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Abstract

This article considers the analysis of data using a nonlinear regression model in which
the covariate has a distribution, i.e., the error-in-variables case. Moreover, some of the same
data consisting of left- and right-censored data are used to estimate the covariate distribu-
tion. We show how to simultaneously fit the nonlinear error-in-variables regression model
and estimate the covariate distribution using Bayesian inference. The proposed method is
illustrated with a simulated data set. We also show the impact of knowing the covariate
distribution and the actual covariate values. Furthermore, we show the impact of taking
additional data on inference and prediction.
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1. Introduction

It is our privilege to to contribute this article to the special issue of Statistics and Ap-
plications in honor of Professor Dey. The first author met Professor Dey when he visited the
University of Waterloo in the late 1980’s. At the time, research in the design of experiments
for improving quality and productivity in industry had been reinvigorated by the appearance
of Taguchi Methods. Professor Dey’s 1985 book was timely for its mixed-level orthogonal
arrays that were being promoted by the Taguchi Methods. The Wu and Hamada (2009) Ex-
periments book refers to Professor Dey’s 1985 book as well as his 1999 book with Professor
Mukerjee a number of times for theoretical details and presents tables of his OA(24, 6!, 211),
OA(54,2',3%), and OA(54,6',3%*) designs for use by practitioners. The first author fondly
remembers Professor Dey as a formal gentleman and seasoned scholar who kindly spent time
talking to a young assistant professor about research. In this article, we present a problem
that we faced on a project at work. Here we focus on data analysis although there is a design
aspect that could be explored.

Suppose that we sample a population each year for I years, i = 1,...,1. At year 1,
we sample a unit and record whether a feature of interest can be observed in the unit. For
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example, cracks occur on containers based upon stresses on the container. The initiation
crack area or subsequent cracks occur at some time point. If a crack is observed we know that
the crack started sometime before that year. Otherwise, we know the crack will start after
the recorded time. In terms of chemical reactions, we can think about a reaction occurring
at a recorded time. If observed, all that we know is that the mechanism started in the unit
before year i; if it is not observed, all that we know is that the mechanism will start in the
unit after year . That is, we assume that the mechanism will start at some time in all units so
that there is a start time distribution. The data in which the mechanism has not started are
right-censored data. The data in which the mechanism has started are left-censored data.
An example of a model that displays similar characteristics is convex degradation where
the degradation rate increases with the level of degradation (Meeker and Escobar, 1998).
Suppose that the start time distribution is Lognormal(u, o?), say Lognormal(3,0.1?) with
median 20.1 years and 0.95 probability interval (14.4, 27.0) years. Recall that the log start
time distribution is Normal(u,c?). The proportion of the population that the mechanism
has started at time ¢ is displayed in Figure 1.
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Figure 1: Proportion of population that mechanism has started versus time
(years).

Suppose that for those units in which the mechanism has started we observe a quantity
Y; at time ¢, which is modeled as Y; = (1 —exp(—pfie;)) + €. This is a nonlinear regression
model with mean [3y(1—exp(—[51e;)), where ¢, is the elapsed time between the time when the
mechanism started s (i.e., the start time) and time ¢ (i.e., e, =t — s). € is the population
error assumed to be distributed as Normal(0,c?) and is assumed independent of the start
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time s. Suppose that o = 1000, $; = 0.025 and o, = 1. The mean [y(1 — exp(—/pier))
versus elapsed time e; is displayed in Figure 2.
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Figure 2: Quantity Y nonlinear regression mean versus elapsed time (years).

2. Data Model and Analysis

In our scenario, we will use example data shown in Table 1, where one unit is sampled
per year for 30 years at times 1-30. The StartStar column is 1 if the mechanism is not
observed to have started; otherwise, 0 if the mechanism is observed to have started. The
Y column is the quantity Y if the mechanism is observed to have started; e.g., if a crack is
observed, Y might be the the length of the crack. The elapsed time is not known; we only
know that at time ¢ with StartStar equal to 0, the start time s is less than t, i.e., the elapsed
time e, is a random variable, t — s, where s ~ Lognormal(3,0.12)I(0,t) and (0, ) indicates
that the lognormal distribution is restricted to the interval (0,t). Because e; is not known
exactly, but has a distribution, the nonlinear regression model of Y is an error-in-variables
model where the covariate e; has a distribution and not an exactly known value.

Further, we use the Time-StartStar data to estimate yu and o for the Lognormal(p, o?)
start time distribution. For a StartStar of 1, say, for Time 2, the likelihood contribution is
1- @(@), the probability of observing a right-censored datum, where ®() is the normal
cumulative distribution function. For a StartStar of 0, say, for Time 19, the likelihood
contribution is @(%), the probability of observing a left-censored datum.
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Table 1: Example Data (ordered so that right-censored data appear first; Elapsed
Time is unknown to the analyst)

Time StartStar Elapsed Y
(year) Time (year)

11 0 0
2 1 0 0
31 0 0
4 1 0 0
5 1 0 0
6 1 0 0
71 0 0
8 1 0 0
9 1 0 0
10 1 0 0
11 1 0 0
12 1 0 0
13 1 0 0
14 1 0 0
15 1 0 0
16 1 0 0
17 1 0 0
18 1 0 0
21 1 0 0
19 0 0.47 12.36
20 0 1.15 27.18
22 0 0.51 13.70
23 0 3.66 85.82
24 0 6.62 151.98
25 0 5.41 125.38
26 0 4.68 110.55
27 0 3.66 88.28
28 0 5.92 138.13
29 0 9.97 219.96
30 0 6.99 160.38

We use a Bayesian analysis with the following relatively diffuse prior distributions
(Gelman et al., 2013):

o o ~ Lognormal(7,0.5%) with a 0.95 probability central interval of (411.6, 2921.9)

e 31 ~ Lognormal(—4,1?) with a 0.95 probability central interval of (0.003, 0.130)

o 0, ~ HalfNormal(0, \/1_02) with a 0.95 probability central interval of (0.099, 7.088)
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e 1~ HalfNormal(0, \/EQ) with a 0.95 probability central interval of (0.099, 7.088)

e o0 ~ HalfNormal(0, \/102) with a 0.95 probability central interval of (0.099, 7.088)

These prior distributions are thought to be relatively diffuse, i.e., they are chosen to be
quite wide so that the true values of the parameters are thought to fall within these high
probability central intervals.

We obtain the following results using a Markov chain Monte Carlo (MCMC) algorithm
(Gelman et al., 2013) implemented in JAGS (Plummer, 2003) using the R (R Core Team,
2020) package rjags to call JAGS. The JAGS code for the proposed analysis is given in the
Appendix that produces 400,000 draws from the posterior distribution. In the examples, we
use 10,000 burnin draws (which are discarded) and 40,000,000 subsequent draws, which we
thin by taking every 100th draw. Plots of the posterior draws not shown here display good
mixing. Moreover, diagnostics (Gelman and Rubin’s convergence diagnostic; Gelman and
Rubin, 1992) also suggest convergence, i.e., these draws are from the appropriate posterior
distribution.

Table 2 displays the posterior summaries for the model parameters p and o for the
start time distribution and fy, 1 and o; for the quantity Y nonlinear regression model.
Note that there is substantial uncertainty associated with .

Table 2: Posterior Summaries of Model Parameters (50, 2.5, 97.5 percentiles)
from Table 1 Data

Parameter True 50% 2.5% 97.5%
7 3.000 2.975 2.853 3.073

o 0.100 0.127 0.077 0.269

Bo 1000.000 1106.450 502.993 2583.997

Ioht 0.025 0.018 0.007 0.046

o 1.000 2.134 0.100 6.999

2.1. Impact of unknown starting times

There are two impacts of not knowing the starting times. First, the start time distri-
bution parameters are estimated from the left- and right-censored start times. Second, the
elapsed times are unknown because of the unknown start times; that is, the covariate in the
nonlinear regression model is not known exactly and is referred to as an error-in-variables
case. Table 3 shows the impact of using the true error-in-variables (E-I-V) distribution
(Lognormal(3,0.1?)) as well as that of using the actual elapsed times (see Table 1 for the
actual elapsed times). We see that using the true EIV distribution provides no improvement,
at least for this one data set, but the nonlinear regression model parameters are substan-
tially better estimated (with reduced uncertainty) when the actual elapsed times are used
as compared with Table 2.
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Table 3: Posterior Summaries of Model Parameters (50, 2.5, 97.5 percentiles)
for Some Hypothetical Situations

Parameter True 50% 2.5% 97.5%
use true E-I-V distribution
Go 1000.000 1121.012 509.559 2652.956
b1 0.025 0.019 0.008 0.049
o 1.000 2.132 0.101 7.023
use actual elapsed times
Bo 1000.000 1012.378 851.154 1268.457
Ioh 0.025 0.025 0.019 0.030
o 1.000 1.016 0.662 1.821

3. Prediction

Suppose that we want to predict a percentile of the Y distribution, say the 90th per-
centile, at a given time, say 30 years. Suppose that the population size is 1,000. We can
draw from the start time distribution to obtain start times and predict Y using the elapsed
times (30 minus start times) and the nonlinear regression model, i.e. draw 1,000 Y’s from
the Y distribution. The 90th percentile is the 900th ordered prediction. We do this 10,000
times and take the 95th percentile of the 10,000 90th percentiles to obtain 165.43; for brevity
we refer to this as the 90th percentile of the population Y distribution or even shorter as
the 90th percentile. For times of 45 and 60 years, the 90th percentiles of the population
Y distribution are 426.42 and 605.78, respectively. Based on the proposed analysis, we can
obtain a posterior predictive distribution and a 0.95 probability upper bound on the the
90th percentile of the population Y distribution. Table 4 shows the Table 1 data posterior
90th percentile at times 30, 45, and 60 years. The posterior 90th percentiles are somewhat
higher that the true 90th percentiles especially at times past the data, i.e., 45 and 60 years.

Table 4: True and Table 1 Data 90th Percentiles at 30, 45, and 60 Years

Time True Table 1 Data
(year) Percentile Percentile
30 165.43 165.56
45 426.42 440.09
60 605.78 669.36

4. Impact of Taking More Samples

We can also consider the impact of taking more samples per year and taking samples
for more than 30 years, e.g., 60 years, using the proposed analysis. Table 5 shows the results
when 60 total samples are taken. We use the notation 1@1(1)30 for the Table 1 sampling
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scheme, i.e., 1 sample each year from years 1 to 30. Table 5 shows results for 2@1(1)30,
1@1(1)60, and 2@2(2)60; 2@2(2)60 denotes 2 samples in every even year from year 2 to year
60. Note that the first two schemes add to the Table 1 data. The 2@2(2)60 scheme uses
data from the even years of the 2@1(1)30 scheme. Table 6 shows the results when 120 total
samples are taken; 60 additional samples are added to the data analyzed that produced the
Table 5 results. Table 6 shows results for 4@1(1)30, 2@1(1)60, and 4@2(2)60.

Increasing the sample from 1 to 2 to 4 per year (1@1(1)30, 2@1(1)30, 4@1(1)30) helps
to estimate o better; estimation for 5y seems somewhat worse but recall these results are
for one realization of the data. Spreading out the inspections across more years helps much
more, e.g., (1@1(1)60, 2@2(2)60) and (2@1(1)60, 4@2(2)60). Inspections on even years and
more samples at each inspection helps more than inspecting every year with less samples at
each inspection. It is noteworthy that none of sampling schemes had an impact on estimating
o so that the posterior distributions are similar to the prior distribution.

Table 5: Posterior Summaries of Model Parameters (50, 2.5, 97.5 percentiles)
Using More Samples and More Years (60 total samples)

Parameter True 50% 2.5% 97.5%
2Q@1(1)30
7 3.000 3.013 2.938 3.077
o 0.100 0.113 0.079 0.182
Bo 1000.000 1242.127 574.067 2762.086
b1 0.025 0.020 0.008 0.049
o 1.000 2.163 0.103 7.061
1@1(1)60
W 3.000 2.998 2.907 3.079
o 0.100 0.125 0.099 0.165
By 1000.000 1058.932 859.737 1523.670
Ioht 0.025 0.023 0.013 0.033
o 1.000 2.154 0.098 7.036
2@2(2)60)
7 3.000 2.996 2.915 3.069
o 0.100 0.108 0.086 0.141
Bo 1000.000 1117.917 916.186 1561.584
b1 0.025 0.021 0.013 0.029
oy 1.000 2.168 0.096 7.199

Like Table 4 for the 1@1(1)30 sampling scheme, Tables 7 and 8 show the posterior
90th percentiles at 30, 45, and 60 years for the various sampling schemes with 60 and 120
total samples, respectively. Overall, the posterior 90th percentiles are quite close to the
true 90th percentiles. The results for 2@1(1)30 and 4@1(1)30) are worse caused by the
worse estimation for [, as noted previously. For some of the schemes, the posterior 90th
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Table 6: Posterior Summaries of Model Parameters (50, 2.5, 97.5 percentiles)
Using More Samples and More Years (120 total samples)

Parameter True 50% 2.5% 97.5%
1@1(1)30
W 3.000 3.026 2.983 3.065
o 0.100 0.091 0.072 0.123
Bo 1000.000 1237.483 580.953 2966.605
b1 0.025 0.021 0.008 0.053
o 1.000 2.069 0.095 6.726
2Q1(1)60
7 3.000 3.004 2.943 3.061
o 0.100 0.121 0.103 0.146
By 1000.000  986.211 866.839 1171.483
Ioht 0.025 0.025 0.019 0.032
o 1.000 2.214 0.102 7.207
1G2(2)60
7 3.000 3.019 2.964 3.071
o 0.100 0.103 0.088 0.124
Bo 1000.000  978.467 881.563 1144.787
b1 0.025 0.026 0.020 0.032
o 1.000 2.085 0.097 6.875

percentiles are slightly less the true 90th percentiles; again these results are for one realization
of the data.

Table 7: 60 Sample Data 90th Percentiles at 30, 45, and 60 Years

Time True 1@1(1)30 2@1(1)30 1@1(1)60 2@2(2)60
(year) Percentile Percentile Percentile Percentile Percentile
30 165.43 165.56 179.38 163.44 166.44
45 426.42 440.09 502.20 424.13 421.92
60 605.78 669.36 767.29 611.60 611.29

5. Discussion

In this article, we considered a nonlinear regression model with elapsed time as a
covariate for a quantity Y. The elapsed time is the difference between the inspection time and
the time when a mechanism started. At inspection, we only know that the mechanism has
started or not so that the elapsed time is unknown, the error-in-variables case. Our proposed
method analyzes the right- and left-censored elapsed time data to estimate the elapsed time
distribution. This analysis is achieved simultaneously with analyzing the error-in-variables
(E-I-V) nonlinear regression model for the Y data, where the elapsed time distribution is the
E-I-V distribution. Besides the original 30 sample scheme, we showed results for various 60
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Table 8: 120 Sample Data 90th Percentiles at 30, 45, and 60 Years

Time True 4@1(1)30 2@1(1)60 4@2(2)60
(year) Percentile Percentile Percentile Percentile
30 165.43 187.22 161.56 167.15
45 426.42 520.54 422.68 430.83
60 605.78 803.17 603.25 610.77

sample and 120 schemes. Note that the results are based on one data set for each of these
schemes where the smaller schemes data or parts of the smaller schemes data are included in
the larger schemes data. Generally, the results improve for more samples per year over more
years. A more extensive study using more data sets, say 500 or more, would solidify the
results but would require access to a large computer cluster. Future research might consider
an optimal sampling scheme that specifies how may samples and what inspection times to
takes the samples. It would be natural to use a Bayesian design criterion because of the
proposed Bayesian analysis method.
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APPENDIX

This appendix presents JAGS code for the proposed analysis. In the code:

o startStar is 1 if right-censored and 0 if left-censored, i.e., the mechanism has not started
or has started, respectively

 right-censored data are ordered first

e N1=19, number of right-censored data for the Table 1 data
o N2=11, number of left-censored data

e inspect is the time of the inspection (sampling)
o start is the unobserved start time

o et is the unobserved elapsed time

e resp is the response or quantity Y

e ra is [

e rbis 3

o sigmaResp is oy

e muis u

e sigmais o

model

{

for(iin 1 : N1 ) {

startStar[i] ~ dinterval(start[i],inspect[i])

start[i] ~ dlnorm(mu,tau) # second parameter is a precision, \textit{i.e.}, reciprocal varianc
}

for( i in (N1+1) : (N1+N2) ) {

startStar[i] ~ dinterval(start[i],inspect[i])

start[i] ~ dlnorm(mu,tau)

}

for( i in (N1+1) : (N1+N2) ) {

resp[i] ~ dnorm(muRespl[i],tauResp) # second parameter is a precision
muResp[i]<- rax(l-exp(-rb*et[i]))

et[il<-inspect[i]-start[i]

}

#priors

ra~dlnorm(7,(1/(.5%,5)))
rb~dlnorm(-4,1)

tauResp <- 1/(sigmaResp*sigmaResp)
sigmaResp ~ dnorm(0,1.0E-1)I(0,)
mu ~ dnorm(0.0,1.0E-1)I(0,)

tau <- 1/(sigma*sigma)

sigma ~ dnorm(0,1.0E-1)I(0,)

}



