms. The orders can then be determined proceeding as in (18). How-
ever, when we define the analogous quantities in (17) for the Hermite polynomial case, the
summations will be from i = 3 to k1 and i = 3 to k2 (instead of i = 1 to k1 and i = 1 to
k2). For this, we need to show that the terms corresponding to i = 1 and i = 2 are zeros.
Actually they are exactly zeros in the balanced case, and we shall choose to ignore them in
the unbalanced case since they are likely to be quite small. Such zero-terms in the context
of the Hermite polynomial based alternative have been noted, for example, in Rayner, Thas
and Best (2009) in the context of testing univariate normality.
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Similar to (17), let’s define H̃1,k1(σ̂, σ̂α, µ̂) and H̃2,k2(σ̂) as

H̃1,k1(σ̂, σ̂α, µ̂) = 1
a

k1∑
i=3

{
a∑
l=1

hi (ẑl1)
}2

H̃2,k2(σ̂) = 1
N − a

k2∑
i=3


a∑
l=1

nl∑
j=2

hi (ẑlj)


2

, (20)

where the hi(.)’s are Hermite polynomials and ẑlj’s are defined in (16). Assuming upper
bounds d1 for k1 and d2 for k2, the orders k1 and k2, say k̃1 and k̃2, are determined as follows:

k̃1 = min{k1 : 3 ≤ k1 ≤ d1, H̃1,k1(σ̂, σ̂α, µ̂)− k1 ln(a) ≥ H̃1,r(σ̂, σ̂α, µ̂)− r ln(a), r = 3, · · · , d1}
k̃2 = min{k2 : 3 ≤ k2 ≤ d2, H̃2,k2(σ̂)− k2 ln(N − a) ≥ H̃2,s(σ̂)− s ln(N − a), s = 3, · · · , d2}.

(21)

Let’s now consider the case of balanced data and show that the terms corresponding
to i = 1 and i = 2 are zeros in H̃1,k1(σ̂, σ̂α, µ̂) and H̃2,k2(σ̂) in (20), so that in the definition
of these quantities the summation can start from i = 3, as done in (20). Using (4), (6) and
(16), and recalling that the Helmert matrix is an orthogonal matrix with first column being
a multiple of a vector of ones, we have the following simplifications in the balanced case,
under the null hypothesis,

vl1 =
√
nȳl, ẑl1 =

√
n(ȳl − ȳ..)√
aSSα

,
a∑
l=1

ẑ2
l1 = 1

a
n∑
j=1

y2
lj =

n∑
j=1

v2
lj = nȳ2

l +
n∑
j=2

v2
lj,

n∑
j=2

v2
lj =

n∑
j=1

y2
lj − nȳ2

l

a∑
l=1

n∑
j=2

v2
lj =

a∑
l=1

 n∑
j=1

y2
lj − nȳ2

l

 = SSe

a∑
l=1

n∑
j=2

ẑ2
lj = 1

a(n− 1) , (22)

where we have used the expression SSα = n
∑a
l=1(ȳl−ȳ..)2. The first two Hermite polynomials

are given by
h1(z) = z, and h2(z) = 1√

2
(z2 − 1).

From the observations in (22), it now follows that for balanced data, ∑a
l=1 hi(zl1) = 0, i =

1, 2, and ∑a
l=1

∑n
j=2 hi(zlj) = 0, i = 1, 2. It should be noted that this conclusion holds only

for the case of balanced data. For unbalanced data, we anticipate that these terms will be
small even though they may not be exactly equal to zero.

Once k̃1 and k̃2 are determined as in (21), we note that the number of Hermite polyno-
mial terms in H̃1,k̃1

(σ̂, σ̂α, µ̂) and H̃2,k̃2
(σ̂) are k̃1−2 and k̃2−2, respectively. Hence the score

statistic will have an approximate chisquare distribution with df = (k̃1−2)+(k̃2−2)+(a−1).
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3. Numerical Results

We shall now report some numerical results to assess the behavior of the score tests
we have proposed in the previous sections. Our purpose here is several: to assess the
dependence of the score tests on σ2

α, to examine the accuracy of the asymptotic chisquare
distribution (under the null), and to compare the powers of the score tests based on the
Legendre polynomial alternative and based on the Hermite polynomial alternative.

In order to the examine the dependence of the tests on σ2
α, we first estimated the

95th percentiles of the score statistic in the case of balanced data, for various values of a
and n, and for σ2

α = 0.1, 2 and 10. We also chose µ = 0 and σ2 = 1, where σ2 denotes
the common value of the σ2

l ’s. The data driven approach explained in the previous section
was used to obtain the order of the polynomials. Most of the time, the data driven choices
k̂1 and k̂2 were equal to one in the Legendre polynomial case, and k̃1 and k̃2 were equal
to three in the Hermite polynomial case, so that the score statistic has an approximate
chisquare distribution with df = a+1 under the null hypothesis. Table 1 gives the estimated
percentiles based on 104 simulated samples. We have also included the 95th percentile of
the chisquare distribution with df = a+ 1. We can draw the following conclusions from the
numerical results in Table 1: (i) the chisquare distribution approximates the null distribution
of the score statistic reasonable well; however, the actual percentiles are slightly larger than
that of the chisquare distribution, and (ii) the null distribution is not sensitive to the value
of σ2

α. It appears that in order to have a more accurate test, one can use a Monte Carlo
estimate of the corresponding percentile (instead of using the chisquare percentile) after
simply assuming σ2

α = 1, regardless of the true value of σ2
α.

In order to further see the insensitivity of the null distribution with respect to the
value of σ2

α, we estimated the type I error probabilities of the score test when σ2
α = 0.1

and 10, when the test is carried out using the estimated critical value (i.e., 95th percentile)
corresponding to σ2

α = 2. The rest of the simulation set up is the same as that used to obtain
the results in Table 1. The type I error probabilities are given in Table 2. The insensitivity
of the type I error probabilities with respect to the value of σ2

α should be clear.

In addition, we looked at Type I error probabilities for unbalanced cases, using critical
values estimated from the balanced case with a common value chosen as ñ, which is the
harmonic mean of the nl’s; see (13). For this we used a= 10, 20, 30 and 50 groups. We also
made three choices in terms of severity of the unbalancedness: mild, moderate and severe.
For a = 10, our choice of the nl’s to represent mild unbalancedness is (4,4,5,5,5,5,5,5,5,10),
which gives the harmonic mean ñ=5. For moderate unbalancedness, we chose the nl’s to be
(2,3,4,5,6,7,8,9,10,14), resulting in ñ=4.999008 (we shall take ñ = 5 in this case). For the
severe unbalanced case, we made the choice (3,3,4,4,5,5,5,5,40,120) for the nl’s, which also
yields ñ=5. For a = 20, we adopted the above choices except that each nl value was repeated
twice. For a = 30 and 50, the same strategy was followed; i.e., each nl value chosen for a =
10 was repeated three times and five times each.

The choices of the nls just described all resulted in ñ = 5, as already noted. We shall
also consider choices that will give ñ = 10, 30 and 50. For this, we multiplied each of the
nls in the earlier choices with 2, 6 and 10, so as to result in ñ = 10, 30 and 50, respectively.
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Table 1: Monte Carlo estimates of the 95th percentiles of the score statistic for σ2
α=

0.1, 2, 10; χ2
(a+1,0.95) denotes the 95th percentile of the chisquare distribution

with a+ 1 df

Legendre Hermite
a n σ2

α=0.1 σ2
α=2 σ2

α=10 σ2
α=0.1 σ2

α=2 σ2
α=10 χ2

(a+1,0.95)
10 5 21.71 21.70 21.20 19.57 20.05 20.17 19.68
10 10 21.02 20.99 20.70 20.09 20.52 20.49 19.68
10 30 20.51 20.49 20.43 20.16 20.33 20.39 19.68
10 50 20.80 20.80 20.79 20.56 20.49 20.49 19.68
20 5 35.25 35.16 34.32 34.56 35.97 35.96 32.67
20 10 33.34 33.34 33.35 35.11 35.42 35.31 32.67
20 30 33.29 33.30 33.25 34.22 34.40 34.46 32.67
20 50 33.25 33.24 33.20 33.95 34.08 34.13 32.67
30 5 47.87 47.78 46.83 48.58 49.45 49.48 44.99
30 10 46.82 46.84 46.83 48.16 48.15 48.23 44.99
30 30 45.51 45.52 45.53 47.43 47.18 47.14 44.99
30 50 45.72 45.72 45.71 46.79 46.63 46.64 44.99
50 5 72.99 72.69 71.64 75.35 76.03 75.88 68.67
50 10 70.67 70.70 70.88 73.54 73.86 73.90 68.67
50 30 69.34 69.34 69.34 71.35 71.39 71.35 68.67
50 50 69.63 69.65 69.64 70.61 70.72 70.56 68.67

Table 2: Estimated type I error probabilities of the score test carried out using the
estimated critical value corresponding to σ2

α = 2, for a 5% significance level

Legendre Hermite
a n σ2

α=0.1 σ2
α=10 σ2

α=0.1 σ2
α=10

10 5 0.053 0.050 0.046 0.051
10 10 0.050 0.050 0.046 0.050
10 30 0.049 0.050 0.049 0.051
10 50 0.052 0.050 0.051 0.050
20 5 0.058 0.051 0.044 0.050
20 10 0.045 0.050 0.048 0.050
20 30 0.049 0.050 0.049 0.051
20 50 0.051 0.050 0.049 0.051
30 5 0.051 0.051 0.046 0.050
30 10 0.055 0.050 0.050 0.050
30 30 0.048 0.050 0.052 0.050
30 50 0.053 0.050 0.051 0.050
50 5 0.051 0.051 0.048 0.050
50 10 0.047 0.050 0.049 0.050
50 30 0.049 0.050 0.050 0.050
50 50 0.055 0.050 0.050 0.049
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We used the value σ2
α=2 to estimate the type I error probabilities, and considered both

Legendre polynomial-based and Hermite polynomial-based alternatives. The estimated type
I error probabilities are given in Table 3 (under Legendre polynomial-based alternatives)
and in Table 4 (under Hermite polynomial-based alternatives). The following conclusions
can be drawn from the numerical results. Under the Legendre polynomial-based alternative,
there is no Type I error inflation for the mild unbalanceness cases; we notice a somewhat
mild type I error inflation in the case of moderate unbalancedness when ñ is small, and a
more pronounced type I error inflation in the case of severe unbalancedness when ñ is small.
However, when ñ is 30 or more, the type I error probabilities are all close to the nominal
level of 5%. Under the Hermite polynomial-based alternative, the type I error inflation
appears to be a bit more severe, especially in the case of severe unbalancedness and small ñ.
However, the results are once again quite satisfactory when ñ is 30 or more. Overall, using
the balanced set up critical value based on ñ appears to be a satisfactory option, except in
the severe unbalanced case and a small ñ.

Table 3: Type I error probabilities for unbalanced data under Legendre polynomial-
based alternatives and using the balanced data critical value with n = ñ, for
a 5% significance level

Estimated
Unbalancedness critical value Chisquare

a ñ Severe Moderate Mild when σ2
α = 2 critical value

10 5 0.065 0.047 0.042 21.702 19.675
10 10 0.060 0.052 0.048 20.987 19.675
10 30 0.056 0.048 0.049 20.490 19.675
10 50 0.043 0.045 0.044 20.803 19.675
20 5 0.069 0.054 0.047 35.165 32.671
20 10 0.065 0.055 0.055 33.336 32.671
20 30 0.048 0.052 0.047 33.299 32.671
20 50 0.044 0.049 0.049 33.244 32.671
30 5 0.076 0.062 0.049 47.776 44.985
30 10 0.064 0.051 0.046 46.841 44.985
30 30 0.053 0.048 0.052 45.516 44.985
30 50 0.048 0.041 0.044 45.723 44.985
50 5 0.077 0.061 0.053 72.693 68.669
50 10 0.064 0.057 0.047 70.697 68.669
50 30 0.052 0.050 0.050 69.338 68.669
50 50 0.042 0.046 0.043 69.645 68.669

The type I error probabilities reported in Table 3 and Table 4 were computed when the
test was carried out using the estimated critical value corresponding to σ2

α = 2; these critical
values are also given in the tables. The tables also give the chisquare critical values. We
note that the chisquare critical values are smaller than the estimated critical values, as was
noted in Table 1. Thus if the test is carried out using the asymptotic chisquare distribution,
one should expect an inflated type I error probability.
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Table 4: Type I error probabilities for unbalanced data under Hermite polynomial-
based alternatives and using the balanced data critical value with n = ñ, for
a 5% significance level

Estimated
Unbalancedness critical value Chisquare

a ñ Severe Moderate Mild when σ2
α = 2 critical value

10 5 0.093 0.063 0.053 20.052 19.675
10 10 0.066 0.059 0.052 20.516 19.675
10 30 0.058 0.053 0.052 20.327 19.675
10 50 0.046 0.049 0.049 20.495 19.675
20 5 0.082 0.060 0.051 35.972 32.671
20 10 0.065 0.053 0.051 35.420 32.671
20 30 0.051 0.054 0.050 34.400 32.671
20 50 0.046 0.052 0.052 34.080 32.671
30 5 0.080 0.066 0.052 49.451 44.985
30 10 0.066 0.059 0.054 48.149 44.985
30 30 0.054 0.049 0.054 47.175 44.985
30 50 0.050 0.051 0.051 46.626 44.985
50 5 0.075 0.062 0.053 76.031 68.669
50 10 0.058 0.056 0.048 73.862 68.669
50 30 0.053 0.051 0.054 71.387 68.669
50 50 0.046 0.056 0.051 70.715 68.669

Some limited numerical results on the power are reported in Table 5 in the case of
balanced data for a = 10 and n = 5 and a = 30 and n = 5. We note that the null hypothesis
can be violated by having a non-normal distribution for the errors and/or random effects,
and/or by having heteroscedasticity of the error distribution. In Table 5, the powers are
first reported when random effects are normally distributed and the error terms alone are
non-normal and/or heteroscedastic (the first few rows of the table). The last few rows of the
table correspond to the alternative scenario where the error terms are normally distributed
and could be heteroscedastic, but the random effects are non-normal. The very last row
of the table corresponds to the alternative where both the error terms and the random
effects follow non-normal distributions, but the errors are homoscedastic. A 5% significance
level and estimated critical values are used while computing the power. For introducing
heteroscedasticity into the alternative, we proceeded as follows. We split the a groups into
two sets, having a/2 groups in each set (we have chosen only an even value of a in our
simulations). Data are generated from the same alternative error distribution, except that
for the data in the second set, the randomly generated error term was multiplied by

√
2,

which will result in twice the error variance for the data in the second set, compared to
those in the first set. The results on the power show that most of the powers are comparable
when the tests are derived using a Legendre polynomial-based alternative or a Hermite
polynomial-based alternatives. However, the test derived under the Hermite polynomial-
based alternatives appears to have a slight edge in terms of power. Perhaps more extensive
simulation are necessary before we can draw firm conclusions.
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Table 5: Estimated powers of the Legendre polynomial based and Hermite polynomial
based tests using estimated critical values for a 5% significance level

a=10, n=5 a=30, n=5
Alternative Legendre Hermite Legendre Hermite
Error N(0,1) 0.04 0.05 0.05 0.05

N(0,1)* 0.11 0.13 0.22 0.21
t(5) 0.24 0.29 0.56 0.57
t(5)* 0.30 0.36 0.70 0.70
Gamma (2,1) 0.28 0.35 0.65 0.68
Gamma (2,1)* 0.36 0.44 0.78 0.80

Random Effect t(2) 0.17 0.14 0.41 0.48
t(2)* 0.23 0.21 0.54 0.59
Gamma (2,1) 0.09 0.07 0.16 0.18
Gamma (2,1)* 0.15 0.15 0.36 0.35

Error + Random Effect Gamma (2,1) + t(2) 0.40 0.43 0.79 0.84
*Heteroscedasticity

4. An Example

We use a quality control data set from clinical chemistry on serum sodium measure-
ments. The data are taken from Andrews and Herzberg (1985), and serum sodium mea-
surements are given for 10 specimens tested by 100 labs. The specimens are from a large
homogeneous pool of serum, and one specimen is sent to the labs every two weeks. Here
we shall use only a subset of the data, and these data are from 24 labs that used the same
analysis method (Method 5 mentioned in Andrews and Herzberg (1985)), and had all 10
specimens tested, so that we have balanced data with a=10 and n=24; the data we used are
given in Yang (2016). The results of the data analysis are presented in Table 6. Data driven
choices were made for the orders k1 and k2. For a 5% significance level, the estimated critical
values necessary to carry out the test are given in Table 6. The data driven choices of the
orders are also given in the table. The upper bounds d1 and d2 were chosen as d1 = d2=6. We
noted earlier that that for one-way random model with balanced data, the matrix V11.2 used
to compute the score statistic is a block-diagonal matrix consisting of 3 blocks; if the null hy-
pothesis of normality and homoscedasticity is rejected, it is possible to draw conclusions on
which component/components contributed to the rejection: normality or homoscedasticity
of the error distribution, or the normality of the random effect. We note from Table 6 that
the null hypothesis is rejected by the tests based on both Legendre polynomial-based and
Hermite-polynomial-based alternatives. In the table, we have also given the decomposition
of the score statistic into the three components; the first component corresponds to nor-
mality of the random effects, the second and third components correspond, respectively, to
normality and heteroscedasticity of the error distribution. The results indicate that there is
evidence for both non-normality and heteroscedasticity for the error distribution, but there
is no evidence of non-normality of the random effects.
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Table 6: Analysis of the serum sodium data using a 5% significance level

Estimated
Polynomial Orders critical value Score statistic Decision
Legendre k̂1 = 1, k̂2 = 2 20.584 55.505 = 0.066 + 32.776 + 22.663 Reject H0
Hermite k̃1 = 3, k̃2 = 6 20.388 251.439 = 0.024 + 228.752 + 22.663 Reject H0

5. Discussion: Possible Extensions and Limitations

Data analysis in a linear model framework relies on several assumptions: normality,
homoscedasticity (especially when the data fall into different groups), independence, and the
assumption that the mean vector belongs to a specified subspace. Simultaneous assessment
of these assumptions is clearly of interest. An attempt in this direction has been made by
Peña and Slate (2006). Their assessment of normality assumes a smooth alternative. The
assessment of homoscedasticity assumes that departure from this assumption can be modeled
as a function of the mean. However, the violation of the homoscedasticity need not imply
that the variance changes with the mean, even though this is a possibility. In our work,
we have explored the simultaneous assessment of both normality and homoscedasticity. It
should be noted that the smooth tests available in the literature address only the problem
of testing the adequacy of a parametric distribution, specified in terms of appropriate or-
thogonal polynomials. However, Kallenberg, Ledwina and Rafajlowicz (1997) did address
the problem of simultaneously testing normality and independence for bivariate data. Such
simultaneous testing has been facilitated by having a parametric form under the smooth
alternative.

We want to point out several limitations, and some possible generalizations, of the work
reported here. In the context of models that involve random effects, if we want to go beyond
the one-way random model, difficulties do arise for the simultaenous assessment of normality
of the random effects, normality of the error terms, and homoscedasticity. Unbalancd data
will add further complications. However, we feel that our methodology in the context of the
one-way random model can be generalized to general mixed or random effects models for the
simultaneous assessment of normality of the random effects and the error terms, assuming
that homoscedasticity holds, provided we have balanced data. We shall now illustrate this
in the context of the two-way random effects model and the two-way mixed effects models,
when the model includes interactions.

5.1. Testing normality in a two-way random model with balanced data

Consider two factors having a and b levels, randomly selected, and suppose we have n
observations one each level combination; thus we have balanced data. Let yijm denote the
mth observation corresponding to the ith and jth levels of the two factors; m = 1, 2, · · · ,
n. The two-way model with interaction is given by

yijm = µ+ αi + βj + γij + εijm,

i = 1, · · · , a, j = 1, · · · , b and m = 1, · · · , n. We assume that all the effects are random and
the random variables αis, βjs, γijs and the error terms εijms are all independent. The usual
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normality assumptions state that

αi ∼ N(0, σ2
α), βj ∼ N(0, σ2

β), γij ∼ N(0, σ2
γ), and εijm ∼ N(0, σ2).

Note that we are now assuming homoscedasticity. The above normality assumptions imply
a multivariate normal distribution with a structured variance-covariance matrix for the data
vector consisting of all the yijm; the mean vector is simply µ1abn. Our goal is to test if such
a multivariate normality assumption holds, by using an appropriate smooth alternative. We
recall that in the one-way random model, this was accomplished by transforming the data
vector into two uncorrelated components, and simultaneously testing univariate normality
for each component assuming independent smooth alternatives. We shall do the same under
the two-way random model as well. However, now four sets of independent random variables
are involved in the model (αi’s, βj’s, γij’s and the εijm’s). Consequently, we will suitably
transform the data vector, and end up with four uncorrelated components. We can then
simultaneously test univariate normality of the four components against the assumption of
smooth alternatives that are also independent.

Consider the vector yij = (yij1, yij2, · · · , yijn)′, and let Qn =
(

1√
n
1n, Q∗n

)
be an n × n

Helmert matrix. Consider the transformation

vij = Q′nyij,

i = 1, 2, · · · , a, and j = 1, 2, · · · , b. Let vij = (vij1,v′ij0)′, so that vij0 is an (n − 1) × 1
vector. It follows that vij0 has the mean vector and covariance matrix given by

E(vij0) = 0, V ar(vij0) = σ2In−1.

Here we have used the facts that E(yij) = µ1n and Qn is an n× n orthogonal matrix with
the first column given by 1√

n
1n. Denote by v0 the ab(n − 1) × 1 vector consisting of the

v′ij0s, ∀i = 1, · · · , a and j = 1, · · · , b. Then

E(v0) = 0, V ar(v0) = σ2Iab(n−1). (23)

It should be clear that the components of v0 are the ab(n− 1) error contrasts; we recall that
under the two-way model with interaction and balanced data, the error sum of squares has
df = ab(n− 1).

Now let’s consider vij1, the first element of the vector v′ijs. The model for the yijm’s
imply the following model for vij1:

vij1 =
√
nµ+

√
n(αi + βj + γij) +

√
n ε̄ij,

where ε̄ij = 1
n

∑n
m=1 εijm. Denote by v1 the vector consisting of the vij1’s, j = 1, · · · , b and

i = 1, · · · , a. Note that v1 is an ab× 1 vector. We then we have the model

v1 =
√
n[µ1ab + (Ia ⊗ 1b)α+ (1a ⊗ Ib)β + γ + ε̄],

where α, β, γ and ε̄ are vectors consisting of the αi, βj, γij and ε̄ij, respectively. Thus

E(v1) =
√
nµ1ab
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V (v1) = nσ2
α(Ia ⊗ 1b1′b) + nσ2

β(1a1′a ⊗ Ib) + nσ2
γIab + σ2Iab.

We now make further transformations of the vector v1. Let Qa =
(

1√
a
1a, Q∗a

)
and

Qb =
(

1√
b
1b, Q∗b

)
be defined similar to Qn, but with dimensions a× a and b× b, respectively.

Define

w0 =
(

1√
a

1′a ⊗
1√
b
1′b
)
v1, w1 =

(
Q∗

′

a ⊗
1√
b
1′b
)
v1,

w2 =
(

1√
a

1′a ⊗Q∗
′

b

)
v1, and w3 =

(
Q∗

′

a ⊗Q∗
′

b

)
v1. (24)

We note that w0 is a scalar, and the vectorsw1, w2 andw3 are of dimensions (a−1)×1,
(b − 1) × 1, and (a − 1)(b − 1) × 1, respectively. It is readily verified that w0, w1, w2 and
w3 are all uncorrelated. We shall denote the elements of the vectors w1, w2 and w3 as w1i′ ,
w2j′ and w3i′j′ , respectively, for i′ = 1, 2, · · · , a− 1, and j′ = 1, 2, · · · , b− 1, and we have the
following means and variances:

E(w0) =
√
abnµ, V ar(w0) = σ2

0 = bnσ2
α + anσ2

β + nσ2
γ + σ2,

E(w1i′) = 0, V ar(w1i′) = σ2
1 = bnσ2

α + nσ2
γ + σ2, i′ = 1, 2, ..., a− 1,

E(w2j′) = 0, V ar(w2j′) = σ2
2 = anσ2

β + nσ2
γ + σ2, j′ = 1, 2, ..., b− 1,

E(w3i′j′) = 0, V ar(w3i′j′) = σ2
3 = nσ2

γ + σ2, i′ = 1, 2, ..., a− 1, j′ = 1, 2, · · · , b− 1.

Let v0m′ denote the m′th element of the vector v0 defined in (23), so that E(v0m′) = 0 and
V ar(v0m′) = σ2, m′ = 1, 2, · · · , ab(n − 1). Furthermore, the v0m′s are uncorrelated. If the
normality assumption holds for all the random effects and the error terms in the two-way
random model, then the following four sets of random variables follow independent normal
distributions with means all equal to zero, and variances as specified above: (i) v0m′ , m′ =
1, 2, · · · , ab(n − 1), (ii) w1i′ , i′ = 1, 2, · · · , a − 1, (iii) w2j′ , j′ = 1, 2, · · · , b − 1, and (iv)
w3i′j′ , i′ = 1, 2, · · · , a − 1, j′ = 1, 2, · · · , b − 1. In other words, under the assumption of
normality, the random variables given in (i), (ii), (iii) and (iv) can be treated as samples of
sizes ab(n − 1), a − 1, b − 1 and (a − 1)(b − 1) from four independent normal distributions
with zero means. Independent smooth alternatives to normality can now be specified for
each of the four sets (i), (ii), (iii) and (iv), and score tests can be derived for simultaneously
testing normality of the error term and the normality of the random effects.

5.2. Testing normality in a two-way mixed model with balanced data

Now consider the two-way mixed effect model with interaction and balanced data:

yijm = µ+ αi + βj + γij + εijm,

where the αi, i = 1, 2, · · · , a, are assumed to be the fixed effects, and the rest of the effects are
random effects. Here we make the usual assumption: ∑a

i=1 αi = 0. The standard normality
assumptions that are imposed on the random effects and the error terms are the same as
those given in the previous section: βj ∼ N(0, σ2

β), γij ∼ N(0, σ2
γ), and εijm ∼ N(0, σ2),

i = 1, · · · , a, j = 1, · · · , b and m = 1, · · · , n.
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Starting with the transformation based on the Helmert matrix Qn, we can arrive at the
ab(n − 1) error contrast vector v0 given in the previous section, having zero mean and the
variance-covariance matrix σ2Iab(n−1); see (23). Let’s now consider the quantities w0, w1, w2
and w3, defind in (24), and denote the elements of w2 and w3 as w2j′ and w3i′j′ , respectively,
for i′ = 1, 2, · · · , a − 1, and j′ = 1, 2, · · · , b − 1. It can once again be verified that w0 , w1,
w2, and w3 are all uncorrelated, and we have the following means and variances:

E(w0) =
√
abnµ, V ar(w0) = anσ2

β + nσ2
γ + σ2,

E(w1) =
√
bQ∗

′

a α, V ar(w1) = (nσ2
γ + σ2)Ia−1,

E(w2j′) = 0, V ar(w2j′) = anσ2
β + nσ2

γ + σ2, j′ = 1, 2, · · · , b− 1,
E(w3i′j′) = 0, V ar(w3i′j′) = nσ2

γ + σ2, i′ = 1, 2, · · · , a− 1, j′ = 1, 2, · · · , b− 1.

The vectors v0, w2 and w3 are also uncorrelated, have mean zeros, and covariance matrices
σ2Iab(n−1), (anσ2

β +nσ2
γ +σ2)Ib−1 and (nσ2

γ +σ2)I(a−1)(b−1), respectively. Three independent
smooth alternatives to normality can now be defined, as noted in the previous section, and
smooth tests can be derived. Note that the scalar quantity w0, and the vector w1 have means√
abnµ and

√
bQ∗

′
a α, respctively, which are unknown nuisance parameters to be estimated.

Thus these components will not contribute to the test for normality. In this section and in
the previous section, we have not brought up the issue of testing homoscedasticity.

We believe that the approach outlined in this section and the previous section can
be adopted to any mixed or random effects model with balanced data. However, the same
approach will not go through when we have unbalanced data. Let’s briefly indicate why this
is so. Consider the case of the random effects model. A key step in the derivations is the
transformation in (24) leading to the uncorrelated quantities w0, w1, w2 and w3. It is not
difficult to note that such a transformation leading to uncorrelated quantities is not possible
when we have unbalanced data. In short, when we have a linear model with a structured
covariance matrix, which is the case for any mixed or random effects model, it is not clear
how we can define a smooth alternative by taking the structure into account.
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APPENDIX

The Score Vector and its Variance-Covariance Matrix

Here we shall give only the expressions for the score vector and its variance-covariance
matrix (without providing their derivations) under both the Legendre polynomial based
and Hermite polynomial based alternatives. In order to derive these, it is necessary to use
expressions for the derivatives of ln{C(θ, µ,σ, σα)}. General results on such derivatives are
given in Rayner, Thas and Best (2009, Section 6.1).

A. The score vector, variances and covariances under the Legendre polynomial
based alternative

Recall that the elements of the score vector and those of the variance-covariance matrix
are to be evaluated under the null hypothesis. For the log-likelihood function given in (10),
the components of the score vector (under the null hypothesis) are as follows:

∂ lnL
∂θ1r

=
a∑
l=1

br(ul1), ∂ lnL
∂θ2s

=
a∑
l=1

nl∑
j=2

bs(ulj), r = 1, 2, · · · , k1, s = 1, 2, · · · , k2

∂ lnL
∂ηc

=
a∑
l=1

(z2
l1 − 1) σqlc

σ2 + nlσ2
α

+
a∑
l=1

nl∑
j=2

(z2
lj − 1)qlc

σ
, c = 1, 2, · · · , a,

∂ lnL
∂σα

=
a∑
l=1

(z2
l1 − 1) nlσα

σ2 + nlσ2
α

,
∂ lnL
∂µ

=
a∑
l=1

√
nlzl1√

σ2 + nlσ2
α

where σ2 is the common variance under the null hypothesis, and qlc’s are the elements of the
a× a Helmert matrix Q defined in Section 2, and η = Q′σ; see (9).

The expressions for the variances and covariances among the components of the score
vector involve certain constants ci and ei, i = 1, 2, · · · . We shall first give these before
giving the variance and covariance terms. Let f(z) denote the density of a standard normal
random variable Z. The required constants ci and ei are given by

ci = Cov[bi(Φ(Z)), Z] =
∫ ∞
−∞

bi(Φ(z))zf(z)dz,

ei = Cov[bi(Φ(Z)), Z2] =
∫ ∞
−∞

bi(Φ(z))z2f(z)dz,

i = 1, 2, 3, · · · . By using the expressions for the Legendre polynomials, it can be verified
that ci = 0 for i even, and ei = 0 for i odd. When ci’s and ei’s are non-zero, they can be
computed numerically. A few such values are given below; see Bogdan (1996, 1999).

c1 = 0.977205023801135, c3 = 0.1830082402700861, c5 = 0.0816989764273946,
c7 = 0.04772936798473241, c9 = 0.031880431223894;
e2 = 1.232808888123174, e4 = 0.5211245854593028, e6 = 0.3045144697203598,
e8 = 0.2055889833015625, e10 = 0.150770690085310.
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The variances and covariances among the components of the score vector are as follows
(under the null hypothesis):

Var
(
∂ lnL
∂θ1r

)
= a, and Cov

(
∂ lnL
∂θ1r

,
∂ lnL
∂θ1r′

)
= 0, r 6= r′; r, r′ = 1, 2, · · · , k1,

Var
(
∂ lnL
∂θ2s

)
= N − a, where N =

a∑
l=1

nl, and Cov
(
∂ lnL
∂θ2s

,
∂ lnL
∂θ2s′

)
= 0,

s 6= s′; s, s′ = 1, 2, · · · , k2,

Cov
(
∂ lnL
∂θ1r

,
∂ lnL
∂θ2s

)
= 0, r = 1, 2, · · · , k1, s = 1, 2, · · · , k2,

Var
(
∂ lnL
∂ηc

)
= 2

a∑
l=1

(
σ2

(σ2 + nlσ2
α)2 + (nl − 1)

σ2

)
q2
lc, c = 1, 2, · · · , a,

Cov
(
∂ lnL
∂ηc

,
∂ lnL
∂ηc′

)
= 2

a∑
l=1

(
σ2

(σ2 + nlσ2
α)2 + (nl − 1)

σ2

)
qlcqlc′ , c 6= c′; c, c′ = 1, 2, · · · , a,

Cov
(
∂ lnL
∂θ1r

,
∂ lnL
∂ηc

)
= er

a∑
l=1

σ

σ2 + nlσ2
α

qlc for r even, and 0 for r odd, c = 1, · · · , a,

Cov
(
∂ lnL
∂θ2s

,
∂ lnL
∂ηc

)
= (er/σ)

a∑
l=1

(nl − 1)qlc for s even, and 0 for s odd, c = 1, · · · , a,

Var
(
∂ lnL
∂σα

)
= 2

a∑
l=1

n2
l σ

2
α

(σ2 + nlσ2
α)2 ,

Cov
(
∂ lnL
∂θ1r

,
∂ lnL
∂σα

)
= er

a∑
l=1

nlσα
σ2 + nlσ2

α

for r even, and 0 for r odd,

Cov
(
∂ lnL
∂θ2s

,
∂ lnL
∂σα

)
= 0, s = 1, · · · , k2,

Cov
(
∂ lnL
∂ηc

,
∂ lnL
∂σα

)
= 2

a∑
l=1

σσα
(σ2 + nlσ2

α)2nlqlc, c = 1, · · · , a,

Var
(
∂ lnL
∂µ

)
=

a∑
l=1

nl
σ2 + nlσ2

α

,

Cov
(
∂ lnL
∂θ1r

,
∂ lnL
∂µ

)
= cr

a∑
l=1

√
nl√

σ2 + nlσ2
α

for r odd, and 0 for r even,

Cov
(
∂ lnL
∂θ2s

,
∂ lnL
∂µ

)
= 0, s = 1, · · · , k2,

Cov
(
∂ lnL
∂ηc

,
∂logL

∂µ

)
= 0, c = 1, · · · , a, Cov

(
∂ lnL
∂σα

,
∂ lnL
∂µ

)
= 0.

A.1. The case of balanced data

For balanced data, the nl’s have to be replaced with their common value n in all the
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expressions. As a result, some of the covariances will become 0, these are:

Cov
(
∂ lnL
∂ηc

,
∂ lnL
∂ηc′

)
= 0, c, c′ = 1, 2, · · · , a

Cov
(
∂ lnL
∂θ1r

,
∂ lnL
∂ηc

)
= 0, r = 1, 2, · · · , k1, c = 2, ..., a

Cov
(
∂ lnL
∂θ2s

,
∂ lnL
∂ηc

)
= 0, s = 1, 2, · · · , k2, c = 2, ..., a

Cov
(
∂ lnL
∂ηc

,
∂logL

∂σα

)
= 0, c = 2, · · · , a

B. The score vector, variances and covariances under the Hermite polynomial
based alternative

The components of the score vector (under the null hypothesis) can be derived similar
to those obtained under the Legendre polynomial case. The scores with respect to θ1r and
θ2s are given below, and those with respect ηc, σα, and µ are not given since they are the
same as in the Legendre case. The scores corresponding to θ1r and θ2s can be shown to be
equal to zero for r = 1, 2 and for s = 1, 2.

∂ lnL
∂θ1r

=
a∑
l=1

hr(zl1), ∂ lnL
∂θ2s

=
a∑
l=1

nl∑
j=2

hs(zlj), r = 3, 4, · · · , k1, s = 3, 4, · · · , k2.

Several of the variance and covariance terms are the same as those for the Legendre polyno-
mial case. The terms that are different from the Legendre case are given below, and are in
fact zeros.

Cov
(
∂ lnL
∂θ1r

,
∂ lnL
∂ηc

)
= 0, c = 2, · · · ., a

Cov
(
∂ lnL
∂θ2r

,
∂ lnL
∂ηc

)
= 0

Cov
(
∂ lnL
∂θ2s

,
∂ lnL
∂ηc

)
= 0, c = 2, · · · , a.


