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Abstract

Deterministic computer simulators are constructed from physics-, biology-, or other subject

matter mathematical models. One method of identifying the influential variables among

inputs to an expensive simulator is through the calculation of “elementary effects” (EEs)

which measure the change in the simulator output as the value of an input changes. This

paper proposes an extension of the one-at-a-time (OAT) designs introduced by Morris (1991)

and modified by Campolongo, Cariboni, and Saltelli (2007) and Pujol (2009) for estimating

elementary effects in rectangular input regions. The proposed method is specifically designed

to be applied in non-rectangular input regions. New tools, called the δ×EE and x×EE

plots, are introduced. These plots display relationships of the EEs to gradient step lengths

and input values, and provide information about the output behavior. A new criterion for

selecting space-filling designs is explored.

Key words: Elementary Effects; Computer experiments; Deterministic computer simulators;

Sensitivity indices; Variable selection.

1 Introduction

Global sensitivity indices based on the functional ANOVA decomposition are well-known

measures of the influence of input variables on a computer simulator (or other) output when the
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input space is hyper-rectangular (see, for example, Efron and Stein 1981; Sobol´ 1993; Saltelli,

Chan, and Scott 2000). However, although theoretically these methods can be extended to

non-rectangular settings, the resulting indices are not easily interpretable. Also, as pointed

out by Campolongo et al. (2007), calculation of these variance-based measures of sensitivity

requires a large number of simulator runs, especially in high-dimensional applications; thus,

such methods of measuring sensitivity cannot be used for simulators that take several hours

or more to produce a single output. Finally, methods that estimate global sensitivity indices

without huge numbers of sumlator runs depend on the accuracy of an interpolating process,

ordinarily a Gaussian process. In contrast, Morris (1991) proposed a method for measuring

sensitivity of the output that can be used with small numbers of function evaluations and does

not rely on the selection of an interpolating process. He suggested measuring the sensitivity

of the output that is attributable to each input by estimating elementary effects (EEs), and

he developed a class of one-at-a-time (OAT) designs for this estimation. The purpose of

this paper is to propose a methodology for estimating and visualizing EEs in non-rectangular

regions and to explore the desirability of constructing space-filling OAT designs.

Let y(x) denote the deterministic computer simulator output corresponding to a vector

of d inputs x = (x1, x2, . . . , xd) and let X denote the input domain of x. Morris (1991)

defined elementary effects through a derivative-motivated, difference quotient. He set the

ithelementary effect of y(·) at x ∈ X to be

di(x) = di(x, δi) =
y(x+ δi ei)− y(x)

δi
, (1)

where ei = (0, . . . , 0, 1, 0, . . . , 0) is the ith unit vector and δi ∈ IR is called the (gradient) step

length of the calculated effect i. Here δi must be selected so that x + δiei is also in X . In

principle, di(x) can depend on both x and δi but we follow the usual notational convention of

suppressing the dependence on δi. By varying the location x and value of δi, one can determine

elementary effects di(x) for input i at different starting points x and different gradient step

lengths, δi.

If di(x) were rapidly computable for every input i and every vector x, one could determine

the distribution of the elementary effects corresponding to a given probability distribution of

the inputs. Knowledge of the induced distribution of each di(·) would provide information

about the impact of each input xi on y(x). However, if the di(·) are expensive to compute

due to a slow running-simulator, Morris (1991) suggested more simply using estimates, d̄i, Si,

of the mean and standard deviation of the EEs to infer the impact of xi on y(x).

For simulators with hyper-rectangular input regions, which we take to be [0, 1]d for simplic-

ity, Morris (1991) constructed OAT designs (of input runs) at which to evaluate y(x) in order
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to estimate the elementary effects for each input. For each input, his design and estimation

procedure use a fixed gridding of the input region and a fixed step length δi > 0 for input i

which is taken to be a multiple of the grid spacing. Then r starting vectors x(k), k = 1, . . . , r,

are randomly selected from the grid in such a way that a complete tour within [0, 1]d is pos-

sible beginning from each x(k). A complete tour starting at vector x is a sequence of d + 1

input vectors determined by a sequence of random permutations π = (π(1), . . . , π(d)) of the

input labels (1, . . . , d) and d randomly selected directions, (u1, . . . , ud) ∈ {−1, 1}d. Then for

j = 1, . . . , d, the (j + 1)th input vector in the tours is obtained from the jth by shifting the

component xπ(j) ∈ [0, 1] to xπ(j) + ujδj in such a way that 0 ≤ xπ(j) + ujδj ≤ 1 and leaving all

other input components fixed.

As an example with d = 4 inputs and a fixed δ1 = δ2 = δ3 = δ4 = 0.2, the five rows of
0.4 0.6 0.6 0.0
0.4 0.4 0.6 0.0
0.2 0.4 0.6 0.0
0.2 0.4 0.6 0.2
0.2 0.4 0.4 0.2

 . (2)

form a complete tour that begins at starting input vector x = (0.4, 0.6, 0.6, 0.0) and has

successive row shifts of one component from the preceding row by an amount ±0.2 governed

by the permutation π = (2, 1, 4, 3) with directions (u1, . . . , u4)=(–1, –1, +1, –1).

From a selection of r starting input vectors x(k), k = 1, . . . , r, an OAT design matrix

contains a total of r× (d+1) rows, each consecutive set of d+1 rows forming a complete tour.

Thus, calculation can be made of r elementary effects for each input from different starting

points. For example, suppose that y(x) = y(x1, x2, x3, x4) is the output from the simulator at

input x. Computing y(x) at the first and second rows of the tour (2) produces the elementary

effect d2(0.4, 0.6, 0.6, 0.0) with a signed δ2 equal to −0.2. Similarly the values of y(x) evaluated

at the second and third rows of the design yields the elementary effect d1(0.4, 0.4, 0.6, 0.0) with

a signed δ1 equal to −0.2; subsequent pairs of rows provide elementary effects di(x) for the

remaining inputs at different x and signed δi values.

To describe the basic use of EEs, assume that r evaluations of each di are available, and

let di denote their sample mean and Si denote their sample standard deviation. Morris (1991)

proposed interpreting the effect of the ith input on y(x) based on di and Si as follows. An

input i having a small di and small Si is non-influential (non-active); an input i having a large

di and small Si has a strong linear effect on y(x); an input i having a large Si (and large or

small di) either has a non-linear effect in xi or xi has strong interactions with other inputs.

These are easily visualized in a d× S plot; see Figure 1 of Morris (1991).
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Morris’s OAT designs for calculating elementary effects are only applicable for rectangular

input regions and thus, in Section 2, we propose an alternative design algorithm, “SeRStep”,

that can be applied to both non-rectangular and rectangular input regions. It uses randomly

selected δ
(k)
i for starting point x(k) and input i and allows selection of a space-filling set of

starting points. Section 3 presents an example of a 6-input function with non-rectangular

domain and shows that the associated estimated di and Si are consistent with theoretical

expected values. A second example looks at the more complicated 20-input response function

of Morris (1991), but with a modified, polygonal input region. In addition, in Section 3, we

introduce new tools, δ×EE and x×EE plots, that can give extra information about the output

function.

Proposed modifications to Morris’s method include the following. Campolongo et al. (2007)

suggested selection of complete tours in a OAT design by maximizing a between-tour distance

measure, and Saltelli and Annoni (2010) and Campolongo, Saltelli, and Cariboni (2011) argue

for radial designs which maximize distance between tours. In Section 4, we investigate the

desirability of using such space-filling tours and propose an alternative distance measure which

leads to more visually appealing designs. Our SeRStep algorithm can be modified to produce

radial designs in non-rectangular regions, but these are not discussed in this paper. Pujol

(2009) suggested designs based on simplexes which are non-collapsing when projected into

lower-order subspaces, but analysis then requires that the model be linear at the scale of the

simplexes. Campolongo et al. (2007) suggested replacing di by the sample mean of the absolute

values of the |di(x)| which helps to provide information similar to the variance-based total

sensitivity indices. This measure can be calculated using the EEs obtained from the SeRStep

designs, and can be used in the plots described in place of di. Section 5 provides a summary

and additional areas for research.

2 The SeRStep Algorithm: A Flexible Method of Esti-

mating Elementary Effects

This section describes a new algorithm, denoted SeRStep (Secant Estimation with Random

Step length δ) for constructing OAT designs that uses random gradient step lengths δ and can

be used in both non-rectangular and rectangular input regions. SeRStep is initialized by the

selection of an r× d matrix, S, each of whose rows is a feasible input vector for the computer

simulator. Each row of S is used as the starting point (input vector) of a complete tour of

the input space, where a tour consists of d + 1 input vectors. The outputs corresponding to
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the inputs in a complete tour will be used to provide one EE (gradient), di(·), for each input

i, 1 ≤ i ≤ d. Thus a total of r EEs will be constructed for each input, spread over the input

region. The steps in SeRStep are stated as follows.

Step 0: Select an r × d matrix, S whose kth row provides the starting input vector x(k) of a

complete tour of the input space. For k = 1, . . . , r, select independent random permutations

πk = (πk(1), . . . , πk(d)) of input labels {1, . . . , d} to be associated with the r rows of S. Set

k = 1 and perform Steps 1-3.

Step 1: Select row k of S and label it x = (x1, . . . , xd). Identify the associated permutation

πk = (πk(1), . . . , πk(d)).

Step 2: Set j = 1 and perform Steps (2a)-(2d)

Step 2a: Consider input πk(j). Compute the distance from xπk(j) to the left and right

boundaries of the input region (fixing all other coordinates of x); let L andR respectively,

denote these distances.

Step 2b: Set the step direction for xπk(j) to be that associated with max(L,R); that

is, direction = –1 if L > R, and +1 if L < R

Step 2c: Randomly pick δkj ∈ [max{min(L,R), 0.5 ∗ max(L,R)}, max(L,R)] and

update xπk(j) to xπk(j) ± δkj, according to the direction of the move determined in (2b).

Step 2d: If j < d, increment j by 1 and perform Steps (2a)-(2d)

Step 3: The sequence of d+ 1 inputs constructed in Step 2 is a complete tour that begins at

row k of S. Use the evaluations of y(·) at these d+1 points to determine elementary effects (1)

for each input.

Step 4: If k < r, increment k by 1 and repeat Steps 1-3. If k = r, compute di and Si for each

input i = 1, . . . , d.

To determine the r starting points in S, one possibility is to use a space-filling design.

If the input region is rectangular, then a maximin Latin hypercube design (LHD) scaled to

the input region would be a reasonable choice for S. (See Liefvendahl and Stocki 2006, for

alternative space-filling designs for rectangular regions). If the input region is non-rectangular,

the ConCaD algorithm of Draguljić, Santner, and Dean (2012) can be used to produce a space-

filling and non-collapsing set, S, of r starting vectors under any specified space-filling criterion.

Other algorithms that produce criteria-specific space-filling sets of points are given by Trosset

(1999) and Stinstra, den Hertog, Stehouwer, and Vestjens (2003).
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Table 1: Expected value and standard deviation of di(X) when the input vector X has a
uniform distribution over the region for Example 3.1

Input E[di(X)] SD(di(X))

1 0.000 0.000
2 1.500 0.000
3 1.500 0.000
4 2.300 0.422
5 0.992 0.106
6 0.883 0.059

Because the construction of SeRStep OAT designs selects the order and direction of the

tour moves after determining the starting points for the tours, any set of starting points can

be utilized. This is in contrast to the fixed δ OAT design construction which must limit the

possible starting points to those whose predetermined moves produce valid points. Thus it

is simpler for SeRStep OAT designs to ensure that the tours start at a space-filling set of

points and also more likely that the calculated EEs will explore the entire input space. The

suggestion of Campolongo et al. (2007) that a well-spaced set of tours should be selected, and

not simply a set of well-spaced starting vectors, is investigated in Section 4.

3 Examples

This section presents two examples which use the SeRStep algorithm to provide OAT designs

and calculate EEs, as described in Section 2. The first example has six input variables and a

polygonal input region for a polynomial output function whose elementary effects di(x) can

be calculated theoretically. The example illustrates the use of the Morris d̄ × S plots, and

discusses extra information that can be gained from δ×EE and x×EE plots. The second

example looks at the more complicated 20-input response function of Morris (1991), but with

a modified, polygonal input region. Both examples show how SeRStep can lead to correct

identification of the important inputs and the nature of their effects on the output .

Example 3.1 Consider a 6-dimensional polygonal input region, and the output function

defined by

y(x) = 1.0 + 1.5x2 + 1.5x3 + .6x4 + 1.7x24 + .7x5 + .8x6 + .5(x5 × x6),

for (x1, x2, x4, x6) ∈ [0, 1]4, x3 ∈ [0, 2], 0 ≤ x5 ≤ 2x6/3, and x5 ≤ −2x6 + 2. This input region

for x = (x1, . . . , x6)
> can be written the form Ax ≤ b with L < x < U and the algorithm
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CoNCaD (Draguljić et al. 2012) can be used to provide a non-collapsing space-filling design of

starting vectors x(1), . . . ,x(r). Since this is a simple output function, the EEs di(x
(k)) can be

calculated from (1) by algebra to give

1. d1(x) ≡ 0, because y(x) is functionally independent of x1,

2. d2(x) = d3(x) ≡ 1.5. The EEs of both linear terms x2 and x3 are non-zero constants

(which is always true for additive linear terms),

3. d4(x) = +0.6+1.7δ+3.4x4. The EE of the input x4, which has quadratic effects depends

on both the starting value of x4 and δ; hence, for fixed δ, d4(x) will vary only with x4,

4. d5(x) = +0.7 + 0.5x6 and d6(x) = +0.8 + 0.5x5. The EEs of the interacting x5 and x6

depend on the other variable.

It can be verified that the theoretical values of E[(di(X))] and SD[(di(X))] are as given in

Table 1 when the input vector X has a uniform distribution over the region for this example.

The observed d×S plot, obtained from a SeRStep OAT design starting with the r = 15 points

selected by CoNcaD listed in Table 2, is shown in Figure 1. The plot clearly shows that x1 is

not active, that y(x) has additive linear terms in x2 and x3 of approximately the same size

(d2 = d3 = 1.5, S1 = S2 = 0.0), and that inputs i = 4, 5, 6 have di(x) that are non-zero and

vary in x (Si > 0). Thus y(x) is non-linear in, or has interactions involving, x4, x5, x6. Input

x4 has the largest effect on the output.

Figure 1: The d × S plots for y(x) in Example 3.1 based on the SeRStep OAT design using

r = 15 starting points in Table 2

7
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Table 2: The r = 15 starting input vectors x(k) selected by CoNCaD for Example 3.1

x1 x2 x3 x4 x5 x6

1.000 0.130 1.92 0.11 0.000 0.04
0.300 0.910 0.12 0.79 0.480 0.75
0.030 0.025 0.31 0.63 0.085 0.37
0.620 0.250 1.46 0.96 0.025 0.98
0.520 0.810 2.00 0.51 0.325 0.49
0.340 0.520 0.66 0.04 0.255 0.87
0.120 1.000 0.98 0.37 0.050 0.08
0.860 0.870 0.00 1.00 0.180 0.28
0.765 0.080 0.42 0.74 0.295 0.62
0.250 0.210 1.78 0.30 0.130 0.21
0.060 0.350 1.08 0.84 0.415 0.67
0.980 0.170 1.85 0.17 0.370 0.81
0.910 0.660 0.60 0.23 0.460 0.70
0.670 0.960 1.16 0.91 0.010 0.55
0.960 0.430 1.28 0.59 0.195 0.32

For each input i = 1, . . . , 6, the association between the EEs, di(x
(k)), and the δ

(k)
i can

provide supplementary information beyond that of the d× S plot. Figure 2 shows the δ
(k)
i ×

di(x
k
i ) plots for inputs i = 1, 2, 3 and, as expected, the EEs are constant no matter the

gradient step length. The first column of Figure 3 shows the equivalent information for inputs

i = 4, 5, 6 for this example. As in Figure 1, it is clear from Figure 3 that the most active

input is input 4 (with d4(x
(k)) ranging between 1.49 and 3.09), but the δ×d4 plot shows that,

when the gradient step length δ
(k)
4 is approximately 0.5, there are many different values for

d4(x
(k)). This spread of values at fixed δ would be expected from taking a step length of δ

in the x4 direction from different starting points if the response is a non-linear function of

the input. The x
(k)
4 × d4(x(k)) plot indicates the strong dependence of d4 on x4 that would

Figure 2: The δ
(k)
i × di(x(k)) plots for inputs i = 1, 2, 3 in Example 3.1 based on the SeRStep

OAT design using the r = 15 starting points xk in Table 2.
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be expected for a quadratic response in x4. The plots in rows 2 and 3 of Figure 3 also show

some variation, but the variation is much smaller (with d5(x
(k)) and d6(x

(k)) ranging between

0.8 and 1.2). The δ × d5(x
(k)) and δ × d6(x

(k)) plots seem to show some pattern but this

is explained by the strong interaction between inputs 5 and 6 which is very apparent from

the x
(k)
6 × d5(x(k)) and x

(k)
5 × d6(x(k)) plots. The random scatter in the x

(k)
5 × d4(x(k)) and

x
(k)
4 ×d5(x(k)) plots indicates no interaction between the inputs x4 and x5. It is less clear that

d4(x) is independent of x6, but the x4(x
(k))× d6(x(k)) indicates no x4, x6 interaction.

Figure 3: For i = 4, 5, 6, the δ
(k)
i × di(x

(k)) and x
(k)
j × di(x

(k)) plots for inputs j = 4, 5, 6

for Example 3.1 based on the SeRStep OAT design using the r = 15 starting points x(k) in

Table 2

Example 3.2 Morris (1991) illustrates the use of OAT designs and EE estimation with the

d = 20 input polynomial

ym(x) = β0 +
20∑
i

βiwi +
20∑
i<j

βi,jwiwj +
20∑

i<j<l

βi,j,lwiwjwl +
20∑

i<j<l<s

βi,j,l,swiwjwlws (3)

9
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having rectangular input region X ≡ [0, 1]20. Here wi = 2(1.1xi/(xi + 0.1)− 1
2
) for i = 3, 5, 7,

wi = 2(xi − 1
2
) otherwise. As in Morris (1991), we selected the large coefficients in (3) to be

βi = 20, i = 1, ..., 10

βi,j = −15, i, j = 1, ..., 6

βi,j,l = −10, i, j, l = 1, ..., 5

βi,j,l,s = 5, i, j, l, s = 1, ..., 4

and the remaining 1st and 2nd order coefficients to be independent draws from the N(0, 1)

distribution; all remaining 3rd and 4th order coefficients were set equal to 0.

As illustrated in Figure 4, ym(x) is non-linear in inputs xi, i = 3, 5, 7 because wi is non-

linear. In addition, inputs x3 and x5 are involved in interactions. Inputs x1, x2, x4 and x6 all

have substantial linear effects and are also involved in interactions. On the other hand, inputs

x8, x9, x10 have large linear effects but small interactions. Thus, as Morris (1991) indicates, it

should be expected that x1,. . . , x10 have large d, while x8, x9, x10 have small S, and x1, . . . , x7,

have large S. Finally inputs x11, . . . , x20 are inactive and are expected to have both d and S

close to zero.

In his example, Morris (1991) used a OAT design with a grid width of 1/18, a fixed δ of

2/3, and r = 4 randomly selected starting points. For comparison in the hyper-rectangular

input region [0, 1]20, we constructed a SeRStep random δ design with r = 4 starting points

from a maximin LHD. The left panel of Figure 5 shows the corresponding d × S plot. This

plot is qualitatively similar to that of Morris (1991), but there is variability in both the Morris

and the SeRStep constructions due to the random selection of tours and, for SeRStep, the

random δ’s. Nevertheless, the plots always separate the active inputs, x1, . . . , x10, from the

inactive inputs, x11, . . . , x20, and identify x8, x9 and x10 as having strong linear effect (only).

The variability issue will be revisited in Section 4.

0 0.2 0.4 0.6 0.8 1
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Figure 4: wi = 2(1.1x/(x+ 0.1)− 0.5) versus x.
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Figure 5: The d×S plots for ym(x) in Example 3.2 for the SeRStep OAT design in a rectangular

region [0, 1]20 (left panel) and polygonal region (4) (right panel), both using r = 4 starting

points.

We now impose constraints on the input region with the effect that the activity levels of

some of the inputs are modified. The new polygonal input region, which can be written in

the form Ax ≤ b with L ≤ x ≤ U , is taken to be

0.2 ≤ x1 + x5 + x11 ≤ 1.5, 0 ≤ x3 ≤ 0.2, 0.5 ≤ x7 ≤ 1, and 0 ≤ xi ≤ 1 for i 6= 3, 5, 7. (4)

Major differences in EEs are expected for x3, x5 and x7 because the non-linear function

wi in Figure 4 is applied to different parts of the [0,1] domain. The constraint x3 ∈ [0.0, 0.2]

only allows x3 to take values where w3 rises rapidly. Thus intuition suggests that x3 will

be more active than it was in the rectangular input problem. Since x3 has small range,

the corresponding δ3’s have to be small and this leads to greater variability in the d3 and,

consequently, larger S3. On the other hand, x7 ∈ [0.5, 0.7] is concentrated on “large” values,

and w7 is somewhat flat for these values; thus intuition suggests x7 will be less active than

in the rectangular input problem. The input x5 is also constrained and is more likely to take

values in the middle part of the range which shows the greater gradient variability in Figure 4,

so we may expect S5 to be larger, also.

The SeRStep OAT design was applied to ym(x) with constraints (4) using r = 4 starting

points determined by CoNcaD to form a non-collapsing (approximate) maximin design. The

d× S plot, shown in the right panel of Figure 5, indicates the anticipated modified behavior

of EEs described in the previous paragraph. With only r = 4 EEs, the additional δ×EE and

x×EE plots are less informative. However, we can see the large variability in d3 from the

δ × d3 and x3 × d3 plots in Figure 6.

11
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Figure 6: The δ×d3 and xi×d3 plots, i = 1, . . . , 11, for ym(x) in Example 3.2 with constrained

input region (4) for the SeRStep OAT design using r = 4 starting points.

The examples presented in this section show first that, for applications with rectangular

input regions, the SeRStep (random δ) OAT design provides d× S plots comparable to those

of the Morris OAT design. Secondly, they introduce the δ×EE and x×EE plots which, for

moderate sized r, allow a more detailed assessment of EE changes for different gradient step

lengths than does the d × S plot alone. Finally, the examples illustrate the methodology in

two non-rectangular settings.

4 Selection of space-filling tours

When the number, r, of tours is small, the di and Si values can vary depending on (i) the

selection of starting designs (sets of starting input vectors), (ii) number, r, of starting vectors

(and, consequently, number of tours), (iii) selection of ±δi. Below, we investigate the extent of

this variability and whether use of space filling tours, rather than space-filling starting points,

is desirable for the identification of active effects.

The function used in the variability study was

y(x) =
6∑
j=1

wiβi +
6∑
i=1

6∑
j=1

β(i, j)wiwj (5)

12
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which is a modified version of the Morris polynomial model (3) but now with six input vari-

ables. Here, wi is defined below (3), βi is the ith element of the vector [5, 10, 10, 0.9572,

0.4854, 0.8003], and β(i, j) is the (i, j)th element of the matrix
-4.0 -6.0 0.6359 0.4064 0.2486 0.2866
-6.0 -4.0 -0.0179 0.5640 0.3163 -0.5746

-0.4933 0.6051 0.3971 0.2060 0.3215 -0.2950
0.4245 0.4774 -0.3677 2.0 -0.1107 -0.4660
0.1975 -0.5108 -0.1167 0.5209 0.2320 -0.6011
-0.4113 0.4810 0.4249 0.4436 -0.3361 0.3306


The values of the parameters show that inputs x1, x2 and x3 have large linear effects, x1, x2

and x4 have large quadratic effects, and x1, x2 interact.

Values of di and Si, i = 1, . . . , 6, were calculated for 5000 SerStep OAT designs constructed

from random selections of r = 4 starting vectors. The right-most boxplot in the four subfigures

of Figure 7 shows the distributions of di, for i = 1, 3, 4, 5. There is considerable variability

and the question is whether we can reduce this by selection of a space-filling starting design

and well-spaced tours.

Due to the construction of the tours in a OAT design, there is no guarantee that the tours

will be well-spaced even if the starting points are. This was recognized by Campolongo et al.

(2007) who suggested generating a large number of tours at random and then selecting the

best subset of r tours according to a given criterion. They proposed a criterion that maximizes

the sum of squared distances between points in different tours; that is, for a given collection

of r tours T = {t1, . . . tr}, they quantified the spread of these tours by√
pt-dist21,2 + · · ·+ pt-dist2r−1,r

where the distance between tour tm and t` is defined by

pt-distm` =
k+1∑
u=1

k+1∑
v=1

√√√√√ k∑
j=1

[
x
(m),u
j − x(`),vj

]2
(6)

which is sum of the Euclidean distances between every input vector in tour tm with every input

vector in the tour t`. This tour distance measure does not always make a visually well-spaced

selection of tours. For example, we used (6) to select the best r = 3 tours out of a random

selection of R = 100 tours in the (x5, x6) constrained region of Example 3.1; the result is

shown in the left hand panel of Figure 8. The problem is that four points in two tours are well

separated from two points in the third tour and these eight distances outweigh the closeness

of the other distances, leading to an unappealing selection.
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Figure 7: Comparison of observed d values computed for inputs 1 (top left), 3 (top right), 4

(bottom left), 5 (bottom right), for model (5), using maximization of (i) root sum of squared

probe distances (7), (ii) minimum probe distance (7), (iii) root sum of squared point dis-

tances (6), (iv) minimum point distance (6), (v) randomly selected tours.

We investigated an alternative measure that maximizes the minimum distance between

corresponding ends of the “probes” in the tours; that is we selected the r tours from R tours

that maximizes the minimum value of

prb-distm` =

√√√√√ k∑
j=1

[
min:x

(m)
j −min:x

(`)
j

]2
+

√√√√√ k∑
j=1

[
max:x

(m)
j −max:x

(`)
j

]2
. (7)

From the same 100 tours as before, selection of the r = 3 tours that maximize the minimum

probe distance (7) is shown in the right hand panel of Figure 8 and this time the tours appear

to fill the space.

Figure 7 shows a comparison of the empirical distributions of the di (i = 1, 3, 4, 5) for

output function (5) and a set of tours selected under maximization of the (i) sum of squared

probe distances (7), (ii) minimum probe distance (7), (iii) sum of squared point distances (6),

(iv) minimum point distance (6), (v) randomly selected tours. Values of the mean, E[di], i =
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Figure 8: Three tours selected by maximization of (i) sum of squared point distances (6) and

(ii) minimum probe distance (7), shown in left and right panels, respectively, for the (x5, x6)

region of Example 3.1

1, 3, 4, 5, were estimated from 5000 SerStep OAT designs constructed from random selections

of r = 4 starting vectors and a horizontal line with these values is drawn in each boxplot.

The plots show that, in most cases, values of di larger than E[di] tend to be obtained when

using space-filling selections of tours. This may be beneficial when seeking active inputs but,

otherwise, there seems to be little to be gained by using space filling sets of tours over random

starts as far as estimation of di is concerned, especially as the computational burden is much

larger. More work needs to be done to examine the empirical distribution of Si.

5 Summary and Discussion

This paper has proposed an extension of the OAT design construction procedure of Morris

(1991) for estimating elementary effects associated with a deterministic computer simulator.

The algorithm, called SeRStep, allows calculation of elementary effects in non-rectangular,

as well as rectangular, input regions. Because the design algorithm adapts the gradient step

lengths and directions of the move to the starting points, a space-filling set of starting points

can be selected to initiate the procedure. The paper introduces δ×EE and x×EE plots which

can be used to evaluate changes in the output at different ranges and locations of each input.

As do fixed δ OAT designs, SeRStep OAT designs allow efficient computation of EEs for

high-dimensional input regions. In general, if r elementary effects are determined for each of

the d inputs to a computational simulator, the total number of simulator evaluations required

by an OAT design is r(d+1). In contrast, a random sample of r starting points for each input

plus a δ step to form the gradient would require 2rd runs to calculate the same number of
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elementary effects. Thus the economy of a OAT design is (d + 1)/2d; i.e. approximately 1/2

for high-dimensional cases (see also Morris 1991).

We have also studied a simplified version of the SeRStep OAT design construction (not

shown) in which a new, random δ is fixed at the start of each tour and used throughout

the tour. In addition to being applicable only for rectangular input regions, this variant of

SeRStep produced d×S plots that tended to provide less definitive separation of active inputs

from less active ones. Hence this modification of SeRStep is not recommended.

In the Morris (1991) OAT design construction, δ is fixed for each input, so each di(x)

varies only with x and not δ which simplifies its interpretation (see d4(x) in Example 3.1).

However, the extra information gained from δ×EE plots is not available in this setting, and

the fixed step size could lead to misinterpretations if the function has periodicities that match

the size of δ.

Campolongo et al. (2011) argued that radial designs give better performance than the

“complete tour designs” studied in this paper and which they call “trajectory-based designs”.

In radial designs, instead of a tour, the probes radiate from the starting vector. The gradients

δ
(k)
i , i = 1, . . . , d, are thus all computed with the starting vector x(k) at one end of the probe

(k = 1, . . . , r). The input region can be well-explored if the starting vectors are space-filling,

but if the starting vectors do not fill the space well, then the radial design is likely to be less

good than the trajectory-based designs which give scope to move out across the input space.

SeRStep can easily be modified to construct radial designs in non-rectangular regions with

space-filling starting designs.
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Draguljić, D., Santner, T. J. and Dean, A. M. (2012). Non-collapsing spacing-filling designs

for bounded polygonal regions. Technometrics 54, 169–178.

16

30 FANGFANG SUN ET AL. [Vol. 11, Nos. 1&2



Efron, B. and Stein, C. (1981). The jacknife estimate of variance. Ann. Statist. 9, 586–596.

Liefvendahl, M. and Stocki, R. (2006). A study on algorithms for optimization of latin hyper-

cubes. J. Statist. Plann. Inf. 136, 3231–3247.

Morris, M. D. (1991). Factorial sampling plans for preliminary computational experiments.

Technometrics 33, 161–174.

Pujol, G. (2009). Simplex-based screening designs for estimating metamodels. Reliab. Eng.

System Safety 94, 1156–1160.

Saltelli, A. and Annoni, P. (2010). How to avoid a perfunctory sensitivity analysis. Environ-

mental Modelling & Software 25, 1508–1517.

Saltelli, A., Chan, K. and Scott, E. (2000). Sensitivity Analysis. John Wiley & Sons, Chich-

ester.

Sobol´, I. M. (1993). Sensitivity analysis for non-linear mathematical models. Math. Model.

Comput. Exp. 1, 407–414.

Stinstra, E., den Hertog, D., Stehouwer, P. and Vestjens, A. (2003). Constrained maximin

designs for computer experiments. Technometrics 45(4), 340–346.

Trosset, M. W. (1999). Approximate maximin distance designs. In ASA Proceedings, Section

on Physical and Engineering Sciences, pp. 223–227. Am. Statist. Assoc., Alexandria.

Fangfang Sun

Department of Management Science and Engineering

Harbin Institute of Technology

Harbin, Heilongjiang, 150001, China

fangfang@hit.edu.cn

Thomas Santner

Department of Statistics

The Ohio State University

Columbus, OH 43210, USA

santner.1@osu.edu

17

2013] DESIGNS FOR ESTIMATING ELEMENTARY EFFECTS OF SIMULATOR EXPERIMENTS 31



Angela Dean

Department of Statistics

The Ohio State University

Columbus, OH 43210, USA

dean.9@osu.edu

18

32 FANGFANG SUN ET AL. [Vol. 11, Nos. 1&2




