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Abstract 

 
A method of identifying subset of outliers in presence of masking has been developed 

for designed experiments. An influence matrix comprising of Cook-statistics in its 
diagonal and product of two Cook-statistics in its off-diagonal positions has been defined. 
On the basis of eigenvectors corresponding to large eigenvalues of this matrix, the 
influential subsets can be identified. The proposed procedure has been illustrated with an 
example.   
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1 Introduction 

From the very beginning when the people started exploiting and employing the 
information in the collected data as a tool to understand the world he lives in, there has 
been concern over the unrepresentative or outlying observation (or subset of 
observations) that appears to be inconsistent with the remaining observations in the data 
set. Occurrence of outlier(s) is (are) very common in all the fields where collection data is 
involved. Generally outlier(s) arises (arise) from heavy tailed distributions or is (are) 
simply bad data point(s) due to error. When outlier(s) is (are) present in the data, the 
conclusion drawn from the experiment may be erroneous.  Therefore, it is important to 
detect and handle the outlier(s) efficiently. Several statistics for detection of a single 
outlier or an isolated influential point in linear regression analysis are now available in 
the literature. However, these statistics are developed under the assumption that the data 
are generated from a kind of linear model where the design matrix is of full rank. 
However, in case of design of experiments, the design matrix is not of full rank and the  
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interest of the experimenter is in estimation of some linear functions of parameters, say 
treatment effects. Estimation of these functions may be severely affected in the presence 
of outliers.  One may, therefore, be interested to study the effect of outliers on the 
estimation of this subset of parameters. On this line of interest, Bhar and Gupta (2001) 
developed some statistics for detecting outliers in designed experiments. They modified 
Cook statistic for its application to design of experiments, which is a follow up work of 
Cook (1977).   
 

The detection of a subset of outliers, i.e., multiple outliers in comparison to detection 
of a single outlier is more difficult, owing to masking and swamping problems. Masking 
occurs when one outlier is not detected because of the presence of others and swamping 
occurs when a non-outlier is wrongly identified owing to the effect of some hidden 
outliers. Several procedures have been proposed for dealing with multiple outliers in 
linear regression models. Marasinghe (1985) and Kianifard and Swallow (1990) have 
suggested a sequential testing strategy to identify a set of k points, where the maximum 
number of outliers in the sample, k, is fixed in advance. Atkinson (1986), Rousseeuw and 
Leroy (1987) and Rousseeuw and van Zomeren (1990) have suggested the use of robust 
estimates with high breakdown point for the regression parameters to overcome the 
masking problem. These estimates are computed by using a resampling scheme. Hawkins  
(1980) has proposed a diagnostic procedure which is also based on a resampling scheme. 
Gray and Ling (1984) proposed the use of cluster analysis for identification of multiple 
outliers in presence of masking. Hocking (1984) has suggested that the eigenstructure of 
the matrix ):():( yXyX  should be computed, where y is the vector of responses and X is 
the corresponding design matrix. Pena and Yohai (1995) proposed a method to identify 
influential subsets by looking at the eigenvalues of an ‘influence matrix’. This matrix is 
defined as the uncentred covariance of a set of vectors which represent the effect on the 
fit of the deletion of each data point. This matrix is normalized to have the univariate 
Cook (1979) statistics on the diagonal.  
 

Pena and Yohai (1995) used difference between predicted values of observations 
obtained from full data and after deleting the suspected outlier to form the influence 
matrix. In case of designed experiment, we are generally interested in the estimation of 
some subset of parameters, not the whole set of parameters.  Bhar and Gupta (2001) 
developed Cook-statistic for detecting outliers in designed experiments when our interest 
is in estimation of some set of treatment contrasts. In the present investigation, we 
developed a method to identify outliers in designed experiments in presence of masking. 
Following Pena and Yohai (1995), we also formed an influence matrix. But the elements 
of this matrix are derived from Cook-statistics, since this statistics is useful in identifying 
outliers in designed experiments when interest is in the estimation of a set of treatment 
contrasts. In the next section this method is developed and it is illustrated through an 
example in Section 3.    
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2 Development of influence matrix 
 
Consider the  linear regression  model   

 εXθy  ; 0ε )(E , n
2)(D Iε  , 02                      (2.1) 

where y is an n×1 vector of observations, X is n×p  design matrix for explanatory 
variables with rank p. According to Pena and Yohai (1995), )(ˆˆ ii yyt  summarizes the 

effect on the fit of deleting the ith observation, where ŷ and )(ˆ iy are the estimated values 

of y with full data and after deleting the ith data point respectively. They defined 
       TTN  c , 
where ),...,,( 21 ntttT  and c is a constant. 

 
According to them one of the most important types of masking situations occurs 

when several observations have similar effects on the least squares fit. Two observations i 
and j have similar effects on the set of treatment contrasts when ji tt  for some 

scalar 0 and have opposite effects when 0 . 
 

Let 
2/12/1

jjii

ij
ij nn

n
r  . If two outlying observations i and j are masked, then it is expected 

that 1ijr or 1 according to they have similar effects or opposite effects. Final 

determination is done after assessing the effects on deletion of these observations. Hence 
Pena and Yohai (1995) proposed a procedure of detecting outliers in presence of masking 
on the basis of the coordinates of eigenvectors corresponding to large eigenvalues of N. 
 

As mentioned earlier, in case of design of experiments, our interest is the estimation 
of some treatment contrasts. Estimation of these contrasts may be severely affected by 
masked outliers, if any. The procedure based on it may not be able to reveal the fact 

whether masked outliers has affected the estimation of treatment contrasts or not, because 

it  is based on whole design matrix X, therefore, the effect of one outlier may be 

compensated by the effect of another outlier when we estimate some subset of 
parameters. We, therefore, develop similar procedure keeping in mind that our main 
objective is the estimation of some treatment contrasts. 
 

We now consider the same linear model (2.1) for an experimental design d (say). The 

rank of the design matrix X is now )( pm  . Let  )( 21 θθθ , where 1θ is a v-
component vector containing all parameters of interest to the experimenter (say treatment  
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effects) and 2θ  is (p-v) component vector containing the set of nuisance parameters in 
the model which are not of much interest to the experimenter.   

Thus  ε
θ

θ
XXy 










2

1
21 )( ,                         (2.2) 

where X is partitioned in conformity with the parameters, 1X is an n×v matrix of rank v 

and 2X is an n× (pv) matrix such that ][ 21 XXX  . The normal equations obtained 
by least squares method for estimating the parameters are given by  
 XyXθX   

From these equations on eliminating 2θ , we obtain the reduced normal equations 

involving only 1θ as  
11 1 θθ QθC  ,                      (2.3) 

where     1 1 1 2 2 2 2 11
( )   θC X X X X X X X X  = 11BXX , 

    1 1 2 2 2 21
( )   θQ X y X X X X X y  = ByX1 ,  

       2 2 2 2( )n
  B I X X X X   ,                      (2.4) 

and A  is the Moore-Penrose inverse of A. The matrix B is symmetric and idempotent. 
 

We assume that the design d considered here is connected, i.e., all (v1) 
orthonomalized contrasts for the parameters 1θ are estimable or equivalently Rank (

1θ
C ) 

= v1, and let the set of all (v1) orthonormalized contrasts for the parameters 1θ be 

given by 1Pθ . The (v1)×v matrix P is such that 1 vIPP , vv v
JIPP

1
  and 

nI denotes an identity matrix of order n and nJ denotes an n×n  matrix whose all 

elements are ones. 
 

Let k observations be suspected of being outliers in the sense that their expected 
values are shifted from the expected values of other observations.  Assuming that the 
design d remains connected after deletion of any k observations, Bhar and Gupta (2001) 
have shown that the difference between the estimators of contrasts of 1Pθ  and )(1 kPθ  can 

be expressed as  

  1 1( )
ˆ ˆ( )kP θ θ = VyUVUUVUXPC   1

1 )(
1

,               (2.5) 

where 1θ̂P  is the least squares estimator of 1Pθ , 1θ̂ is any solution of the normal 

equations (2.3), )(1
ˆ

kθP  is the least squares estimator of )(1 kPθ obtained after deleting the  
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suspected k outlying observations, )( 21 ku,...,u,uU  , )0,0,...),(1,...,0,0( th
i iu  and 

( )n
  V I X X X X .       

 
Thus the effect of deleting a single data point (say ith ) on the set of treatment 

contrasts can be obtained from (2.5) as 

)ˆˆ( )(11 ii θθPf  = VyuVuuBuXPC iiii   1
1 )(

1
.                (2.6) 

The (v1) component vector if summarizes the effect on the set of treatment contrasts of 

deleting the observation i. The individual deletion statistics identify influential points as 
those with large values of if  in some suitable norm. For instance, Cook statistic for a set 

of treatment contrasts for the ith observation is given by iiv
fPPCf θ )(

ˆ)1(

1
12


 
. However, 

when masking is present, the if  values corresponding to outliers tend to be small, and 

therefore they are not detected. Now applying the same logic of Pena and Yohai (1995) 
for detecting possible sets of influential observations having similar or opposite effects on 
the fit, we look at the uncentred covariance matrix of if . Let us call F the (v1)×n matrix 

)...( 1 nffF   whose columns are the vectors if . Then we define the n×n influence 

matrix M as  

 FPPCFM θ )(
ˆ)1(

1
12





v

                     (2.7) 

After doing some algebra it can easily be shown that the ijth element of M is  

  
2ˆ(1 )(1 )( 1)

i j ij
ij

ii jj

r r l
m

h h v 


  
,                               (2.8) 

where tr is the tth residual, ijh is the ijth element of the matrix ( ) H X X X X  and ijl  is 

the ijth element of the matrix 1 11
 BX C X B . 

  
Let ije be the uncentred correlation coefficient between if and jf . This actually 

measures the effects on the least square fit of the ith and jth points. Then 

 
2/12/1

jjii

ij
ij mm

m
e  .                                                                   (2.9) 

Following Pena and Yohai(1995), if there are groups of outliers, then  ije would be 

near one, if the observations i and j belong to some group. This correlation coefficient 
would be positive if the two observations have positive effects and would be negative if 
they have opposite effects.  In other situations this correlation coefficient would be near  



152                                                 BHAR L. ET AL.                                             [Vol. 11, Nos. 1&2 
  

zero. In the ideal situation, i.e., when these correlation coefficients are either exactly one 
or zero, the eigenvectors of M would be orthogonal and the elements of these vector 

would be either 1/ 2
ijm , 1/ 2

ijm or 0, depending upon whether two observations belong to 

the same group or not and whether they have similar or opposite effects. The eigenvalues 
can then be calculated as  





hi

iih m , 

where h denotes a group in which outliers are present and summation is taken over all 
values belonging to this group. In the extreme case the situation is like this as described 
above. For real data sets, this may not happen exactly. However, the masking effect is 
typically due to the presence in the sample of blocks of influential observations having 
similar or opposite effects. These blocks are likely to produce a matrix M with a structure 
close to that described above. Two influential observations i and j producing similar 
effects should have ije close to 1, and close to 1 when they have opposite effects. 

Influential observations with non-correlated effects have ije close to 0. The same will 

happen with non-influential observations. Therefore, the eigenvectors will have 
approximately the structure described above. This suggests the following procedure to 
identify influential sets: 

(a) Find the eigenvectors corresponding to the non-null eigenvalues of the 
matrix M. 

(b) Consider the eigenvectors corresponding to large eigenvalues, and define 
two sets according to the components with large positive and negative 
values of the eigenvectors respectively. 

  
Procedure for detecting influential sets 
To identify influential sets, we need to look at the eigenvectors corresponding to the large 
non-zero eigenvalues of the influence matrix M. Different influential subsets may have 
different eigenvectors.  To find influential subsets we look at all eigenvalues 
corresponding to non-zero eigenvalues of M. In each eigenvector we search for the sets 
of coordinates with relatively large value and same sign.  To compare the relative value 
of an element, we adopt the strategy adopted by Pena and Yohai (1995).  Pena and Yohai 
(1995) suggested in case of regression analysis to look at the ratio between the 
components in decreasing order, searching for a clear cut-off point, to form a set of 
candidate outliers, and then to test the points in this set to identify the outliers.   
 

A  set of candidate outliers is obtained by analyzing the eigenvectors corresponding 
to the non-null eigenvalues of the influence matrix M, and by searching in each 
eigenvector for a set of co-ordinates with relatively large value and the same sign. The 
search is done in the following way. 



2013]                                 OUTLIERS IN PRESENCE OF MASKING                                     153 
  

 
(a) Suppose corresponding to a large eigenvalue, v  denotes the eigenvector. 

Order the co-ordinates of the eigenvector v , obtaining (1) (2) ( )... nv v v   .  

(b) Compute the ratios ( )

( 1)

j
j

j

v
a

v 

 for j = n, . . .,  1cn  and ( )

( 1)

j
j

j

v
b

v 

 for j = 1, . . 

. , 2c . The constants 1c and 2c are smaller than n/2 and are determined on the 

basis of the coordinates.  

(c) Look for the first 0j  such that ja  and first 0i  such that jb  

(d) If 0i >1 and/or 0j >1, consider the set ).,..,,( )1()1()(0 0  innn iiij and/or 

).,..,,( )1()2()1(0 0 
 jiiii as candidate outlier.   

In regression analysis choice of 1c and 2c is generally taken on the basis of break 
down point. However, in designed experiments, since, experiments are controlled there 
could be very less number of outliers. Therefore, choice of 1c and 2c could be made up to 
4 or 5 depending on the values of coordinates. Choice of   is again arbitrary. In case of 
regression analysis Pena and Yohai (1995) suggested this value to be 2.1 through a 
simulation study. In case of designed experiments we took this value in the neighborhood 
of 1.5.  
 

For checking the outlyingness, we remove the candidate outliers from the data and 
reanalyze the data to see whether any drastic change has occurred in the inference.  Since 
we are only interested in the eigenvectors corresponding to the non-null eigenvalues, the 
direct computation of the eigenvalues and eigenvectors of M can be obtained by using 
spectral decomposition of the matrix M. However we may directly calculate the 
eigenvalues and eigenvectors using SAS/IML software. 
 
3 Illustration 
 
To illustrate the procedure, we applied this method to experimental data obtained from 
Agricultural Field Experiments Information System (AFIES), Indian Agricultural 
Statistics Research Institute, New Delhi.  It is observed that in some experiments some 
observations are not influential individually, but jointly with some other observations, 
they are influential. These observations are actually masked by some other outlying 
observations and, therefore, could not be detected when diagnostic test procedure for 
detecting a single outlier is applied. To make the exposition clear consider the following 
example.  
 
 



154                                                 BHAR L. ET AL.                                             [Vol. 11, Nos. 1&2 
  

An experiment with 10 treatments was conducted  in a randomized complete block 
(RCB) design with 4 replications at Sugarcane Research Institute, Shahjahanapur, Uttar 
Pradesh, India to find out the suitable herbicide to control weeds in Sugarcane (net plot 
size: 8.00m × 5.40m.). The treatment details are 
  

T0 = Control weeded check 
T1 = Local conventional method 
T2 = Trash mulching 
T3 = 1.0 kg active ingredient (a.i.)/hectare of 2,4-D sodium salt and 0.50 kg a.i./ 

hectare of gramoxone at 3 weeks  of planting followed by application of the 
same at 6-8 weeks of planting. 

T4 = 2.0 kg a.i./ hectare of Atrazine as Pre-emergence spray 
T5 = 1.00 kg a.i./ hectare of 2,4-D Sodium Salt at 8-10 weeks after planting 
T6 = 2.0 kg a.i./ hectare of 2,4-D (Amine) as Pre-emergence spray followed by 

spray of the same at 8-10 weeks after planting. 
T7 = 2.0 kg a.i./ hectare of Atrazine as Pre-emergence spray followed by spray of 

Glyphosate at 1.0 kg a.i./ha at 6-8 weeks after planting. 
T8 = 1.00 kg a.i./ hectare of Arochlor and 1.00 kg a.i./ha of Atrazine as pre-

emergence spray 
T9 = 2.00 kg a.i./ hectare of Arochlor as pre-emergence spray 

 
The table below shows the data on yield per plot in quintal(q) for different treatments: 

 
Table 1: Yield of sugar cane in q/plot 

Replication Treatment 
1 2 3 4 5 6 7 8 9 10 

1 2.52 2.82 2.42 2.67 2.50 3.01 2.65 2.62 2.18 2.57 
2 2.77 2.77 2.52 3.69 3.21 3.05 2.64 2.53 2.47 2.82 
3 2.32 2.38 2.44 2.30 1.90 2.46 2.35 2.47 2.15 2.26 
4 2.31 2.14 2.38 2.13 2.51 2.79 2.21 2.52 2.66 2.35 

 
Analysis of this data is presented in Table 2. The treatment effects are not 

significantly different at 5% level of significance. Cook-statistic (Bhar and Gupta, 2001) 
for each observation is computed and values are given in Table 3. It is observed from 
Table 3 that the observation number 14 stands out. We tested it with F value (Probability 
value of 0.3823402 with 9 and 27 degrees of freedom is 0.066)  and found that this 
observation is statistically influential. No other observation is found to be influential.  
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This observation is deleted and analysis is carried out again. The result is presented in 
Table 4. From the table, it is observed that not much change has occurred in the 
inference. Though the significance level of treatment effects has been lowered, yet it 
remains not significant at 5% level of significance. Thus the observation number 14, in 
spite of being an outlier, does not have much influence in the analysis. However, there 
might be groups of outliers that cannot be detected by using single outlier detection 
technique of Cook-statistic. 
 

We then applied our method to identify the group of observations that are influential. 
The largest positive eigenvalue of M is 0.03345, the other eigenvalues are very small 
(<<0.005). Since the eigenvalue of M is likely to be large if there are some groups of 
influential observations, we ignore the other eigenvalues.  The coefficients of the 
eigenvector of this eigenvalue are given in Table 5. 
 

From Table 5 we find that the first two eigenvectors give high positive weights to 
observations in the set {14, 39}, especially to observation number 14. The coefficients of 
this eigenvector are arranged in descending order in Table 5. This Table also  summarizes 
the results when we  apply the procedure for detecting outliers. We have chosen 

1021  cc and   =1.5. The first ja value is 0.50361 corresponding to observation 

number 14 and the next highest value of ja is 0.27874 corresponding to observation 

number 39. Thus the first set of observations for which ja exceeds 1.50 {14, 39} as 

relevant candidate outliers. The other values of ja  and jb are smaller than 1.5. Thus these 

two observations are likely to be influential. The data was reanalyzed after deleting these 
two observations. The result is presented in Table 6. The dramatic effect to note here is 
that the level of significance of treatment effects has been reduced to 0.0519. Thus 
treatment effects are now significant at almost 5% level of significance.  Thus these two 
observations are influential. The interesting point to note here is that though the 
observation number 14 was detected as outlier when we applied Cook-statistic for 
detecting a single outlier, yet observation number 39 was not. Its effect was masked by 
the observation number 14.  Removal of any other pair of observations does not have any 
effect on the analysis.  
 

Another point to note that the choice of   is arbitrary. Taking this value larger means 
that we more stringent in identifying candidate outliers. If we lower this value, some 
more observations are likely to be candidates. However, their influence should be 
assessed after deleting these observations. For example, if we choose  =1.2, then the set 
{21, 25, 34} is likely to be influential on the basis of value of jb . However, when we test 

for their influence, we find that removal of these three points or two at a time does not 
alter the main results of the analysis. 
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Table 2: ANOVA (With original data) 

Source Degrees of 
freedom 

Sum of 
Squares 

Mean 
square 

F 
Value 

Significan
ce Level 

Replication 3 1.731     0.577    8.64    0.0003 
Treatment   9 0.637     0.070    1.06    0.4206 
Error 27 1.802     0.066    
Total 39 4.171     

 

Table 3: Cook-statistics 

Serial 
No. 

Replication Treatment Cook-
Statistics 

Serial 
No. 

Replication Treatment Cook-
Statistics 

1 1 1 0.000312  21 3 1 0.004440  
2 1 2 0.044626  22 3 2 0.0060796 
3 1 3 0.0051954 23 3 3 0.0448183 
4 1 4 0.0062219 24 3 4 0.022109 
5 1 5 0.0065846 25 3 5 0.1292313 
6 1 6 0.0124363 26 3 6 0.0147602 
7 1 7 0.0134679 27 3 7 0.0120352 
8 1 8 0.0005345 28 3 8 0.0233389 
9 1 9 0.0491404 29 3 9 0.0002813 

10 1 10 0.0000906 30 3 10 0.0000347 
11 2 1 0.0003455 31 4 1 0.0009225 
12 2 2 0.003801 32 4 2 0.0517879 
13 2 3 0.043674 33 4 3 0.0048107 
14 2 4 0.3823402 34 4 4 0.1526988 
15 2 5 0.1122303 35 4 5 0.0111566 
16 2 6 0.0063657 36 4 6 0.0080566 
17 2 7 0.0145407 37 4 7 0.0110611 
18 2 8 0.0818239 38 4 8 0.0121348 
19 2 9 0.034714 39 4 9 0.1530533 
20 2 10 0.0000742 40 4 10 0.0001498 
 

Table 4: ANOVA (After deleting observation No. 14) 

Source Degrees of 
freedom 

Sum of 
Squares 

Mean 
square 

F Value Significanc
e Level 

Replication 3 1.106     0.368   8.62    0.0004 
Treatment   9 0.537     0.059   1.39    0.2411 
Error 26 1.113     0.042   
Total 38 2.806     
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Table 5: Eigenvalue Coefficients 

Observati
on N0. 

Coefficients of 
eigenvalue 

Observati
on N0. 

Ordered 
Coefficients 
of eigenvalue 

ja  jb  

1 0.106274 14 0.50361 1.806736  

2 0.136534 39 0.27874 1.615097  

3 -0.04642 15 0.172584 0.945285  

4 -0.06424 31 0.182574 1.337201  

5 -0.05634 2 0.136534 1.001373  

6 0.07003 23 0.136347 1.220389  

7 0.073182 11 0.111724 1.051282  

8 0.015021 1 0.106274 1.070714  

9 -0.15228 28 0.099256 1.353514  

10 0.005872 35 0.073332 1.00205  

11 0.111724 7 0.073182   

12 -0.03985 38 0.07157   

13 -0.1346 6 0.07003   

14 0.50361 27 0.06918   

15 0.172584 36 0.056366   

16 -0.0501 22 0.050395   

17 -0.07604 33 0.044671   

18 -0.18585 8 0.015021   

19 -0.12799 29 0.011522   

20 0.005313 10 0.005872   

21 -0.40057 20 0.005313   

22 0.050395 30 -0.00364   

23 0.136347 40 -0.00755   

24 -0.1211 12 -0.03985   
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Observati
on N0. 

Coefficients of 
eigenvalue 

Observati
on N0. 

Ordered 
Coefficients 
of eigenvalue 

ja  jb  

25 -0.24958 3 -0.04642   

26 -0.07629 16 -0.0501   

27 0.06918 5 -0.05634   

28 0.099256 4 -0.06424   

29 0.011522 37 -0.06632   

30 -0.00364 17 -0.07604   

31 0.182574 26 -0.07629  1.146545

32 -0.14708 24 -0.1211  1.003327

33 0.044671 19 -0.12799  1.587341

34 -0.31826 13 -0.1346  1.056836

35 0.073332 32 -0.14708  1.051638

36 0.056366 9 -0.15228  1.092775

37 -0.06632 18 -0.18585  1.035314

38 0.07157 25 -0.24958  1.220455

39 0.27874 34 -0.31826  1.34294 

40 -0.00755 21 -0.40057  1.275198

 
Table 6: ANOVA (With 2 data points deleted) 

Source Degrees of 
freedom 

Sum of 
Squares 

Mean 
sum of 
squares 

F 
Value 

Significan
ce Level 

Replication 3 1.207  0.402  11.58 <.0001 
Treatment   9 0.706  0.078  2.26 0.0519 
Error 25 0.868 0.034    

Total 37 2.782     
 

Conclusions drawn from an experiment may be misleading due to presence of some 
outliers as we have demonstrated through this example. Therefore, detection of outliers in  
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the experimental data is very important. Detection of outliers is very difficult if masking 
is present in the data. Several methods have been developed for dealing with outliers in 
presence of masking in linear regression analysis. However, no work in designed 
experiments seems to be available. We have attempted to apply one such method to 
designed experiments. But there is a lot of scope to develop other methods as well.  In the 
present study, we assumed that masking occurs due to proportional effects of two 
outliers.  These proportional effects may be in positive direction or in negative direction. 
However, there may be many other reasons, due to which outliers may occur. These need 
to be investigated thoroughly.   
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