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PREFACE 

The first case of someone suffering from COVID-19, the disease caused by the novel 
coronavirus SARS-CoV-2, can be traced back to 17 November 2019, according to media 
reports on unpublished Chinese government data. However, the “patient zero” is yet to be 
confirmed. On 31 December 2019, Wuhan Municipal Health Commission, China, reported a 
cluster of cases of pneumonia in Wuhan, Hubei Province. A novel coronavirus was eventually 
identified. On January 30, 2020, Director General, WHO, declared coronavirus outbreak as 
Public Health Emergency of International Concern (PHEIC). On 18 March 2020, WHO and 
partners launched the Solidarity Trial, an international clinical trial, that aims to generate robust 
data from around the world to find the most effective treatments for COVID-19. The first 
recorded case of COVID-19 outside of China was confirmed on 13 January 2020 in Thailand. 
The first case in India was reported on 30 January 2020 in Kerala. Deeply concerned both by 
the alarming levels of spread and severity, and by the alarming levels of inaction, WHO made 
the assessment that COVID-19 can be characterized as a pandemic on 11 March 2020. As of 
now, 215 countries and territories around the world are under the influence of this virus.   
 

COVID-19 has caused severe disruption across the world. The virus has posed an 
unprecedented threat to both public health and human lives and the economy of the countries 
globally. There are variations both among and within countries in the number of cases and in 
case fatality rates. In general, Europe and the United States have borne the brunt of the 
infection, while Asian and African countries have been relatively less affected so far. It is not 
yet clear why such geographical differences exist; they cannot be explained by healthcare 
facilities alone. The impact of COVID-19 on human health and loss of lives has been 
devastating. The number of persons tested positive is staggering; so is the number of deaths 
caused by this virus.  One of the questions getting asked the most these days is when will the 
world be able to go back to the way things were in December 2019 before the pandemic struck. 
However, this appears to be unlikely to happen soon. Several countries are racing towards 
developing vaccines to fight the disease while re-opening their economies. But without rapid 
and effective global cooperation, the world may not exit this crisis safely at all. 
 
In March 2020, Saumyadipta Pyne approached V.K. Gupta with great concern and curiosity 
about the much-needed scientific response to the COVID-19 pandemic, and suggested that 
SSCA must respond timely to this global crisis. It was then that we decided to devote a large 
part of the Volume 18, Number 1 (2020) July issue of our journal ‘Statistics and Applications’ 
to papers dedicated to the pandemic. 
 
The major purpose of this decision was to motivate the researchers to address the different 
aspects of this time-sensitive and challenging problem. It was felt that manuscripts based on 
relevant approaches such as mathematical modelling, biostatistics, bioinformatics, spatial and 
time series data analysis, epidemiology, health economics, operations research, group testing, 
etc., will be considered for submission to this issue.  
 
We did have a realization that the authors may present their early research findings in the form 
of a manuscript that can lead to future major projects and more in-depth studies. Given the time 
constraints, known techniques of modelling, data mining, correlations with climate and 
associated variables, available genomic data, geographical positioning, foreign travel, age and 
other demographic parameters, patients with comorbidity, etc., could form the basis of their 
study. For instance, even without a definite solution, a study might offer insights into the 
disease dynamics, its processes and hotspots, etc., especially by analysing the COVID-19 data 



ii PREFACE [Vol. 18, No. 1 

as reported publicly by many reliable sources. It would be a necessary scientific endeavour to 
relate the disease dynamics with demographics, social distancing and lockdown policies, 
climate, the immunization strategies, genetic variations, antibody testing and early adoption of 
countrywide preventive measures, and so on. Marking statistically sound hotspots would 
enable governments to localize the people with positive cases, and then release the rest of the 
people to return to work and resume normal living. Both human life and livelihood are equally 
important, and loss of either causes immense suffering that the scientific community must seek 
to alleviate.  
 
Accordingly, authors from India and abroad were invited to submit their papers for this volume. 
Despite the pressure on time and the availability of quality data, we note with great pleasure 
and appreciation that the authors responded with great enthusiasm. However, we do wish to 
say that the timely availability of quality data and mechanisms and to obtain those will pave 
the way for better understanding of the dynamics and policy planning. 
 
Thus, the volume 18, number 1 (2020), is divided into two sections. Section A contains 8 
regular papers submitted to the journal. Section B comprises of 13 invited papers focused on 
the topic of COVID-19, which were also subjected to the usual peer review process.  
 
It may be mentioned here that the views expressed in all the papers on COVID-19 are those of 
the author(s) only. The journal “Statistics and Applications” and the Editorial Board of the 
Journal are not responsible for any of the views expressed in these papers. 
 
We would like to express our gratitude to all the authors for responding to our request and 
contributing to this volume. In fact, this volume has been possible because of the contribution 
from each one of them. The reviewers have also made a very big contribution by way of 
finishing the review process in a very short span of time. We are indebted to all the reviewers 
and thank them profusely for their support. The help received from Dr. Baidya Nath Mandal 
for bringing the papers in the format of the journal is highly appreciated.  
 
Today, we also recognize that the pandemic COVID – 19 is either re-striking in some countries 
or continuing unabated in others. The situation is still far from clear and it is possible that many 
societies may have to re-organize their lives in different ways in a post-COVID world. We also 
appeal to statisticians, epidemiologists and other related scientists and the authors who 
contributed to this volume to continue their efforts in learning and unfolding the mysteries 
about this pandemic. This journal would continue to devote its space on priority to all such 
researches of current interest. We do hope that the papers in this volume would eventually 
culminate in some high-profile projects on the most critically important topic of the present. 
 
 

V.K. Gupta 
Saumyadipta Pyne 

Rajender Parsad 
 

July 2020 
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Abstract

Frailty models are used in the survival analysis to account for the unobserved heterogeneity
in individual risks to disease and death. To analyze the bivariate data on related survival times, the
shared frailty models were suggested. Shared frailty models are used despite their limitations. To
overcome their disadvantages correlated frailty models may be used. In this paper, we introduce
the inverse Gaussian correlated frailty models with three different baseline distributions namely,
the Pareto,Burr and the linear failure rate distributions. We introduce the Bayesian estimation pro-
cedure using Markov Chain Monte Carlo (MCMC) technique to estimate the parameters involved
in these models. We apply these models to a real life bivariate survival data set of McGilchrist and
Aisbett (1991) related to the kidney infection data and a better model is suggested for the data.

Key words: Bivariate survival; Copula; Correlated inverse Gaussian frailty; Cross-ration function;
Hazard rate.

1. Introduction

The frailty model is a random effect model for time to event data which is an extension of the
Cox’s proportional hazards model. Shared frailty models are the most commonly used frailty mod-
els in literature, where individuals in the same cluster share a common frailty. Frailty models (Vau-
pel et al. 1979) are used in the survival analysis to account for the unobserved heterogeneity in the
individual risks to disease and death. The frailty model is usually modeled as an unobserved ran-
dom variable acting multiplicatively on the baseline hazard function. Hanagal and Dabade (2013),
Hanagal and Bhambure (2015, 2016) and Hanagal and Pandey (2014a, 2014b, 2015a, 2015b, 2016,
2017a) analyzed kidney infection data and Australian twin data using shared gamma and inverse
Gaussian frailty models with different baseline distributions for the multiplicative model. Hanagal
and Sharma (2013, 2015a, 2015b, 2015c) analyzed acute leukemia data, kidney infection data and
diabetic retinopathy data using shared gamma and inverse Gaussian frailty models for the multi-
plicative model. Hanagal and Bhambure (2014) developed shared inverse Gaussian frailty model
based on the reversed hazard rate for Australian twin data. Hanagal et al.(2017) discussed corre-
lated gamma frailty models for bivariate survival data to analyze kidney infection data and Hanagal

Corresponding Author: David D. Hanagal
E-mail: david.hanagal@gmail.com
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and Pandey (2017b) proposed correlated gamma frailty models for bivariate survival data based on
reversed hazard rate for Australian twin data. Hanagal (2017) gave extensive literature review on
different shared frailty models.

In a univariate frailty model, let a continuous random variable T be a lifetime of an individual
and the random variable Z be frailty variable. The conditional hazard function for a given frailty
variable, Z = z at time t > 0 is,

h(t | z) = zh0(t)e
Xβ, (1)

where h0(t) is a baseline hazard function at time t > 0, X is a row vector of covariates, and β is a
column vector of regression coefficients. The conditional survival function for given frailty at time
t > 0 is,

S(t | z) = e−
∫ t
0 h(x|z)dx = e−zH0(t)eXβ

, (2)

where H0(t) is the cumulative baseline hazard function at time t > 0. Integrating over the range of
frailty variable Z having density fZ(z), we get the marginal survival function as,

S(t) =

∫ ∞
0

S(t | z)fZ(z)dz

=

∫ ∞
0

e−zH0(t)eXβ

fZ(z)dz

= LZ(H0(t)e
Xβ), (3)

where LZ(.) is the Laplace transformation of the distribution of Z. Once we get the survival
function at time t > 0, of life time random variable for an individual, we can obtain probability
structure and make their inferences based on it.

Shared frailty explains correlation’s between subjects within clusters. However, it does have
some limitations. Firstly, it forces the unobserved factors to be the same within the cluster, which
may not always reflect reality. For example, at times it may be inappropriate to assume that all
partners in a cluster share all their unobserved risk factors. Secondly, the dependence between
survival times within the cluster is based on marginal distributions of survival times. However,
when covariates are present in a proportional hazards model with gamma distributed frailty the de-
pendence parameter and the population heterogeneity are confounded (Clayton and Cuzick, 1985).
This implies that the joint distribution can be identified from the marginal distributions (Hougaard,
1986). Thirdly, in most cases, a one-dimensional frailty can only induce positive association within
the cluster. However, there are some situations in which the survival times for subjects within the
same cluster are negatively associated. For example, in the Stanford Heart Transplantation Study,
generally the longer an individual must wait for an available heart, the shorter he or she is likely to
survive after the transplantation. Therefore, the waiting time and the survival time afterwards may
be negatively associated.

To avoid these limitations, correlated frailty models are being developed for the analysis of
multivariate failure time data, in which associated random variables are used to characterize the
frailty effect for each cluster. Correlated frailty models provide not only variance parameters of
the frailties as in shared frailty models, but they also contain additional parameter for modeling
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the correlation between frailties in each group. Frequently one is interested in construction of a
bivariate extension of some univariate family distributions (e.g., gamma). For example, for the
purpose of genetic analysis of frailty one might be interested in estimation of correlation of frailty.
It turns out that it is possible to carry out such extension for the class of infinitely-divisible distri-
butions (Iachine 1995a, 1995b). In this case an additional parameter representing the correlation
coefficient of the bivariate frailty distribution is introduced.

2. Inverse Gaussian Frailty

The gamma distribution is most commonly used frailty distribution because of its mathemat-
ical convenience. Another choice is the inverse Gaussian distribution. The inverse Gaussian makes
the population homogeneous with time, whereas for gamma the relative heterogeneity is constant
(Hougaard, 1984). Duchateau and Janssen (2008) fit the inverse Gaussian (IG) frailty model with
Weibull hazard to the udder quarter infection data. The IG distribution has a unimodal density and
is a member of the exponential family. While its shape resembles that of other skewed density
functions, such as lognormal and gamma, it provides much flexibility in modeling. Furthermore,
there are many striking similarities between the statistics derived from this distribution and those
of the normal; see Chhikara and Folks (1986). These properties make it potentially attractive for
modeling purposes with survival data. The models derived above are bases on the assumption that
a common random effect acts multiplicatively on the hazard rate function.

Alternative to the gamma distribution, Hougaard (1984) introduced the inverse Gaussian as
a frailty distribution. It provides much flexibility in modeling, when early occurrences of failures
are dominant in a life time distribution and its failure rate is expected to be non-monotonic. In
such situations, the inverse Gaussian distribution might provide a suitable choice for the lifetime
model. Also inverse Gaussian is almost an increasing failure rate distribution when it is slightly
skewed and hence is also applicable to describe lifetime distribution which is not dominated by
early failures. Secondly, for the inverse Gaussian distribution, the surviving population becomes
more homogeneous with respect to time, where as for gamma distribution the relative heterogene-
ity is constant. The inverse Gaussian distribution has shape resembles the other skewed density
functions, such as log-normal and gamma. These properties of inverse Gaussian distribution mo-
tivate us to use inverse Gaussian as frailty distribution. The inverse Gaussian distribution has a
history dating back to 1915 when Schrodinger and Smoluchowski presented independent deriva-
tions of the density of the first passage time distribution of Brownian motion with positive drift.
Villman et al., (1990) have studied the histomorphometrical analysis of the influence of soft diet
on masticatory muscle development in the muscular dystrophic mouse. The muscle fibre size dis-
tributions were fitted by an inverse Gaussian law. Barndorff-Nielsen (1994) considers a finite tree
whose edges are endowed with random resistances, and shows that, subject to suitable restrictions
on the parameters, if the resistances are either inverse Gaussian or reciprocal inverse Gaussian
random variables, then the overall resistance of the tree follows a reciprocal inverse Gaussian law.
Gacula and Kubala (1975) have analyzed shelf life of several products using the IG law and found
to be a good fit. For more real life applications (see Seshadri, 1999).
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Consider a continuous random variable Z follows inverse Gaussian distribution with param-
eters µ and σ2 then density function of Z is,

fZ(z) =


[

1

2πσ2

] 1
2

z−
3
2 e

(z−µ)2

2zσ2µ2 ; z > 0, µ > 0, σ2 > 0

0 ; otherwise,

(4)

and the Laplace transform is,

LZ(s) = exp

[
1

µσ2
−
(

1

σ4µ2
+

2s

σ2

) 1
2

]
. (5)

The mean and variance of frailty variable are E(Z) = µ and V (Z) = µ3σ2. For identifiability, we
assume Z has expected value equal to one i.e. µ = 1. Under this restriction, the density function
and the Laplace transformation of the inverse Gaussian distribution reduces to,

fZ(z) =


[

1

2πσ2

] 1
2

z−
3
2 e

(z−1)2

2zσ2 ; z > 0, σ2 > 0

0 ; otherwise,

(6)

and the Laplace transform is,

LZ(s) = exp

[
1− (1 + 2σ2s)

1
2

σ2

]
, (7)

with variance of Z as σ2. The frailty variable Z is degenerate at Z = 1 when σ2 tends to zero. Let
T1 and T2 be failure times of the pair of individuals like kidney, lungs, eyes or any paired organ of
an individual or lifetimes of twins. The unconditional bivariate distribution function of lifetimes
T1 and T2 with inverse Gaussian frailty is,

LZ(H1(t1) +H2(t2)) = exp

[
1− (1 + 2θ(H1(t1) +H2(t2)))

1
2

θ

]
= S(t1, t2) (8)

where H1(t1) and H2(t2) are the cumulative baseline hazard functions of the lifetime T1 and T2
respectively. Clayton (1978) define cross-ratio function as,

θ∗(t1, t2) =

∂2S(t1,t2)
∂t1∂t2

S(t1, t2)
∂S(t1,t2)
∂t1

∂S(t1,t2)
∂t2

The cross ratio function of inverse Gaussian frailty is,

θ∗(t1, t2) = 1 +
1

1
θ
− ln(S(t1, t2))
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The highest value is obtained at the start and equals 1 + θ, and goes to one as the survival function
goes to zero. It is decreasing function of t1, t2.

The joint bivariate survival functions in (8) can be expressed in terms of survival copula as
(see Nelsen (2006) for details)

C(u, v) = exp

{
1− [(1− θ log u)2 + (1− θ log v)2 − 1]

1
2

θ

}

where u = ST1(·) and v = ST2(·). This is a new copula and not appeared in the earlier
literature.

3. Correlated Frailty

The correlated frailty model is the second important concept in the area of multivariate frailty
models. It is a natural extension of the shared frailty approach on the one hand, and of the uni-
variate frailty model on the other. In the correlated frailty model, the frailties of individuals in a
cluster are correlated but not necessarily shared. It enables the inclusion of additional correlation
parameters, which then allows the addressing of questions about associations between event times.
Furthermore, associations are no longer forced to be the same for all pairs of individuals in a clus-
ter. This makes the model especially appropriate for situations where the association between event
times is of special interest, for example, genetic studies of event times in families. The conditional
survival function in the bivariate case (here without observed covariates) looks like

S(t1, t2|Z1, Z2) = S1(t1|Z1)S2(t2|Z2) = e−Z1H01(t1)e−Z2H02(t2), (9)

where Z1 and Z2 are two correlated frailties. The distribution of the random vector (Z1, Z2) needs
to be specified and determines the association structure of the event times in the model. Integrat-
ing the above bivariate survival function over Z1 and Z2, we get unconditional bivariate survival
function as

S(t1, t2) = EZ1,Z2 [e
−Z1H01(t1)e−Z2H02(t2)] (10)

where (Z1, Z2) has some known bivariate frailty distribution.

Consider some bivariate event times – for example, the lifetimes of twins, or age at onset of a
disease in spouses, time to blindness in the left and right eye, or time to failure in the left and right
kidney of patients. In the (bivariate) correlated frailty model, the frailty of each individual in a
pair is defined by a measure of relative risk, that is, exactly as it was defined in the univariate case.
For two individuals in a pair, frailties are not necessarily the same, as they are in the shared frailty
model. We are assuming that the frailties are acting multiplicatively on the baseline hazard function
(proportional hazards model) and that the observations in a pair are conditionally independent,
given the frailties. Hence, the hazard of the individual i(i = 1, 2) in pair j(i = j, ..., n) has the
form

h(t|Xij, Zij) = Zijh0i(t)e
β′Xij , (11)
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where t denotes age or time,Xij is a vector of observed covariates, β is a vector of regression
parameters describing the effect of the covariates Xij , h0i(.) are baseline hazard functions, and Zij
are frailties. Bivariate correlated frailty models are characterized by the joint distribution of a
two-dimensional vector of frailties (Z1j, Z2j). If the two frailties are independent, the resulting
lifetimes are independent, and no clustering is present in the model. If the two frailties are equal,
the shared frailty model is obtained as a special case of the correlated frailty model with correlation
one between the frailties (Wienke(2011)).

In order to derive a marginal likelihood function, the assumption of conditional independence
of lifespans, given the frailty, is used. Let δij be a censoring indicator for individual i(i = 1, 2) in
pair j(j = 1, ..., n). Indicator δij is 1 if the individual has experienced the event of interest, and 0
otherwise. According to (2.2), the conditional survival function of the ith individual in the jth pair
is

S(t|Xij, Zij) = e−ZijH0i(t)eβ
′Xij , (12)

with H0i(t) denoting the cumulative baseline hazard function. The contribution of individual i(i =
1, 2) in pair j(j = 1, ..., n) to the conditional likelihood is given by[

Zijh0i(t)e
β′Xij

]δij
eZijH0i(tij)eβ

′Xij , (13)

where tij stands for observation time of individual i from pair j. Assuming the conditional in-
dependence of lifespans, given the frailty, and integrating out the frailty, we obtain the marginal
likelihood function

n∏
j=1

∫
R×

∫
R

[
u1jh01(t1j)e

β′X1j

]δ1j
eu1jH01(t1j)eβ

′X1j

[
u2jh02(t2j)e

β′X2j

]δ2j
eu2jH02(t2j)eβ

′X2jf(z1j, z2j)dz1jdz2j (14)

where f(., .) is the probability density function of the corresponding frailty distribution. All these
formulas can be easily extended to the multivariate case, but need a specification of the correla-
tion structure between individuals in a cluster in terms of the multivariate density function, which
complicates analysis. For more details see (Hanagal(2011, 2019) and Wienke(2011)).

4. Correlated Inverse Gaussian Frailty Model

Let Z be an infinitely divisible frailty variable with Laplace transformation LZ(s) and ρ ∈
[0, 1], then there exist random variables Z1, Z2 each with univariate Laplace transform LZ(s) such
that the Laplace transform of Z1, Z2 is given by:

L(s1, s2) = LρZ(s1 + s2)L
1−ρ
Z (s1)L

1−ρ
Z (s2) (15)

If Z has a variance the Corr(Z1, Z2) = ρ.
The respective bivariate survival model is identifiable under mild regularity conditions on Z pro-
vided that ρ > 0. The case ρ = 1 is known as the shared frailty model.
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The above equation can be extended to multivariate case (ρ > 0) as below.

L(s1, s2, ...., sk) = LρZ(s1, s2, ...., sk)L
1−ρ
Z (s1)....L

1−ρ
Z (sk).

The case ρ = 1 leads to shared frailty. If ρ = 0, Z1, ....Zk are mutually independent.

Let Zi be the inverse Gaussian distributed with mean 1, variance σ2, and Laplace transform

L(si, σ
2) = exp[

1− (1 + 2σ2si)
1
2

σ2
] (16)

The bivariate Laplace transform for the correlated inverse Gaussian frailty model is given by

L(s1, s2, σ
2, ρ) = exp

[
ρ
1− (1 + 2σ2(s1 + s2))

1
2

σ2

]
exp

[
(1− ρ)1− (1 + 2σ2s1)

1
2

σ2

]

exp

[
(1− ρ)1− (1 + 2σ2s2)

1
2

σ2

]
(17)

where Corr(Z1, Z2) = ρ.
The correlated frailty model with inverse Gaussian frailty distribution is characterized by the bi-
variate survival function of the form:

S(t,t2j) = exp

[
ρ
1− (1 + 2σ2ηj(H1(t1j) +H2(t2j)))

1
2

σ2

]
exp

[
(1− ρ)1− (1 + 2σ2ηjH1(t1j))

1
2

σ2

]

exp

[
(1− ρ)1− (1 + 2σ2ηjH2(t2j))

1
2

σ2

]
(18)

where H01(t1j) and H02(t2j) are the cumulative baseline hazard functions of the life time random
variables T1j and T2j respectively.

According to different assumptions on the baseline distributions we get different correlated
inverse Gaussian frailty models.

5. Baseline Distributions

5.1 Pareto Distribution

The Pareto distribution is a skewed, heavy-tailed distribution that is sometimes used to model
the distribution of incomes. This distribution is not limited to describing wealth or income, but to
many situations in which an equilibrium is found in the distribution of the ”small” to the ”large”.
In insurance applications, heavy-tailed distributions are essential tools for modeling extreme loss,
especially for the more risky types of insurance such as medical malpractice insurance. In financial
applications, the study of heavy-tailed distributions provides information about the potential for
financial fiasco or financial ruin. The Pareto distribution is great way to open up a discussion on
heavy-tailed distribution. A continuous random variable T is said to follow the Pareto distribution
with the scale parameter λ and the shape parameter α if its survival function is,

S(t) = (λt+ 1)−α; t > 0, λ > 0, α > 0 (19)
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and the hazard function and the cumulative hazard function as

h(t) = (αλ)/(λt+ 1); t > 0, λ > 0, α > 0 (20)
H(t) = α log(λt+ 1); t > 0, λ > 0, α > 0 (21)

Observe that h(t) decreases with t ; λ > 0, α > 0. Hence this distribution belongs to the decreasing
failure rate class. The exponential and Rayleigh are the two most commonly used distributions for
analyzing lifetime data. These distributions have several desirable properties and nice physical
interpretations. Unfortunately the exponential distribution only has constant failure rate and the
Rayleigh distribution has increasing failure rate. The linear failure rate distribution generalizes
both these distributions. We consider this is the second baseline distribution.

5.2 Linear Failure Rate Distribution

The linear failure rate distribution of a continuous random variable T with the parameters
α > 0 and λ > 0, will be denoted by LFRD (α, λ) has the following survival function

S(t) = exp(−αt− λ/2t2); t > 0, λ > 0, α > 0 (22)

It is easily observed that the exponential distribution (ED(α)) and the Rayleigh distribution (RD
(λ)) can be obtained from LFRD(a,b) by putting λ = 0 and α = 0 respectively. Moreover, the
probability density function (PDF) of the LFRD (α, λ) can be decreasing or unimodal but the
failure rate function is either constant or increasing only. See for example Bain (1974), Sen and
Bhattacharya (1995), Lin et al. (2006), Ghitany and Kotz (2007) . The hazard function and the
cumulative hazard function of linear failure rate distribution are respectively as stated below:

h(t) = α + λt; t > 0, λ > 0, α > 0 (23)
H(t) = αt+ λt2/2; t > 0, λ > 0, α > 0 (24)

5.3 Burr Distribution (Type XII)

The Burr XII distribution, having logistic and Weibull as special sub-models, is a very pop-
ular distribution for modeling life time data and for modeling phenomenon with monotone failure
rates. When modeling monotone hazard rates, the Weibull distribution may be an initial choice
because of its negatively and positively skewed density shapes. However, it does not provide a
reasonable parametric fit for modeling phenomenon with non-monotone failure rates such as the
bathtub shaped and the unimodal failure rates that are common in reliability and biological studies.
Such bathtub hazard curves have nearly at middle portions and the corresponding densities have a
positive anti-mode. Unimodal failure rates can be observed in course of a disease whose mortality
reaches a peak after some finite period and then declines gradually. This distribution covers the
curve shape characteristics for a large number of distributions. The versatility and flexibility of
the Burr-XII distribution turns it quite attractive as a tentative model for data whose underlying
distribution is unknown. A continuous random variable T with the parameters λ > 0 and α > 0,
will be denoted by Burr(λ, α) has the following survival function

S(t) = (1 + tλ)−α; t > 0, λ > 0, α > 0 (25)
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Hazard function and Cumulative hazard function are

h(t) =
αλt(λ−1)

1 + tλ
(26)

H(t) = α log(1 + tλ) (27)

6. Proposed Models

Substituting cumulative hazard functions for the Pareto, linear failure rate (LFR) and Burr
baseline distributions in equation (18), we get the unconditional bivariate survival functions at time
t1j > 0 and t2j > 0 as,

S(t,t2j) = exp

[
ρ
1− (1− 2σ2ηj(α1 log(λ1 + 1) + α2 log(λ2 + 1)))

1
2

σ2

]

exp

[
(1− ρ)1− (1− 2σ2ηjα1 log(λ1 + 1))

1
2

σ2

]

exp

[
(1− ρ)1− (1− 2σ2ηjα2 log(λ2 + 1))

1
2

σ2

]
(28)

S(t,t2j) = exp

[
ρ
1− (1− 2σ2ηj(α1t+ λ1t

2/2 + α2t+ λ2t
2/2))

1
2

σ2

]

exp

[
(1− ρ)1− (1− 2σ2ηj(α1t+ λ1t

2/2))
1
2

σ2

]

exp

[
(1− ρ)1− (1− 2σ2ηj(α2t+ λ2t

2/2))
1
2

σ2

]
(29)

S(t,t2j) = exp

[
ρ
1− (1− 2σ2ηj(α1 log(t

λ1 + 1) + α2 log(t
λ2 + 1)))

1
2

σ2

]

exp

[
(1− ρ)1− (1− 2σ2ηjα1 log(t

λ1 + 1))
1
2

σ2

]

exp

[
(1− ρ)1− (1− 2σ2ηjα2 log(t

λ2 + 1))
1
2

σ2

]
(30)

Here onwards we call equation (28), (29) and (30) as Model I, Model II, and Model III
respectively and they denote correlated inverse Gaussian frailty model with baseline as Pareto,
LFR and Burr distributions respectively.
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7. Likelihood Specification and Bayesian Estimation of Parameters

Suppose there are n individuals under study, whose first and second observed failure times
are represented by (t1j, t2j). Let c1j and c2j be the observed censoring times for the jth individ-
ual (j = 1, 2, 3, ..., n) for first and second recurrence times respectively. We also assume that
independence between the censoring time and the life-times of individuals.

The contribution of the bivariate life time random variable of the jth individual in likelihood
function is given by,

Lj(t1j, t2j) =


f1(t1j, t2j), t1j < c1j, t2j < c2j,
f2(t1j, c2j), t1j < c1j, t2j > c2j,
f3(c1j, t2j), t1j > c1j, t2j < c2j,
f4(c1j, c2j), t1j > c1j, t2j > c2j.

and the likelihood function is,

L(ψ,β, θ) =

n1∏
j=1

f1(t1j, t2j)

n2∏
j=1

f2(t1j, c2j)

n3∏
j=1

f3(c1j, t2j)

n4∏
j=1

f4(c1j, c2j) (31)

where θ, ψ and β are respectively the frailty parameter (σ1, σ2, ρ), the vector of baseline parame-
ters and the vector of regression coefficients.

The counts n1, n2, n3 and n4 are the number of individuals for which first and second failure
times (t1j, t2j) lie in the ranges t1j < c1j, t2j < c2j; t1j < c1j, t2j > c2j; t1j > c1j, t2j < c2j and
t1j > c1j, t2j > c2j respectively and

f1(t1j, t2j) =
∂2S(t1j, t2j)

∂t1j∂t2j

f2(t1j, c2j) =
∂S(t1j, c2j)

∂t1j

f3(c1j, t2j) =
∂S(c1j, t2j)

∂t2j
and f4(c1j, c2j) = S(c1j, c2j) (32)

Usually maximum likelihood estimators can be used to estimate the parameters invloved in
the model. Unfortunately computing the maximum likelihood estimators (MLEs) involves solving
a fourteen dimensional optimization problem for Model I and Model III and eleven dimensional
optimization problem for Model II and Model IV. As the method of maximum likelihood fails
to estimate the parameters due to convergence problem in the iterative procedure, so we use the
Bayesian approach. The traditional maximum likelihood approach to estimation is commonly used
in survival analysis, but it can encounter difficulties with frailty models. Moreover, standard max-
imum likelihood based inference methods may not be suitable for small sample sizes or situations
in which there is heavy censoring (see Kheiri et al. (2007)). Thus, in our problem a Bayesian
approach, which does not suffer from these difficulties, is a natural one, even though it is relatively
computationally intensive
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To estimate parameters of the model, the Bayesian approach is now popularly used, because
computation of the Bayesian analysis become feasible due to advances in computing technology.

To estimate the parameters of the model, the Bayesian approach is now popularly used,
because computation of the Bayesian analysis become feasible due to advances in computing tech-
nology. Several authors have discussed Bayesian approach for the estimation of parameters of
the frailty models. Some of them are, Ibrahim et al.(2001) and references their in, Santos and
Achcar (2010). Santos and Achcar (2010) considered parametric models with Weibull and gener-
alized gamma distribution as baseline distributions and gamma, log-normal as frailty distributions.
Ibrahim et al. (2001) and references therein considered Weibull model and piecewise exponential
model with gamma frailty. They also considered positive stable frailty models.

The joint posterior density function of parameters for given failure times is obtained as,

π(α1, λ1, γ1, α2, λ2, γ2, θ,β) ∝ L(α1, λ1, γ1, α2, λ2, γ2, θ,β)

×g1(α1)g2(λ1)g3(γ1)g4(α2)g5(λ2)g6(γ2)g7(θ)
5∏
i=1

pi(βi)

where gi(.) (i = 1, 2, · · · , 7) indicates the prior density function with known hyper parameters
of corresponding arguments for baseline parameters and frailty variance; pi(.) is prior density
function for regression coefficient βi; βi represents a vector of regression coefficients except βi,
i = 1, 2, . . . , k and likelihood function L(.) is given by equation (31). Here we assume that all the
parameters are independently distributed.

To estimate the parameters of the model, we used Metropolis-Hastings algorithm and Gibbs
sampler. We monitored the convergence of a Markov chain to a stationary distribution by Geweke
test (Geweke 1992)and Gelman-Rubin Statistics (Gelman and Rubin, 1992). Trace plots, coupling
from the past plots and sample autocorrelation plots are used to check the behaviour of the chain,
to decide burn-in period and autocorrelation lag respectively.

Algorithm consists in successively obtaining a sample from the conditional distribution of
each of the parameter given all other parameters of the model. These distributions are known as
full conditional distributions. In our case full conditional distributions are not easy to integrate out.
So full conditional distributions are obtained by considering that they are proportional to the joint
distribution of the parameters of the model.

We have full conditional distribution of the parameter α1 with frailty as,

π1(α1 | λ1, γ1, α2, λ2, γ2, θ,β) ∝ L(α1, λ1, γ1, α2, λ2, γ2, θ,β) · g1(α1) (33)

We have full conditional distribution of the parameter α1 without frailty as,

π1(α1 | λ1, γ1, α2, λ2, γ2,β) ∝ L(α1, λ1, γ1, α2, λ2, γ2,β) · g1(α1) (34)

Similarly full conditional distributions for other parameters can be obtained.

To estimate parameters of the model, the Bayesian approach is now popularly used, because
computation of the Bayesian analysis become feasible due to advances in computing technology.



12 DAVID D. HANAGAL [Vol. 18, No. 1

8. Analysis of Kidney Infection Data

To illustrate the Bayesian estimation procedure we use kidney infection data of McGilchrist
and Aisbett (1991). The data related to recurrence times counted from the moment of the catheter
insertion until its removal due to infection for 38 kidney patients using portable dialysis equipment.
For each patient, the first and the second recurrence times (in days) of infection from the time of
insertion of the catheter until it has to be removed owing to infection is recorded. The catheter may
have to be removed for reasons other than kidney infection and this is regarded as censoring. So
the survival time for a given patient may be the first or the second infection time or the censoring
time. After the occurrence or censoring of the first infection sufficient (ten weeks interval) time
was allowed for the infection to be cured before the second time the catheter was inserted. So the
first and the second recurrence times are taken to be independent apart from the common frailty
component. The data consists of five risk variables age, sex and disease type GN, AN and PKD
where GN, AN and PKD are short forms of Glomerulo Neptiritis, Acute Neptiritis and Polycyatic
Kidney Disease.

Table 1 in appendix shows the first and second recurrence times with recurrence indicator
variable (0-censored, 1-recurrence) and covariates age, sex (0-male, 1-female), and three indicator
variables GN, AN, and PKD for six patients only. One can get the entire Table from McGilchrist
and Aisbett(1991).

Let T1 and T2 be the first and the second recurrence time to infection. Five covariates age,
sex and presence or absence of disease type GN, AN and PKD are represented by X1, X2, X3,
X4, and X5. First we check goodness of fit of the data for the inverse Gaussian frailty distributions
with two baseline distributions and then we apply the Bayesian estimation procedure. To check
goodness of fit of kidney data set, we consider Kolmogrove-Smirnov (K-S) test for two baseline
distributions. Table 2 gives the p-values of goodness of fit test for Model I and Model III. Thus
from p-values of K-S test we can say that there is no statistical evidence to reject the hypothesis
that data are from the Model I and Model III in the marginal case and we assume that they also fit
for bivariate case.

A widely used prior for frailty parameters σ1 = σ2 are the gamma distribution
G(0.0001, 0.0001). In addition, we assume that the regression coefficients are normal with
mean zero and large variance say 1000. Similar types of prior distributions are used in Ibrahim
et al. (2001), Sahu et al. (1997) and Santos and Achcar (2010). So in our study we also use
same non informative prior for frailty parameters σ1, σ2 and regression coefficients βi, i = 1, .., 5.
Since we do not have any prior information about baseline parameters, λ1, α1, λ2 and α2, prior
distributions are assumed to be flat. We consider two different non-informative prior distributions
for baseline parameters, one is G(a1, a2) and another is U(b1, b2). All the hyper-parameters
a1, a2, b1 and b2 are known. Here G(a, b) is the gamma distribution with the shape parameter a
and the scale parameter b and U(b1, b2) represents uniform distribution over the interval (b1, b2).
For correlation parameter we use uniform distribution U(0, 1). We use different values of baseline
parameters for Model I, Model II and Model III. We assume the value of the hyper-parameters as
a1 = 1, a2 = 0.0001, b1 = 0 and b2 = 100.

We run two parallel chains for all four models using two sets of prior distributions with the
different starting points using the Metropolis-Hastings algorithm and the Gibbs sampler based on
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normal transition kernels. We iterate both the chains for 100000 times. As seen in the simulation
study here also we got nearly the same estimates of parameters for both the set of prior, so estimates
are not dependent on the different prior distributions. The convergence rate of the Gibbs sampler
for both the prior sets is almost the same. Also both the chains shows somewhat similar results, so
we present here the analysis for only one chain with G(a1, a2) as prior for the baseline parameters,
for all the four models.

The Gelman-Rubin convergence statistic values are nearly equal to one and the Geweke test
statistic values are quite small and the corresponding p-values are large enough to say that the
chains attain stationary distribution. The posterior mean and the standard error with 95% credible
intervals, the Gelman-Rubin statistics values and the Geweke test values with p-values for Model
I to III are presented in Table 3, 4, and 5. The AIC, BIC and DIC values for all three models are
given in Table 6. The Bayes factors for all models are given in Table 7.

In order to compare the proposed models we use the Akaike information criteria (AIC),
Bayesian information criteria (BIC) and deviance information criteria (DIC). The comparison be-
tween three proposed models is done using AIC, BIC and DIC values given in Table 6. The smallest
AIC value is Model-II (linear failure distribution with frailty). Same result hold for BIC and DIC
value. To take the decision about Model I, Model II, and Model III, we use the Bayes factor. The
Bayesian test based on the Bayes factors for Model II against Model I is 40.4254 and Model II
against Model III is 48.6518 which are high and strongly support Model II for kidney infection
data set. Some patients are expected to be vary prone to infection compared to others with same
covariate value. This is not surprising, as seen in the data set there is a male patient with infection
time 8 and 16, and there is also male patient with infection time 152 and 562. Table 6 shows that
Model II is better then other two models. From Table 6 and 7, we can observe that, Model II is best.
We can observe that the regression coefficients for all the three models are different. The credible
interval of the regression coefficient β2 does not contain zero which indicates that the covariate sex
is significant for all the models. But in Model I and Model III β5 is significant. Negative value of
β2 indicates that the female patients have a slightly lower risk for infection. Negative value of β5,
the regression coefficient corresponding to the covariate X5 (the disease type PKD) indicates the
absence of the disease type PKD in the patients have lover risk of infection in Model I and Model
II.

9. Conclusions

In this paper we discuss results for inverse Gaussian correlated frailty models with three
different base line distributions. We use the Pareto, LFR and Burr as a baseline distributions. Main
aim of our study is to check which distribution with inverse Gaussian correlated frailty fits better.
To estimate the parameters in the inverse Gaussian frailty models, we use Bayesian approach.

Different prior gives the same estimates of the parameters. The convergence rate of the
Gibbs sampling algorithm does not depend on these choices of the prior distributions in our pro-
posed model for kidney infection data. The estimate of σ from the correlated frailty models show
that there is a strong evidence of high degree of heterogeneity in the population of patients. The
covariate sex is the only covariate which is significant for all models. Negative value of regres-
sion coefficient (β2) of covariate sex indicates that the female patients have a slightly lower risk of
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infection. Negative value of β5 indicates that the absence of the disease type PKD in the patients
have lover risk of infection in Model I and Model II

The comparison between three proposed models is done using AIC, BIC and DIC values.
The smallest AIC value is for Model II (linear failure rate distribution with correlated frailty). The
same result holds for BIC and DIC values. We observe from Tables 8 and 9 that the Model II
is best. Also we can conclude that the correlated inverse Gaussian correlated frailty with the lin-
ear failure rate distribution as the baseline distribution is a better fit than other correlated inverse
Gaussian correlated frailty models. We compare also with correlated gamma frailty and corre-
lated inverse Gaussian frailty models suggested by Hanagal et al. (2017) and Hanagal and Pandey
(2020) and observe that correlated inverse Gaussian frailty with linear failure rate baseline distribu-
tion performs better than correlated gamma frailty and correlated inverse Gaussian frailty models
proposed by Hanagal et al. (2017) and Hanagal and Pandey (2020) for kidney infection data set.
By referring all the above analysis, now we are in a position to say that, we have suggested a new
correlated inverse Gaussian frailty model with the linear failure rate distribution as the baseline
distribution which is the best in the proposed models for modeling of kidney infection data.
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Appendix : Summary of Tables

Table 1: Kidney infection data

Pat Time1 Ind1 Time2 Ind2 Age Sex GN AN PKD
1 8 1 16 1 28 0 0 0 0
2 23 1 13 0 48 1 1 0 0
3 22 1 28 1 32 0 0 0 0
4 447 1 318 1 31.5 1 0 0 0
5 30 1 12 1 10 0 0 0 0
6 24 1 245 1 16.5 1 0 0 0

Table 2: p-values of K-S statistics for goodness of fit test for Kidney infection data set

Recurrence time
Distribution first second
Model I 0.6641 0.7349
Model II 0.7523 0.8386
Model III 0.6256 0.7256

Table 3: Posterior summary for Kidney infection data set Model I

Parameter Estimate Standard Lower Upper Geweke p Gelman
Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 3150; autocorrelation lag = 300

α1 7.2734 0.32204 6.8439 7.8768 0.005102 0.50203 1.0014
λ1 0.0879 0.0179 0.0094 0.1076 -0.001360 0.49945 1.0089
α2 2.0142 0.10723 1.6334 2.51025 -0.003313 0.49867 1.0043
λ2 0.0943 0.02331 0.0096 0.2722 -0.014091 0.49437 0.9999
ρ 0.6594 0.05703 0.5540 0.76740 -0.018870 0.49247 1.0009
σ 0.6009 0.04958 0.5072 0.69349 -0.004090 0.49836 1.0008
β1 0.0134 0.00802 0.0092 0.02820 -0.003226 0.49871 0.9999
β2 -1.0468 0.41285 -1.8688 -0.81025 0.005089 0.50203 1.0008
β3 0.2210 0.22927 0.3472 0.30237 0.006850 0.50273 1.2086
β4 0.5262 0.03882 0.3940 0.64252 -0.002433 0.49902 1.0013
β5 -0.7012 0.17155 -0.6208 -0.81960 0.005508 0.50219 0.9999
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Table 4: Posterior summary for Kidney infection data set Model II

Parameter Estimate Standard Lower Upper Geweke p Gelman
Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 3500; autocorrelation lag = 300

α1 0.0318 1.59643 0.01178 0.0563 0.00874 0.5034 1.0010
λ1 0.0316 0.01825 0.0191 0.0495 -0.00126 0.4994 1.0089
α2 0.0222 0.01799 0.0139 0.0304 -0.00242 0.4990 1.0064
λ2 0.0093 0.0019 0.0076 0.0229 -0.00082 0.4996 1.0110
ρ 0.8053 0.09019 0.62666 0.9720 0.00595 0.5023 1.0005
σ 0.7014 0.30422 0.16458 1.2912 -0.00405 0.4983 1.0026
β1 0.0166 0.00960 -0.00129 0.0345 -0.00481 0.4980 1.0041
β2 -1.9902 0.37287 -2.71766 -1.2694 0.00942 0.5037 1.0002
β3 0.2212 0.21856 -0.16428 0.2657 -0.01161 0.4953 1.0015
β4 0.7261 0.03457 -0.08878 -0.0388 -0.02241 0.4910 1.0058
β5 -0.9701 0.2743 -2.14538 -0.7748 0.00394 0.5015 0.9999

Table 5: Posterior summary for Kidney infection data set Model III

Parameter Estimate Standard Lower Upper Geweke p Gelman
Error Credible Credible values values & Rubin

Limit Limit values
burn in period = 3500; autocorrelation lag = 300

α1 2.2412 0.19643 2.0217 2.4363 0.00874 0.5034 1.0010
λ1 0.0071 0.0009 0.0041 0.0098 -0.00126 0.4994 1.0089
α2 0.0272 0.0199 0.0143 0.0404 -0.00242 0.4990 1.0064
λ2 0.0113 0.0009 0.0069 0.0242 -0.00082 0.4996 1.0110
ρ 0.7045 0.08419 0.62686 0.8720 0.00595 0.5023 1.0005
σ 0.7324 0.2002 0.56458 0.8912 -0.00405 0.4983 1.0026
β1 -0.016 0.0082 -0.0712 0.0215 -0.00481 0.4980 1.0041
β2 -1.6413 0.1737 -1.9766 -1.4694 0.00942 0.5037 1.0002
β3 0.0867 0.0185 -0.16428 0.2243 -0.01161 0.4953 1.0015
β4 0.2182 0.03247 -0.0987 0.3368 -0.02241 0.4910 1.0058
β5 -0.1284 0.0274 -0.2453 0.0848 0.00394 0.5015 0.9999

Table 6: Comparison of AIC, BIC and DIC

Model AIC BIC DIC

Model I 678.3812 781.5814 660.5836
Model II 656.4315 665.3621 641.2143
Model III 793.2195 799.5715 774.8951
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Table 7: Bayes Factor for three models

Numerator model Bayes factor Range Evidence against
against model in denominator

denominator model
Model II against Model I 40.4254 > 10 very strong
Model I against Model III 12.3912 > 10 very strong
Model II against Model III 48.6518 > 10 very strong
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Abstract 
 

Information about the household debt behaviour in different occupational categories is of 

key importance to the Governmental organization for taking effective policy measures targeting 

the vulnerable groups. This paper illustrates small area estimation (SAE) methodology to estimate 

proportion of indebted households in rural areas for the two major occupation categories- rural 

cultivator and rural non-cultivator as well as for both categories combined together across all the 

30 districts of Karnataka state in India using the data of All India Debt and Investment Survey 

2012-13 and population census 2011. The findings show that the district-level estimates of 

incidence of indebtedness obtained from SAE are more precise than the direct survey estimates. A 

spatial map has also been produced to observe the inequality in distribution of indebtedness within 

districts and in each occupational category across districts. Such maps are definitely useful for 

framing consistent policy actions and fund disbursement for the indebted household mass. 

 

Key words: Small area estimation; Generalized linear mixed model; Indebtedness; Spatial Map. 

___________________________________________________________________________ 

1. Introduction 

 

Agriculture plays an important role in the economy of Karnataka and it is the main 

occupation for more than 60% of population. Karnataka is a drought-prone region with a large 

proportion of wasteland and having the second largest arid zone in the country after Rajasthan. 

And due to these factors, the state has been facing agrarian distress with increasing incidence of 

farmers’ suicides since 1997. In fact, the rate of farmer suicides in Karnataka has hit the highest 

level in a decade, topping the list after Maharashtra, highlighting agrarian distress in the state, 

according to the report Accidental Deaths and Suicides in India 2015 published by National Crime 

Records Bureau (NCRB). According to NCRB 2015 data, about 1,197 farmers committed suicides 

in Karnataka during 2014-15; the state was just behind Maharashtra and Telangana. The NCRB 

also found that about 79% suicides (946 out of 1,197) in Karnataka were due to bankruptcy or 

indebtedness. The pre-requisite for any effective policy approach taken in this regard is a proper 

statistical and economic framework that allows for an effective analysis and monitoring of farmers’ 
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distress. Measure of disaggregated level indebtedness can be an important tool to the policy makers 

to mark certain region or group for upliftment and reduce the situation of agrarian distress or 

farmers’ suicides. In this study we attempt to estimate such micro or disaggregated level incidence 

of indebtedness at micro or local level using the area level small area model. 

 

Most of the large scale surveys are planned to produce reliable estimates at macro or higher 

geographical (e.g. national and state) level, and cannot be used directly to generate reliable micro 

or local (also referred to as small area) level estimates because of the small sample sizes (Rao and 

Molina 2015). This is because, large scale survey designed for a large population (e.g. national 

and state level) may select a small number of units or even no unit from the small area of interest 

(e.g. district or further disaggregation of district). Hence, sample sizes from small areas (or small 

domains) are too small to justify the use of traditional direct survey estimates. The underlying 

theory in the literature of survey sampling that helps in resolving the problem of smaller sample 

sizes is referred as small area estimation (SAE) technique. The technique is model-based methods 

that links the variable of interest from survey with the auxiliary information available from other 

data sources for small areas and hence increase the overall (effective) sample size and precision. 

In this paper we employ area level SAE technique to produce reliable estimates of the incidence 

of indebtedness among cultivators and non-cultivators categories as well as for both the categories 

combined in different districts of rural areas of Karnataka in India by linking data from the All-

India Debt and Investment Survey (AIDIS) 2012-13 of National Sample Survey Office (NSSO), 

and the Population Census 2011. This work will enable us to obtain spatial distribution of 

incidence of indebtedness as well as regional inequality in such measure of indebtedness among 

the farm families and other families of rural areas in Karnataka. The rest of the paper has been 

organized into five sections. In Section 2, we discuss the data used in the paper. Section 3 provides 

an overview of SAE technique that has been used to generate incidence of indebtedness among 

occupational category by districts in Karnataka. In Section 4, we present diagnostic procedures to 

examine model assumptions and validate small area estimates including discussion about the 

results. Finally, Section 5 provides concluding remarks and some recommendations.  

 

2. Data Description  

 

This Section describes about data used in this analysis. In particular, the SAE analysis is 

based on the AIDIS 2012-13 data for rural areas of the State of Karnataka in India and the 

Population Census 2011. The sampling design used in the AIDIS 2012-13 data is stratified multi-

stage random sampling with districts as strata, the census villages in the rural sector as first stage 

units and households as the ultimate stage units. For the state of Karnataka, there are a total of 

2340 surveyed rural households (including both indebted and non-indebted) spread over 30 

districts. The rural households are broadly classified into two types; namely; cultivator and non-

cultivator households. As per the concepts and definitions of AIDIS, all rural households operating 

at least 0.002 hectare of land during the 365 days preceding the date of survey are treated as 

‘cultivator households’. On the other hand, all rural households operating no land or land less than 

0.002 hectare are considered to be non-cultivator households. What follows, based on land holding 

size (LHS), we denote three categories of households: (i) LHS-A: All households (ii) LHS-C: 

Cultivator-households with LHS greater than 0.002 ha, and (iii) LHS-NC: Non cultivator-

households with LHS less or equal to 0.002 ha.  Here, the districts and district by household 

categories are small areas of interest. Table 1 presents the distribution of district-wise sample sizes 
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for three categories of households. Across all the districts (i.e. LHS-A), the sample size ranges 

between a minimum of 55 households to a maximum of 112 with an average of 78 households. 

The sample sizes become too small if sub-grouped further by land holding size categories (i.e. 

district by cultivator and non-cultivator categories). That is, the sample size of rural cultivators 

(LHS-C) varies from a minimum of 23 to a maximum of 90 households across the 30 districts with 

an average of 49 households. And for non-cultivators (LHS-NC), the sample size varies from a 

minimum of 11 to a maximum of 51 households across the districts with an average of 29 

households. Such small samples from the districts pose a challenge in deriving reliable direct 

estimates of indebtedness. Thus, SAE is an obvious choice to address this problem. 

 

Table 1: Distribution of sample size by occupational categories across districts in rural 

Karnataka 

District All Cultivator 
Non-Cultivator 

District All Cultivator 
Non-

Cultivator 

Belgaum 112 67 45 Tumkur 112 90 22 

Bagalkot 84 57 27 Kolar 56 45 11 

Bijapur 112 85 27 Bangalore 56 23 33 

Gulbarga 98 60 38 Bangalore Rural 56 34 22 

Bidar 84 49 35 Mandya 112 85 27 

Raichur 84 55 29 Hassan 84 63 21 

Koppal 84 63 21 Dakshina Kannada 84 41 43 

Gadag 56 31 25 Kodagu 56 35 21 

Dharwad 56 28 28 Mysore 112 71 41 

Uttara Kannada 56 32 24 Chamarajanagar 56 39 17 

Haveri 84 52 32 Ramanagara 55 24 31 

Bellary 112 72 40 Chikkaballapura 56 42 14 

Chitradurga 84 33 51 Yadgir 56 44 12 

Davanagere 84 58 26 Minimum 55 23 11 

Shimoga 87 50 37 Maximum 112 90 51 

Udupi 56 28 28 Average 78 49 29 

Chikmagalur 56 27 29 Total 2340 1483 857 

 

Two types of variables are utilized in SAE technique, the variable of interest and the 

auxiliary variable. As noticed in Section 1, the auxiliary (covariates) variables play an important 

role in SAE. The auxiliary variables for this analysis are available at district level from the Census 

2011. The Population Census 2011 provides a number of covariates at district level that can be 

utilized for small area modeling. We therefore carried out a preliminary data analysis in order to 

define appropriate covariates for SAE modeling, using Principal Component Analysis (PCA) to 

derive composite scores for selected groups of variables. In particular, we carried out PCA 

separately on three groups of variables, all measured at district level and identified as P1, P2 and 

P3 below. The first group (P1) consisted of literacy rates by gender and proportions of worker 

population by gender. The first principal component (P11) for this group explained 61% of the 

variability, while adding the second principal component (P12) increased explained variability to 

85%. The second group (P2) consisted of the proportions of main worker by gender, proportions 

of main cultivator by gender and proportions of main agricultural labourer by gender. The first 

principal component (P21) for this second group explained 48% of the variability in the P2 group, 

while adding the second component (P22) increased explained variability to 62%. Finally, the third 

group (P3) consisted of proportions of marginal cultivator by gender and proportions of marginal 

agriculture labourers by gender. The first principal component (P31) for this third group explained 
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37% of the variability in the P3 group, while adding the second component (P32) increased 

explained variability to 60%. Finally, three variables, P11, P21 and P31 that significantly explained 

the model with AIC value 51.59, are identified for the use in SAE analysis. In this paper, the Y-

variable of interest is the indebted households, i.e. whether a household is in debt or not. A 

household is defined to be indebted if it has outstanding loan (from respective source) as on 

30.06.2012. The target is to estimate the proportion of indebted household (i.e. the incidence of 

indebtedness) at the district (LHS-A) and district by household category (LHS-C and LHS-NC) 

level. Incidence of indebtedness (IOI) is defined as number of households with any one loan (from 

respective source) divided by all households in that population segment.  

 

3. Methodological Framework 

 

This Section describes the methodology used in the small area analysis considered in this 

paper. To begin with, we assume a finite population U of size N which is consisting of D  non-

overlapping and mutually exclusive small areas (or district in this paper). We assume that a sample 

s of size n is drawn from this population using a probability sampling method. Here, a subscript d 

has been used to denote quantities related to small area d . Let dU  and ds  be the population and 

sample of sizes dN  and dn  in small area d , respectively such that 
1

D

dd
U U


 , 

1

D

dd
N N


 , 

1

D

dd
s s


 and 

1

D

dd
n n


 . We use subscript s and r respectively to denote quantities related to 

sample and non-sample parts of the population. Let diy  denotes the value of the variable of interest 

for unit i ( 1,..., )di N
 
in area d. The variable of interest, with values diy , is binary (e.g. 1diy   if 

ith household is in debt and 0 otherwise) in area d , the aim is to estimate the small area population 

count, 
d

d dii U
y y


 , or equivalently the small area proportion, 1

d d dP N y , in area d. The 

standard direct survey estimator (hereafter denoted by DIR) for dP  is, 
d

dw di dii s
p w y


  where 

d
di di dii s

w w w


   is the normalized survey weight with 1
d

dii s
w


  and diw  is the survey 

weight for unit i in area d. The estimated design-based variance of DIR is approximated by 
2( ) ( 1)( )

d
dw di di di dwi s

v p w w y p


   , with the simplifications 1

di diw a  , ,di di dia a  and 

, , ,di dj di dja a a i j   where dia  is the first order inclusion probability of unit i in area d and ,di dja  

is the second order inclusion probability of units i and j in area d. Under simple random sampling 

(SRS), 1

di d dw N n  and DIR is then 1

d d sdp n y , with estimated variance 
1( ) (1 )d d d dv p n p p  , 

where 
d

sd dii s
y y


  denotes the sample count in area d. Similarly, 

r
rd dii s

y y


  denotes the 

non-sample count in area d. If the sampling design is informative, this SRS-based version of DIR 

may be biased. Furthermore, DIR is based on area-specific sample data and can therefore be very 

imprecise when the area specific sample size is small or may even be impossible to compute if this 

sample size is zero. However, model-based SAE procedures that ‘borrow strength’ via a common 

statistical model for all the small areas can be used to address this problem. If we ignore the 

sampling design, the sample count sdy  in area (i.e. district) d can be assumed to follow a Binomial 

distribution with parameters dn  and d , i.e. ~ Bin( , )sd d dy n  , where d  is the probability of 

occurrence of an event for a population unit in area d or the probability of prevalence in area d. 
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Similarly, for the non-sample count, ~ ( , )rd d d dy Bin N n  . Further, sdy  and rdy  are assumed to 

be independent binomial variables with d  being a common success probability.  

 

Let 
dx  be the k-vector of covariates for area d from available data sources. Following 

Chandra et al. (2011) the model linking the probability d  with the covariates 
dx  is the logistic 

linear mixed model of the form 

 

 1( ) ln (1 ) T

d d d d d dlogit u       x β ,                              (1)  

with  
1

exp( ) 1 exp( )T T

d d d d du u


   x β x β . Here β  is the k-vector of regression coefficients, 

often known as fixed effect parameters, and du  is the area-specific random effect that captures the 

area dissimilarities. We assume that du ’s are independently and normally distributed with mean 

zero and variance 2

u . Here, we observe that model (1) relates the area level proportions (direct 

estimates) from the survey data to the area level covariates. The Fay and Herriot (FH) method for 

SAE is based on area level linear mixed model and their approach is applicable to a continuous 

variable. Model (1), a special case of a generalized linear mixed model (GLMM) with logit link 

function, is suitable for modelling discrete data, particularly the binary variables. (Chandra, 2013; 

Chandra et al., 2017). Under model (1), an empirical predictor (EP) of the population count 
dy  in 

area d is 

   
1

ˆ ˆˆ ˆ ˆ ˆexp( ) 1 exp( )EP T T

d sd rd sd d d d d d dy y y y N n u u
        

  
x β x β .              (2) 

 

An estimate of the corresponding proportion in area d is obtained as 
1ˆ ˆEP EP

d d dp N y .  It is 

obvious that in order to compute the small area estimates by equation (2), we require estimates of 

the unknown parameters   and 1( ,..., )T

Du uu . We can observe that the parameters β  and 2

u  

are the same for every area; i.e., they can be estimated using the data from all small areas. We use 

an iterative procedure that combines the Penalized Quasi-Likelihood (PQL) estimation of   and 

u  with REML estimation of 2

u  to estimate unknown parameters (Chandra et al., 2011).  

 

The mean squared error (MSE) estimates are computed to assess the reliability of estimates 

and also to construct the confidence interval (CI). The MSE estimate of (2) is:  

 

 2 2 2

1 2 3
ˆ ˆ ˆ ˆ( ) ( ) ( ) 2 ( )EP

d u u umse p M M M     .                             (3) 

 

Following Chandra et al. (2011) we define few notations to express different components of (3). 

We denote by  ˆ ˆ ˆ(1 )EP EP

s d d ddiag n p p V  and  ˆ ˆ ˆ( ) (1 )EP EP

r d d d ddiag N n p p  V   the diagonal 

matrices defined by the corresponding variances of the sample and non-sample parts, respectively. 

We then define  1 ˆ( )d rdiag N A V ,  1 ˆ ˆ ˆ( )d rd sdiag N  B = V X ATV X  and  
1

2ˆ ˆˆ
u D s



T I V= + , 

where 
1=( ,...., )T T T

DX x x  is a D k  matrix, and 
DI  is an identity matrix of order D. We further write 
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1

11
ˆ ˆ ˆ ˆ ˆT T

s s s



 T X V X X V TV X  and 
22 11

ˆ ˆ ˆ ˆ ˆ ˆ ˆT T

s sT T TV XT X V T= . Under model (1), the components 

of MSE estimate are: 2

1
ˆˆ( ) T

uM   ATA , 2

2 11
ˆˆ( ) T

uM   BT B  and  2 2

3
ˆ ˆˆˆ ˆ( ) (u i j uM trace v    )  

with ˆˆ ˆ ˆˆ T

sd D sd sd V I V V . Let us write ˆ  AT  and 
2 2

2

ˆ
ˆ

ˆ ˆ( ) ( )
u u

i i i u   
 

 
       TA , where 

iA  is the 
thi  row of the matrix A . Here 2ˆ( uv  )  is the asymptotic covariance matrix of the estimate 

of variance component 2ˆ
u , which can be evaluated as the inverse of the appropriate Fisher 

information matrix for 2ˆ
u . This term also depends upon whether we use ML or REML estimate 

of 2ˆ
u . We use REML estimates for 2ˆ
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4. Results 

 

The estimation of district level estimates of indebted household for cultivators, non-

cultivators and their combined category has been carried out by using direct and model-based 

methods. In the present study, two types of diagnostics measures are employed: (i) the model 

diagnostics, and (ii) the diagnostics for the small area estimates. The model diagnostics have been 

applied to verify model assumptions. The second diagnostics have been applied to validate 

reliability of the model-based small area estimates.  

 

In model (2), the random area specific effects ( 1,.., )du d D  have been assumed to have a 

normal distribution with mean zero and fixed variance 
2

u . If the model assumptions are satisfied, 

then the area (or district) level residuals are expected to be randomly distributed and not 

significantly different from the regression line 0y  , where under model (2), the area level 

residuals are defined as ˆˆ T

d d dr   x β . The histogram and q-q plot are used to examine the 

normality assumption. Figure 1 presents the histogram of the district-level residuals, distribution 

of the district-level residuals and normal q-q plot of the district-level residuals. Besides these 

graphical methods for checking normality, Shapiro-Wilk (SW) test (i.e. test based on uncertainty 

measurement in terms of p-value) has been performed. The p-value from SW test indicates the 

chance that the sample comes from a normal distribution. Typically, if p-value is less than 0.05 we 

can conclude that the sample deviates from normality. Table 2 reports the results of SW test.  

 

Table 2: Shapiro-Wilk (SW) test result for the occupational categories 

Occupational category SW statistic p-value 

All 0.991 0.996 

Cultivator 0.986 0.946 

Non-Cultivator 0.961 0.332 

 

For assessing validity and reliability of the model-based small area estimates, we applied a 

set of diagnostics. The values for the model-based small area estimates derived from the fitted 

model should be consistent with the unbiased direct survey estimates. In other words, these should 
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provide an approximation to the direct survey estimates that is consistent with these values being 

“close” to the expected values of the direct estimates. Again the model-based small area estimates 

should have mean squared errors significantly lower than the variances of the corresponding direct 

survey estimates. For this purpose, we consider three commonly used diagnostics, viz. the bias 

diagnostics, percentage coefficient of variation (CV %) and 95% confidence intervals for the small 

area estimates. We compute bias between average value of direct and model estimates (Bias) and 

average relative difference between direct and model estimates (RE) as: 

 

   1 1

1 1
   

D D

d dd d
Bias D Direct estimate D Model based estimate 

 
    and  

1

1

   

 

D d d

d
d

Direct estimate Model based estimate
RE D

Direct estimate





 
  

 
 . 

 

The values of Bias and RE are given in Table 3. The diagnostic results in Table 3 reveal that model-

based small area estimates are consistent with the direct survey estimates. 
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Figure 1: Histogram, distribution and normal q-q plots of the district-level residuals for 

model based SAE estimates of incidence of indebtedness 
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Table 3: Bias diagnostics for sample districts 

Occupation Category Bias RE 

All -0.004 -0.042 

Cultivator -0.006 -0.057 

Non-Cultivator -0.003 -0.131 

 

We compute %CV to assess the improved precision of the model-based estimates compared 

to the direct survey estimates. Estimates with large CVs are considered unreliable. The average 

(minimum, maximum) values of CV of direct and model-based (i.e. EP) estimates of indebtedness 

are 19.44% (9.35%, 32.45%) and 14.96% (9.56%, 19.82%), respectively. Similarly, the average 

(minimum, maximum) values of CV of direct and model-based estimates for cultivators and non-

cultivators are 21.61% (8.33%, 42.38%) and 14.88% (8.42%, 19.46%); 35.11% (14.89%, 54.41%) 

and 22.94% (12.3%, 31.53%), respectively. The district-wise distribution of percentage CV of the 

model-based estimates and the direct estimates for cultivator and non-cultivator as well as their 

combined category is shown in Figure 2. These plots show that model-based estimates have a 

higher degree of reliability as compared to the direct estimates. In general, 95% CIs for the direct 

estimates are wider than the 95% CIs for the model-based estimates. 95% CIs for the model-based 

estimates are more precise and contain both direct and model-based estimates of the incidence of 

indebtedness. The districts-wise estimates of proportion of indebted households along with 95% 

CIs for the 30 districts of Karnataka are presented in Table 4. The district-wise estimates of 

proportion of indebted households generated by EP method range between 31.5 to 60.7 % with an 

average of 46.8%. Similarly, the estimates of proportion of indebted households by occupational 

categories within districts ranges between 39.7 to 70.2% with an average of 53.3% for cultivators 

and 24 to 72.9% with average of 39.6% for non-cultivators (Table 4). The maximum proportion 

of indebted cultivator households (0.70) is reported in Hassan while Udupi (0.73) in case of non-

cultivator households. Overall, the maximum incidence of indebtedness (0.61) is found to be in 

district Haveri. In about 25 out of 30 districts, the incidence of indebtedness is higher among 

cultivator households as compared to non-cultivator households. The spatial mapping of the 

incidence of indebtedness among occupational categories (cultivators and non-cultivators) and 

also for their combined category is shown in Figure 3. Such mapping is useful in microscopic 

identification of location as well as extent of indebtedness of occupationally differentiated 

indebted households. 

 

         
LHC-A                                     LHS-C    LHS-NC 

Figure 2: District-wise coefficient of variation (%) for the direct (solid line,) and the model-

based SAE estimates (thin line, o) of the incidence of indebtedness 
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5. Conclusions 

 

The Census in India, like in other countries, usually has limited scope in collection of data. 

It focuses mainly on basic social and demographic information and that too at decennial interval. 

On the other hand, NSSO conducts regular surveys on a number of socio-economic indicators, but 

their utility is restricted to generate national and state level estimates, but not administrative units 

below state because of small sample sizes for such units. Due to emphasis on disaggregate level 

Sustainable Development Goal indicators, Government of India as well as different State 

Governments are now struggling with generation of disaggregate level statistics. The SAE is only 

indispensable alternative to meet the growing demand for such disaggregated level statistics 

needed for decentralized policy planning. Using SAE method to link data from the AIDIS 2012-

13 and the Population Census 2011, we have derived district level estimates of incidence of 

indebtedness among cultivators and non-cultivators categories as well as for both the categories 

combined in different districts of rural areas of Karnataka in India and mapped them to show the 

spatial variability in incidence of indebtedness at district level. The results might be useful for the 

program managers and policy planners to implement their policy and interventions effectively.  

 

The use of the diagnostic measure e.g. coefficient of variation and the comparison with direct 

estimates confirm that the model-based district level estimates are robust and provide reliable 

district level estimates of incidence of indebtedness. The results further confirm that the state level 

estimates of incidence of indebtedness reported in the AIDIS 2012-13 report mask the district level 

heterogeneity in rural areas of Karnataka. In particular, this study uncovers the district level 

incidence of indebtedness in rural areas of Karnataka with their accuracy measures. The region 

wise picture of indebtedness depicts that southern Karnataka is having higher cases of farm 

indebtedness, which may be due to more dependence on informal source of credit in this region. 

Cultivator households need credit on a continuous basis for meeting their working capital needs, 

hence limited formal source of credit may lead to rising chances of farm indebtedness in this 

category. It is noteworthy that the AIDIS data used in this study is based on reference year 2012-

13 which is almost seven years old. Obvious question arises that the present scenario would be 

different from what emerges from this study. But, AIDIS is the only regular source to obtain unit 

level data pertaining to farm indebtedness and the AIDIS-2012-13 is the latest available data for 

this purpose. Since there is no other recent and updated data available, the estimates generated 

based on this data is expected to be used as recent information by policy and research analyst and 

Government departments.     
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Figure 3: Maps of the incidence of indebtedness in rural Karnataka 
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Table 4: District and occupational category wise estimates of incidence of indebtedness in 

rural Karnataka along with 95% confidence interval (Lower and Upper) for the 

direct and model-based small area (EP) method 

Category Districts 
Direct EP 

Estimate Lower Upper Estimate Lower Upper 

A
ll

 

Belgaum 0.34 0.18 0.49 0.38 0.25 0.50 

Bagalkot 0.43 0.25 0.61 0.43 0.30 0.56 

Bijapur 0.34 0.20 0.48 0.38 0.25 0.51 

Gulbarga 0.65 0.48 0.83 0.57 0.43 0.71 

Bidar 0.27 0.14 0.40 0.33 0.20 0.46 

Raichur 0.43 0.27 0.58 0.43 0.31 0.56 

Koppal 0.42 0.18 0.66 0.42 0.27 0.58 

Gadag 0.38 0.20 0.57 0.41 0.27 0.55 

Dharwad 0.36 0.16 0.55 0.40 0.25 0.54 

Uttara Kannada 0.58 0.44 0.73 0.56 0.44 0.68 

Haveri 0.67 0.55 0.80 0.61 0.49 0.72 

Bellary 0.49 0.32 0.66 0.48 0.35 0.61 

Chitradurga 0.61 0.45 0.77 0.57 0.43 0.70 

Davanagere 0.37 0.20 0.53 0.40 0.27 0.54 

Shimoga 0.52 0.38 0.67 0.51 0.39 0.63 

Udupi 0.55 0.35 0.76 0.58 0.40 0.75 

Chikmagalur 0.46 0.25 0.66 0.46 0.32 0.60 

Tumkur 0.48 0.37 0.60 0.48 0.37 0.58 

Kolar 0.26 0.14 0.39 0.35 0.22 0.47 

Bangalore 0.32 0.18 0.46 0.39 0.26 0.52 

Bangalore Rural 0.22 0.08 0.37 0.32 0.20 0.43 

Mandya 0.56 0.40 0.73 0.53 0.41 0.66 

Hassan 0.62 0.48 0.76 0.58 0.46 0.71 

Dakshina Kannada 0.55 0.39 0.70 0.55 0.41 0.68 

Kodagu 0.61 0.41 0.82 0.54 0.37 0.72 

Mysore 0.63 0.49 0.77 0.56 0.44 0.68 

Chamarajanagar 0.64 0.44 0.83 0.57 0.42 0.71 

Ramanagara 0.46 0.31 0.60 0.46 0.34 0.58 

Chikkaballapura 0.35 0.18 0.53 0.42 0.27 0.56 

Yadgir 0.34 0.16 0.52 0.38 0.24 0.52 

C
u

lt
iv

at
o

r 

Belgaum 0.62 0.46 0.77 0.60 0.48 0.72 

Bagalkot 0.61 0.39 0.84 0.56 0.41 0.71 

Bijapur 0.35 0.18 0.52 0.42 0.27 0.58 

Gulbarga 0.50 0.29 0.71 0.49 0.33 0.64 

Bidar 0.41 0.23 0.60 0.46 0.32 0.61 

Raichur 0.53 0.33 0.74 0.55 0.40 0.69 

Koppal 0.55 0.31 0.79 0.54 0.39 0.70 

Gadag 0.54 0.29 0.80 0.53 0.37 0.69 

Dharwad 0.45 0.13 0.78 0.52 0.35 0.69 

Uttara Kannada 0.69 0.51 0.88 0.60 0.45 0.74 

Haveri 0.79 0.66 0.92 0.65 0.52 0.79 

Bellary 0.64 0.41 0.86 0.58 0.43 0.73 

Chitradurga 0.83 0.67 0.99 0.69 0.54 0.84 

Davanagere 0.42 0.22 0.61 0.44 0.29 0.59 
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Shimoga 0.54 0.35 0.73 0.55 0.41 0.69 

Udupi 0.49 0.23 0.75 0.55 0.36 0.75 

Chikmagalur 0.38 0.06 0.69 0.46 0.28 0.63 

Tumkur 0.55 0.41 0.69 0.55 0.44 0.66 

Kolar 0.26 0.12 0.40 0.40 0.26 0.54 

Bangalore 0.44 0.20 0.69 0.51 0.35 0.68 

Bangalore Rural 0.26 0.07 0.45 0.41 0.26 0.56 

Mandya 0.59 0.42 0.76 0.57 0.43 0.70 

Hassan 0.73 0.59 0.88 0.70 0.59 0.82 

Dakshina Kannada 0.57 0.34 0.79 0.52 0.34 0.71 

Kodagu 0.62 0.36 0.89 0.56 0.36 0.77 

Mysore 0.66 0.49 0.82 0.56 0.42 0.70 

Chamarajanagar 0.55 0.30 0.80 0.55 0.39 0.71 

Ramanagara 0.51 0.30 0.71 0.51 0.36 0.65 

Chikkaballapura 0.41 0.20 0.62 0.51 0.36 0.67 

Yadgir 0.32 0.13 0.51 0.45 0.30 0.61 

 

N
o
n

-C
u
lt

iv
at

o
r 

Belgaum 0.22 0.01 0.42 0.29 0.14 0.43 

Bagalkot 0.14 0.01 0.27 0.24 0.10 0.38 

Bijapur 0.31 0.09 0.54 0.35 0.19 0.52 

Gulbarga 0.77 0.55 1.00 0.58 0.40 0.76 

Bidar 0.13 0.00 0.25 0.28 0.12 0.43 

Raichur 0.27 0.06 0.48 0.29 0.13 0.45 

Koppal 0.36 0.05 0.67 0.34 0.16 0.51 

Gadag 0.22 0.03 0.40 0.28 0.12 0.44 

Dharwad 0.27 0.05 0.48 0.30 0.15 0.46 

Uttara Kannada 0.45 0.22 0.68 0.49 0.33 0.65 

Haveri 0.52 0.30 0.73 0.46 0.31 0.62 

Bellary 0.28 0.08 0.47 0.32 0.16 0.47 

Chitradurga 0.50 0.29 0.70 0.49 0.33 0.64 

Davanagere 0.31 0.04 0.58 0.38 0.20 0.55 

Shimoga 0.51 0.28 0.73 0.46 0.30 0.62 

Udupi 0.71 0.49 0.94 0.73 0.55 0.91 

Chikmagalur 0.53 0.26 0.79 0.47 0.30 0.64 

Tumkur 0.21 0.03 0.39 0.28 0.14 0.43 

Kolar 0.30 -0.02 0.62 0.39 0.21 0.57 

Bangalore 0.24 0.09 0.39 0.30 0.15 0.45 

Bangalore Rural 0.13 0.00 0.26 0.28 0.14 0.43 

Mandya 0.48 0.09 0.86 0.41 0.22 0.59 

Hassan 0.33 0.06 0.60 0.32 0.13 0.50 

Dakshina Kannada 0.52 0.31 0.74 0.56 0.38 0.73 

Kodagu 0.60 0.26 0.93 0.37 0.14 0.60 

Mysore 0.59 0.35 0.84 0.50 0.33 0.67 

Chamarajanagar 0.78 0.51 1.05 0.62 0.44 0.80 

Ramanagara 0.40 0.19 0.61 0.42 0.27 0.57 

Chikkaballapura 0.29 0.03 0.55 0.35 0.17 0.54 

Yadgir 0.46 0.04 0.88 0.34 0.16 0.53 
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Abstract 

Estimation of transition probabilities between disease states and determination of length 
of stay in each state are two major concerns underlying the multi-state model based approach 
for cost-effectiveness analysis (CEA). The objective of this study is to apply and compare 
two different methods to estimate transition probabilities between three disease states viz., 
progression-free, progression, and death, for performing CEA of chemoimmunotherapy, as 
compared to chemotherapy, for treating patients suffering from Lymphocytic Leukaemia. In 
the first method, we fit a parametric survival model to the events progression and death, and 
as an alternative approach, we fit a Multinomial- Dirichlet Bayesian model to the number of 
transitions between different states. In the first method a Weibull clock-forward time-
inhomogeneous semi-markov model is used, while in the second method the transition 
probabilities are assumed to be time-independent and are estimated through simulations from 
their posterior distributions using MCMC implementation.  

 
Results from both methods suggest that chemoimmunotherapy is cost-effective over 

chemotherapy. However, a comparison between the predictions of long term transitions from 
the two methods suggests that the method based on Weibull time-inhomogeneous semi-
markov model provides more reliable estimates, especially when the time horizon of the 
study is long. Chemoimmunotherapy is cost effective when patients are willing to pay an 
additional cut off cost of around 13,000-15,000 GBP (by first method) for per unit additional 
gain in QALY.  

Key words: ICER; Multi-state model; IPD reconstruction; Rituximab; Willingness to pay; 
Health economics; Total length of stay. 

1. Introduction 
 

Scientific comparison of alternative treatments for a disease, both in terms of desired 
outcome and costs, is imperative for optimal decision making in medical sciences. Cost-
effectiveness analysis (CEA) is an important aspect of Health Economics and deals with the 
evaluation of cost per outcome gained. Outcome is usually defined in terms of survivability 
and hence, cost-effectiveness analysis evaluates both survival data and costs data 
simultaneously.  
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Markov, semi-Markov and non-Markov multi-state models provide a comprehensive 
approach towards CEA of interventions for diseases for which discrete progression states can 
be defined based on certain clinical and pathological markers. Briggs and Sculpher (1998) 
provided a comprehensive structure of markov modelling for health economic evaluation and 
also discussed the importance of scrutinizing the Markovian assumption before estimating the 
transition probabilities. In a significant number of work based on Markov decision-analytic 
models in health economics, authors have preferred to obtain transition probabilities from 
published literature, refer Gharaibeh et al. (2015), Veldhuijzen et al. (2010), Lee et al. 
(2013), and Yeh et al. (2010). However, as the time horizon of the study from which 
published estimates are obtained is generally different from the time horizon of the study 
being conducted, these estimates are unlikely to act as reliable estimates of the true transition 
probabilities. This is due to the fact that, in most cases of disease progressions, transition 
probabilities are expected to be time dependent owing to the impact of changes in various 
covariates.  

 
In the presence of individual patient data (IPD), parametric and semi-parametric 

survival models can be fitted to the survival data to estimate the transition probabilities of 
multi-state models. Exponential, Gamma, Weibull, Lognormal, and Generalized Gamma 
survival models are popularly found to be appropriate parametric options for the purpose of 
estimating transition probabilities, see for example Wu et al. (2014), Speight et al. (2006), 
Coon et al. (2010), and Diaby et al. (2013). Use of Cox proportional hazards models has been 
suggested by some authors, like Malehi et al. (2015) and Mihaylova et al. (2011) among 
others, especially when our interest also lies in estimating hazards associated with the 
covariates, given the validity of the proportional hazards assumption. Flexible semi-
parametric survival models, like partitioned Cox models, can be adopted to allow for 
flexibility in case of violation of the proportional hazards assumption, refer Jackson et al. 
(2010) and Williams et al. (2017 b). Application of Bayesian parametric models to estimate 
the transition probabilities of multi state models has also been discussed to some extent in the 
literature of Health Economics; see for example Welton and Ades (2005) and Baio (2013). 

 
In the absence of IPD, survival data can be reconstructed from published Kaplan-Meier 

(KM) curves by incorporating the published information about risk sets at different time 
points of the study. The method is discussed in detail by Hoyle and Henley (2011), Guyot et 
al. (2012), and Wan et al. (2015).  

 
This paper aims to apply and compare two different methods to estimate transition 

probabilities between the three states of chronic lymphocytic leukaemia viz., progression-free 
(PF), progression, and death, and carry out CEA of two types of chemotherapies used for 
treating patients. We have reconstructed survival data of two groups of patients suffering 
from chronic lymphocytic leukaemia; one group was treated with the combination of 
fludarabine and cyclophosphamide (chemotherapy group), and the other group was treated 
with the combination of fludarabine, cyclophosphamide, and rituximab 
(chemoimmunotherapy group). Transition probabilities between different states are estimated 
by fitting a a) time-inhomogeneous Weibull semi-markov model and b) Multinomial-
Dirichlet Bayesian model for number of transitions. Quality-adjusted life years (QALYs) and 
incremental cost-effectiveness ratios (ICERs) are calculated to compare the economic and 
survival utility of the two interventions.    
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2. Survival Data: Reconstruction of IPD  
 

KM curves for overall survival (OS) and progression-free survival (PFS) for both 
chemotherapy and chemoimmunotherapy groups are obtained from the published work of 
Hallek et al. (2010) based on a randomized phase 3 trial of patients with chronic lymphocytic 
leukaemia. PFS is defined as the time between randomization and the date of the first 
documented disease progression, relapse, or death by any cause, and OS is defined as the 
time between randomization and the date of death from any cause; refer Roche (2008). 
Summary of the actual (published) data is shown in Table 1. 

 
Enguage Digitizer software is used to extract coordinates from the four KM curves. The 

algorithm (R code) for reconstructing IPD from the extracted coordinates of KM curves 
developed by Guyot et al. (2012) is applied to reconstruct the survival data with right 
censoring for both treatment groups. KM curves based on actual data from Hallek et al. 
(2010) and those based on reconstructed data (with 95% confidence bounds) are shown in 
Figures 1 and 2 respectively. The x-axis in these curves represents time since the start of the 
study in months. 

 
3. Methodology and Results 
 

A three state multi-state model is conceived with possible transitions between states as 
described in Figure 3.  An overview of the methodological structure of this study is outlined 
in Figure 4. A lifetime time horizon of 15 years is taken for base cost-effectiveness analyses 
as only 1.3% of the cohort are estimated to be surviving beyond this period as reported by 
Roche (2008).  However, QALYs and ICERs have also been calculated for a time horizon of 
20 years to evaluate the effect of choice of time horizon on QALYs and ICERs. This is 
necessary to account for the uncertainty underlying the choice of lifetime time horizon, see 
Jackson et al. (2017).  

 
3.1.   Estimation of transition probabilities of the multi-state model using parametric 

survival model 
 

To start with, Gamma, Exponential, Weibull, Log-logistic, Log-normal, and 
Generalized Gamma survival models are fitted to the transitions data of both groups. Based 
on the Akaike Information Criterion (AIC), and size of confidence intervals, survival models 
with Weibull distribution for time to events (progression and death) are found to exhibit best 
fits for both chemotherapy and chemoimmunotherapy groups. AIC values of the fitted 
models are provided in Tables 2 and 3. Plots of estimated survival functions, along with 
corresponding confidence intervals and KM estimates, are presented in Appendix-A, Figures 
A.1 and A.2. A combination of R functions available in the packages ‘flexsurv’ by Jackson 
(2016) and ‘mstate’ by de Wreede et al. (2010) are used to obtain these results. The chosen 
Weibull model is a clock-forward time-inhomogeneous semi-markov model. This suggests 
that the transition probabilities are assumed to vary with time. As an illustration, estimated 
transition probability matrices at the times t = 50 months, t = 100 months, t = 180 months and 
t = 240 months from the start of the study (t = 0) are presented in Table 4 (for chemotherapy 
arm) and Table 5 (for chemoimmunotherapy arm). These transition probabilities, say, 𝑃"#$ , r = 
1,2,3, s = 1,2,3 , and T =  1,2,3…, represent the probability that a patient is in state s at time t 
= T, given that he/she was in state r at time t = 0. These transition probabilities are used to 
calculate expected total length of stay (TLOS) in each state s, when a patient starts from a 
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particular state r at time t = 0. TLOS matrices calculated for both groups, at 15 years’ and 20 
years’ time horizon, are provided in Table 6.  

 
3.2. Costs data 
 

In both treatment regimes, some of the costs are fixed, while some of them are variable 
and depend on the length of the treatment. Cost of supportive care in PF state, cost of 
supportive care in progression, and cost of second-line and subsequent therapy are dependent 
on the duration of treatment/ care in the respective states and so, total expected costs under 
these heads have been calculated using estimated TLOS in the respective states. Monthly 
mean costs for these heads are obtained from Roche (2008). Expected total costs for the 
variable heads are calculated at discount rates of 3.5% and 5% per annum over the lengths of 
stay. Estimated mean total costs of both treatment regimes, and the expected cost incremental 
for chemoimmunotherapy with respect to chemotherapy, are shown in Table 7 (15 years time 
horizon) and Table 8 (20 years time horizon). Discount rate of 3.5% has been advised by the 
National Institute of Health and Care Excellence (NICE), UK, and discount rate of 5% is 
taken to analyze the sensitivity of the results towards the choice of discount rates. Remaining 
mean costs, which are not related to the length of stay in any state and are essentially fixed 
costs, are taken from Williams et al. (2017 a). Since a patient is not expected to go back to 
the PF state after entering progression state, it is safe to use the generic formula given in 
equation (1) to calculate discounted costs.  

 
𝑃𝑉 = ∑ ()

(+,-))/                                                              (1) 
 

Here, d is per unit time discount rate, PV is present value of the total cost and Vi is 
actual cost incurred at ith time point (with base period at i = 0). 

 
3.3.    QALY and ICER 
   

For calculation of mean QALYs, utility values of 0.8 and 0.6 have been considered for 
the PF health state and the progression health state respectively; refer Roche (2008). QALYs 
are discounted at 3.5% and 5% rates, in concurrence with the rates of discount for costs, and 
using the formula given in equation (1) after replacing costs with lengths of stay. ICER, 
which represents the cost per unit increase in QALY, is calculated for each time horizon at 
both discount rates. Calculated values of discounted mean QALYs for both treatment groups, 
QALY incremental, cost incremental and ICERs are reported in Table 9. QALY incremental, 
cost incremental, and ICERs have been calculated taking chemotherapy as the base 
intervention. Figure 5 exhibits the cost-effectiveness plane, showing acceptability of the 
chemoimmunotherapy over chemotherapy at two different values of willingness to pay, viz. K 
= 15,000 GBP and K = 13,000 GBP, for a unit additional gain in QALY.  

  
3.4.    Estimation of transition probabilities of the multi-state model using Multinomial- 

Dirichlet Bayesian model 
 

In this method, instead of getting into the realm of survival models, we define the 
observed number of transitions between states as a vector of random variables following 
Multinomial distribution and estimate the parameters under Bayesian framework using 
Dirichlet as the prior distribution; refer Baio (2013) and Welton and Ades (2005). Dirichlet 
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distribution is a conjugate prior for Multinomial distribution. The Multinomial- Dirichlet 
Bayesian model for our multi-state set up is defined as follows: 

 
Notations: 

 𝑟#1
(2): Total number of observed transitions from state s to state t for intervention I. 

𝜆#1
(2): Transition probability from state s to state t for intervention I. 

𝑛#
(2): Total number of transitions from state s to all other states for intervention I. 

𝑟#
(2) = (𝑟#+

(2), 𝑟#6
(2), 𝑟#7

(2)) 

𝜆#
(2) = (𝜆#+

(2), 𝜆#6
(2), 𝜆#7

(2)) 

Here, s = 1, 2, 3 and I = 1, 2. 

𝑟#
(2)|𝜆#

(2)~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜆#
(2), 𝑛#

(2)) 

             =	 CD
(E)

"DF
(E)!"DH

(E)!"DI
(E)!
𝜆#+
(2)"DF

(E)

𝜆#6
(2)"DH

(E)

𝜆#7
(2)"DI

(E)

                                                             (2)                                            

And prior distribution of the transition probabilities is defined as, 

𝜆#
(2)|𝛼(2)~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼+

(2), 𝛼6
(2), 𝛼7

(2)) 

             = O(PF
(E),PH

(E),PI
(E))

OQPF
(E)RO(SH

(T))O(PI
(E))
𝜆#+
(2)(PF

(E)U	+)𝜆#6
(2)(PH

(E)U	+)𝜆#7
(2)(PI

(E)U	+)         (3)  

                                 
Unknown parameter of the Multinomial distribution in (2) is nothing but the vector of 

transition probabilities from state s to all other states, whose prior distribution is defined by 
the Dirichlet distribution with density function given in (3). It should be noted that while 
specifying this model, the transition probabilities are assumed to be constant, i.e. independent 
of time, unlike in the case of previous method based on Weibull clock-forward semi-markov 
model. Markov Chain Monte Carlo (MCMC) method is implemented through JAGS (Just 
Another Gibbs Sampler) within R session for simulating posterior distributions of the vectors 
of transition probabilities. R and JAGS codes are adopted from Baio (2013), and 
implemented with necessary modifications, corrections and additions to estimate transition 
probabilities from their posterior realizations. Beyond this point, two approaches are 
implemented to carry out CEA.  

 
In the first approach, CEA is performed using the function bcea( ) available in the R 

package ‘BCEA’. In this method, ICERs are determined from vectors of cost incremental 
values and benefit incremental values calculated at all simulated values of the transition 
probabilities. Here, benefit is defined as the total number of time units (months) spent by 
patients in the first state, i.e. PF state; which is mathematically equal to the total number of 
patients in PF state summed over the entire time horizon. Calculations of costs and benefits 
are done at discount rates of 3.5% and 5% each.  ICERs and Cost Effectiveness Acceptability 
Curves (CEACs) are obtained for time horizons of 15 and 20 years. Results at discount rates 
of 3.5% and 5% are presented in the Figures 6 and 7, respectively.  

 
The second approach has been adopted to gain better insight into the comparative 

assessment between the Weibull semi-markov method and the Multinomial-Dirichlet 
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Bayesian method. Expected TLOS in each state and respective 95% confidence intervals are 
calculated on the basis of transition probabilities simulated from their posterior distribution. 
Further, at utility values of 0.8 for PF state and 0.6 for progression state, QALYs are obtained 
using TLOS matrices at 3.5% and 5% discount rates. Estimated time-independent probability 
transition matrices (with 95% CIs), and expected TLOS matrices, for both treatment groups, 
are provided in Tables 10 and 11 respectively.  

 
4. Summary and Discussions 
 
4.1. CEA based on Weibull semi-markov model  
 

The estimated transition probability matrices based on Weibull semi-markov models 
for chemotherapy group and chemoimmunotherapy group exhibit notable differences in the 
probability of a patient in PF state to remain in the same state after a time interval t (>0). A 
resultant major impact of this finding from the CEA point of view is the significant difference 
between the expected TLOS in the first state, PF, of the two intervention groups. PF state has 
maximum utility value among the three states and contributes the most to gain in QALYs. 
From Table 6, for time horizons of both 15 years and 20 years, the expected TLOS in the PF 
state for the chemoimmunotherapy group is around 52 months as opposed to that of just 35 
months for the chemotherapy group; a difference of around 17 months. However, difference 
in the expected TLOS in the progression state between the two intervention groups is least 
prominent.  

 
QALY results in Table 9 show additional/ incremental gains of 0.84 (d = 3.5%) and 

0.94 (d = 5 %) QALYs for 15 years’ time horizon, and of 0.79 (d = 3.5%) and 0.90 (d = 5%) 
QALYs for 20 years’ time horizon, for the chemoimmunotherapy group over the 
chemotherapy group. At both discount rates, QALY incremental is lower and cost 
incremental is higher in case of 20 years’ time horizon, as compared to those for 15 years’ 
time horizon.  As a result, the ICERs for 20 years’ time horizon are on the higher side as 
compared to those for 15 years’ time horizon. For a fixed time horizon, ICERs corresponding 
to the discount rate of 3.5% are significantly higher than those corresponding to the discount 
rate of 5%. It can also be noted that the ICERs are more sensitive towards the choice of 
discount rates (keeping time horizon fixed), than towards the choice of time horizon (keeping 
discount rate fixed). ICERs corresponding to 5% discount rate are below the willingness to 
pay line of K = 13,000 GBP, while both ICERs corresponding to 3.5% discount rate are 
above that line. At the willingness to pay of 15,000 GBP or more for a unit increase in 
QALY, choosing chemoimmunotherapy over chemotherapy accounts for an optimal decision 
as all the four points A,B,C and D lie below the line corresponding to K = 15,000 GBP 
(Figure 5).  
 

 4.2.    CEA based on Multinomial- Dirichlet Bayesian model 
  

First approach: Optimal decisions derived from this approach find 
chemoimmunotherapy to be cost-effective over chemotherapy for willingness to pay 
parameter more than or equal to around 227,000 GBP, for both time horizons, and 3.5% 
discount rate (Figure 6). At 5% discount rate, chemoimmunotherapy is cost-effective over 
chemotherapy if a patient is willing to pay around 306,000 GBP for an additional gain of 
QALY, for both 15 years’ and 20 years’ time horizons (Figure 7). In this case also, ICERs are 
found to be significantly sensitive towards the choice of discount rates, but not towards the 
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choice of time horizon. These values of ICERs are strikingly and absurdly higher than those 
obtained from the first method. 

 
Second approach: As is apparent from the results reported in Table 11, the expected 

TLOS in the PF state are much higher and in progression state are unreliably low, raising 
speculations of wrong predictions. However, because of the drastic underestimation of TLOS 
in progression state and overestimation in PF state, the ICER comes out to be balanced. At 
3.5% discount rate and for 15 years time horizon, while the cost incremental is approximately 
11,560 GBP, QALY incremental is only 0.66, rendering ICER to around 17,515 GBP for one 
unit additional gain in QALY. 

 
Another notable difference in these two approaches is that utility values have not been 

used for calculation of benefits in the first approach. Also, in the first approach, using the 
function bcea( ), the benefit incremental is calculated as difference in the total number of 
months spent by patients in PF state for the two intervention groups; which is equivalent to 
expected TLOS incremental in months in PF state. Thus, the first approach completely 
ignores the gain in utility because of stay in progression state. Extremely high ICER from the 
first approach suggests that the difference in expected number months spent by patients in PF 
state is very small and does not capture the actual difference in gain in QALY between the 
two groups. 

 
 4.3.   Comparing predictions from the two models 
 

As the study involves long lifetime time horizons, accuracy of prediction of transitions 
is of utmost importance for conducting CEA. Remarkable differences in the results of 
QALYs and ICERs obtained from the two methods suggest that at least one of them may not 
be reliable. To compare and examine the predictions from the two methods, graphs of 
estimated proportion of patients in each state at different time points (virtual follow-up times) 
are plotted for both intervention groups (Figures 8 and 9). From the graphs in Figure 8, 
pertaining to first method, we can see that only few patients are expected to remain in PF 
state till around 150 months in chemotherapy group, and till 180 months in 
chemoimmunotherapy group. While based on the transition probabilities of the second 
method, it is apparent from the graphs in Figure 9 that more than 25% of patients are 
expected to live even after 180 months in both intervention groups. This is in clear contrast 
with the observed survival data and the contradiction can be visualized easily on comparing 
the original KM curves in Figure 1with the graphs in Figure 9. However, we can safely claim 
that the shapes of the graphs in Figure 8 conform to those of the original KM curves till the 
observed time period of 5 years (or 60 months). According to the KM curves, at the end of 60 
months, around 25% patients in chemotherapy group and 40% patients in 
chemoimmunotherapy group were free of progression (i.e. in PF state), while around 60% 
patients in chemotherapy group and more than 50% patients in chemoimmunotherapy group 
were still alive. Around same proportions are depicted by the patient proportion graphs based 
on Weibull time-inhomogeneous semi-markov model.  

 
Failure of the Multinomial-Dirichlet Bayesian model in this study can be attributed to 

the assumption of time-homogeneous (or constant) transition probabilities over the entire 
time horizon of the study. In a long-term study, transition probabilities from a state to other 
states are expected to change with time, especially when patients stay in the state for a longer 
duration. So, it is safe to conclude that this method, or any other method with the assumption 
of constant transition probabilities, should be avoided for CEA in long-term studies.  
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For further comparison, plots of estimated transition probabilities against time for the 
two methods are provided in Appendix-B (Figures B.1 and B.2).  

 
 5.      Conclusion 
 

We have applied two different methods for analyzing cost-effectiveness of 
chemoimmunotherapy over chemotherapy for treating patients with chronic lymphocytic 
leukaemia. Although results from both methods find chemoimmunotherapy to be cost 
effective over chemotherapy, values of QALYs and ICERs from the Weibull time-
inhomogeneous semi-markov model are found to be more reliable. To be precise, 
chemoimmunotherapy is cost effective over chemotherapy if the patients are willing to pay 
around 15,000 GBP or more for a unit additional gain in QALY. Also, it can be inferred from 
the results that administration of chemoimmunotherapy in place of chemotherapy is expected 
to result in a patient to stay for a much longer period (over a year on an average) in the PF 
state, which is the state of highest utility.  

 
For one-way sensitivity analysis of cost-effectiveness towards the choice of lifetime 

time horizon and the choice of discount rate, analyses are carried out for two different 
lifetime time horizons and at two different discount rates for cost and QALY calculations. 
Results from both models confirm that ICERs are more sensitive towards the choice of 
discount rate than the choice of lifetime time horizon. This suggests that discount rate should 
be chosen carefully after consulting relevant economic parameters of the region of study to 
avoid biased and misleading results. 

 
Since a reconstructed data has been used for the analyses, the data consists of only 

survival times for the events progression and death, and no information is available on 
covariates and factors affecting survivability. Inclusion of data on covariates, like 
pathological and clinical factors, demographic variables etc., will make such cost-
effectiveness studies more comprehensive and informative.  
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TABLES AND FIGURES 

Table 1: Summary of original data 
 

Total no. of patients enrolled: 817 Chemotherapy Group Chemoimmunotherapy Group 
Total assigned to group 409 408 
Lost to follow up 40 14 
No. of PFS events observed 227 162 
No. of death events observed 86 65 
Total follow-up period 5 year 5 years 
Source: Hallek et al. (2010) 
 
Table 2: Chemotherapy data fit Table 3: Chemoimmunotherapy data fit 

 
Distribution AIC Distribution AIC 
Exponential 2597.634 Exponential 3286.647 
Gamma 2597.693 Gamma 3281.338 
Weibull 2585.173 Weibull 3269.976 
Log-logistic 2600.635 Log-logistic 3287.074 
Log-normal 2620.277 Log-normal 3323.709 
Generalized Gamma 2596.533 Generalized Gamma 3280.407 

 

 
Table 4: Chemotherapy—estimated transition probabilities (and 95% confidence 
intervals)) 
 

At t = 1 month Progression  Free Progression Death 
Progression  Free 0.990 (0.984; 0.993) 0.006 (0.004; 0.009) 0.004 (0.003; 0.007) 

Progression 0 0.997 (0.995; 0.998) 0.003 (0.002; 0.005) 
Death 0 0 1 

At t= 50 months Progression  Free Progression Death 
Progression  Free 0.237 (0.192; 0.277) 0.348 (0.295; 0.399) 0.415 (0.365; 0.476) 

Progression 0 0.658 (0.574; 0.726) 0.342 (0.274; 0.426) 
Death 0 0 1 

At t= 180 months Progression  Free Progression Death 
Progression  Free 0.001 (0; 0.003) 0.101 (0.043; 0.174) 0.898 (0.824; 0.957) 

Progression 0 0.123 (0.05; 0.215) 0.877 (0.785; 0.950) 
Death 0 0 1 
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At t= 240 months Progression  Free Progression Death 
Progression  Free 0 0.041 (0.011; 0.093) 0.959 (0.907; 0.989) 

Progression 0 0.049 (0.012; 0.115) 0.951 (0.885; 0.988) 
Death 0 0 1 

 
Table 5: Chemoimmunotherapy—estimated transition probabilities (and 95% confidence 
intervals) 
 

At t= 1 month Progression  Free Progression Death 
Progression  Free 0.994 (0.99; 0.997) 0.003 (0.002; 0.005) 0.003 (0.001; 0.005) 

Progression 0 0.998 (0.996; 0.999) 0.002 (0.001; 0.004) 
Death 0 0 1 

At t= 50 months Progression  Free Progression Death 
Progression  Free 0.425 (0.371; 0.469) 0.253 (0.211; 0.304) 0.322 (0.277; 0.375) 

Progression 0 0.705 (0.613; 0.779) 0.295 (0.221; 0.387) 
Death 0 0 1 

At t= 180 months Progression  Free Progression Death 
Progression  Free 0.012 (0.003; 0.032) 0.138 (0.061; 0.230) 0.850 (0.748; 0.933) 

Progression 0 0.166 (0.063; 0.296) 0.834 (0.704; 0.937) 
Death 0 0 1 

At t= 240 months Progression  Free Progression Death 
Progression  Free 0.002 (0; 0.009) 0.065 (0.014; 0.143) 0.933 (0.853; 0.986) 

Progression 0 0.074 (0.013; 0.174) 0.926 (0.826; 0.987) 
Death 0 0 1 

 
Table 6: Expected total length of stay in months (and 95% confidence intervals) 

 
Chemotherapy 

15-Year Horizon=180 months Progression  Free Progression Death 

Progression  Free 34.80 (31.74; 38.08) 41.66 (31.80; 51.73) 103.54 (92.78; 114.25) 
Progression 0 85.14 (70.64; 99.43) 94.86 (80.57; 109.36) 

Death 0 0 180 
Chemotherapy 

20-Year Horizon=240 months Progression  Free Progression Death 

Progression  Free 34.81 (31.56; 38.45) 45.67 (33.24; 59.04) 159.52 (145.35; 73.57) 
Progression 0 90.01 (71.29; 108.45) 149.99 (131.55; 168.71) 

Death 0 0 240 
Chemoimmunotherapy 

15-Year Horizon=180 months Progression  Free Progression Death 

Progression  Free 51.92 (46.25; 57.51) 37.48 (27.47; 47.48) 90.60 (79.56; 102.46) 
Progression 0 93.52 (76.61; 108.83) 86.48 (71.17; 103.39) 

Death 0 0 180 
Chemoimmunotherapy 

20-Year Horizon=240 months Progression  Free Progression Death 

Progression  Free 52.24 (46.28; 59.46) 43.38 (30.90; 58.34) 144.38 (127.39; 160.44) 
Progression 0 100.40 (78.68; 122.97) 139.60 (117.03; 161.32) 

Death 0 0 240 
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Table 7: Mean costs (in GBP) for 15-year lifetime time horizon 

 

Cost Head 

Chemoimmunotherapy Chemotherapy 

In
cr

em
en

ta
l 

(d
=3

.5
%

) 

In
cr

em
en

ta
l 

(d
=5

%
) 

Mean total cost 
(d=3.5%) 

Mean total 
cost (d=5%) 

Mean total 
cost 

(d=3.5%) 

Mean total 
cost 

(d=5%) 
Mean cost of PFS 18645.28 18605.12 6650.10 6634.65 11995.18 11970.47 

Costs of rituximab 10113 10113 0 0 10113 10113 
Administration costs of 
rituximab 1224 1224 0 0 1224 1224 

Cost of fludarabine 2776 2776 2790 2790 −14 −14 
Administration costs of 
fludarabine 1109 1109 1115 1115 − 6 − 6 

Costs of 
cyclophosphamide 21 21 22 22 −1 −1 

Administration costs of 
cyclophosphamide 1109 1109 1115 1115 − 6 − 6 

*Cost of supportive care 
in PFS 1061.28 1021.12 741.10 725.65 320.18 295.47 

Cost of bone marrow 
transplantation 592 592 360 360 232 232 

Cost of blood 
transfusions 
 

640 640 507 507 133 133 

Mean cost of 
progression 7329.60 7178.44 8061.20 7893.01 − 731.60 − 714.57 

*Cost of supportive care 
in progression 1802.04 1764.88 1981.91 1940.56 − 179.87 − 175.68 

*Cost of second-line & 
subsequent therapy 5527.55 5413.56 6079.28 5952.45 − 551.73 − 538.89 

Mean total cost 25974.88 25783.57 14711.30 14527.66 11263.58 11255.90 
*Calculated and discounted with respect to the total length of stay in the given state 

 
Table 8: Mean costs (in GBP) for 20-year lifetime time horizon 

 

 

Cost Head 

Chemoimmunotherapy Chemotherapy 

In
cr

em
en

ta
l 

(d
=3

.5
%

) 

In
cr

em
en

ta
l 

(d
=5

%
)  

Mean total cost 
(d=3.5%) 

Mean total 
cost (d=5%) 

Mean total 
cost 

(d=3.5%) 

Mean total 
cost 

(d=5%) 
Mean cost of PFS 18648.36 18611.09 6650.10 6634.65 11998.26 11976.45 

Costs of rituximab 10113 10113 0 0 10113 10113 
Administration costs of 
rituximab 1224 1224 0 0 1224 1224 

Cost of fludarabine 2776 2776 2790 2790 −14 −14 
Administration costs of 
fludarabine 1109 1109 1115 1115 − 6 − 6 

Costs of 
cyclophosphamide 21 21 22 22 − 1 − 1 

Administration costs of 
cyclophosphamide 1109 1109 1115 1115 − 6 − 6 

*Cost of supportive care 
in PFS 1064.36 1027.09 741.10 725.65 323.26 301.45 

Cost of bone marrow 
transplantation 592 592 360 360 232 232 

Cost of blood 
transfusions 640 640 507 507 133 133 
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Mean cost of 
progression 8377.23 8160.49 8769.82 8547.54 − 392.60 − 387.05 

*Cost of supportive care 
in progression 2059.61 2006.33 2156.14 2101.49 − 96.52 − 95.16 

*Cost of second-line & 
subsequent therapy 6317.61 6154.16 6613.69 6446.06 − 296.07 − 291.89 

Mean Total cost 27025.58 26771.58 15419.92 15182.19 11605.66 11589.39 
*Calculated and discounted with respect to the total length of stay in the given state 

 
Table 9: QALYs and ICERs (in GBP/ QALY) 

 
State 15-year Horizon 20-year Horizon 

d = 3.5% d = 5% d = 3.5% d = 5% 
Gain in QALY for a patient in PF state at randomization−chemotherapy 

Progression Free 2.25 2.22 2.25 2.22 
Progression 2 1.97 2.18 2.14 

Death 0 0 0 0 
Total QALY 4.25 4.19 4.43 4.36 

Gain in QALY for a patient in PF state at randomization−chemoimmunotherapy 

Progression Free 3.28 3.20 3.29 3.22 
Progression 1.81 1.78 2.08 2.04 

Death 0 0 0 0 
Total QALY 5.09 4.98 5.37 5.26 

QALY Incremental 0.84 0.94 0.79 0.90 
Cost Incremental 11263.58 11255.90 11605.66 11589.39 

ICER 13409.02 11974.37 14690.71 12877.10 
 

Table 10: Bayesian model—estimated transition probabilities (with 95% confidence limits) 
 

Chemotherapy Progression Free Progression Death 
Progression Free 0.99 (0.977; 0.998) 0.01 (0.002; 0.023) 0 

Progression 0 0.794 (0.401; 0.0.993) 0.206(0.007; 0.599) 
Death 0 0 1 

Chemoimmunotherapy Progression Free Progression Death 
Progression Free 0.993 (0.982; 0.998) 0.007 (0.002; 0.018) 0 

Progression 0 0.798 (0.414; 0.993) 0.202 (0.007; 0.586) 
Death 0 0 1 

 

Table 11: Bayesian model—expected total length of stay in each state for 15-year lifetime 
time horizon (in months) 
 

Chemotherapy Progression Free Progression Death 
Progression Free 90.91 (72.97; 145.91) 10.17 (2.45; 56.33) 78.92 (61.29; 127) 

Progression 0 15.40 (3.30; 102.15) 164.60 (160.12; 178.33) 
Death 0 0 180 

Chemoimmunotherapy Progression Free Progression Death 
Progression Free 106.70 (85.76; 157.38) 8.54 (2.11; 45.74) 64.77 (44.11; 118.99) 

Progression 0 15.54 (3.32; 103.76) 164.46 (160.12; 178.29) 
Death 0 0 180 
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Figure 1: Kaplan-Meier curves used for data reconstruction 
 

 
 Source: Hallek et al. (2010)  

 
Figure 2: Kaplan-Meier curves from reconstructed data 
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Figure 3: Transition map between three states of the multi-state model 
 

  

 

Figure 4: Methodological structure 

 
 

Figure 5: Cost-effectiveness plane from the first method 
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Figure 6: Results of Bayesian cost-effectiveness analysis using BCEA (d = 3.5%) 
 

 

 
Figure 7: Results of Bayesian cost-effectiveness analysis using BCEA (d = 5%) 
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Figure 8: Proportion of patients expected to be in each state at different virtual follow-
up time points—Weibull time-inhomogeneous semi-markov model 
 

 
 

Figure 9: Proportion of patients expected to be in each state at different virtual follow-
up time points—Multinomial-Dirichlet Bayesian model 
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Appendix-A 
Figure A.1: Estimated survival functions of fitted models—Chemotherapy group 

 

 

Figure A.2: Estimated survival functions of fitted models—Chemoimmunotherapy 
group 
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Appendix-B 

Figure B.1: Transition probabilities plotted against time—Weibull semi-markov model 
 

 

Figure B.2: Transition probabilities plotted against time—Multinomial-Dirichlet 
Bayesian model 
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Abstract 

Sustainable Development Goal (SDG) India Index, developed by NITI AAYOG in 2018, is 
to oversee the progress of the nation and the states on the achievements of Sustainable 
Development Goals (SDG). The document presents SDG Indices of different major goals. A major 
limitation of these SDG indices is their unweighted form because these are developed using 
arithmetic mean as average even in the presence of extreme values. The purpose of the present 
work is essentially to propose weights to develop weighted index numbers for SDGs. We follow 
the methodology on developing weights for different SDG indicators developed recently by Nigam 
(2019). The utility of the proposed methodology is demonstrated by applying it to SDG data on 
poverty. 
 
Key words: Sustainable development goals; Weighted SDG index; Relative gap; Choice of 
weights. 

1. Introduction 

The Sustainable Development Goals (SDGs) are a set of 17 global goals set by the United 
Nations General Assembly in 2015 for the year 2030. The SDGs are part of Resolution 70/1 of the 
United Nations General Assembly, the 2030 Agenda. The SDGs are: No Poverty (End poverty in 
all its forms everywhere), Zero Hunger (End hunger, achieve food security and improved nutrition 
and promote sustainable agriculture), Good Health and Well-being (Ensure healthy lives and 
promote well-being for all at all ages), Quality Education (Ensure inclusive and equitable quality 
education and promote lifelong learning opportunities for all), Gender Equality(Achieve gender 
equality and empower all women and girls), Clean Water and Sanitation (Ensure availability and 
sustainable management of water and sanitation for all), Affordable and Clean Energy (Ensure 
access to affordable, reliable, sustainable and modern energy for all), Decent Work and Economic 
Growth (Promote sustained, inclusive and sustainable economic growth, fill and productive 
employment and decent work for all), Industry, Innovation, and Infrastructure (Build resilient 
infrastructure, promote inclusive and sustainable industrialization and foster innovation), 
Reducing Inequality (Reduce inequality within and among countries), Sustainable Cities and 
Communities (Make cities and human settlements inclusive, safe, resilient and sustainable), 
Responsible Consumption and Production (Ensure sustainable consumption and production 
patterns), Climate Action (Take urgent action to combat climate change and its impacts),  Life 
Below Water, Life On Land (Protect, restore and promote sustainable use of terrestrial ecosystems, 



 A.K. NIGAM AND MANOJ KUMAR PANT   [Vol. 18, No. 1 56 

sustainably manage forests, combat desertification and halt and reverse land degradation and halt 
biodiversity loss), Peace, Justice and Strong Institutions (Promote peaceful and inclusive societies 
for sustainable development, provide access to justice for all and build effective, accountable and 
inclusive institutions at all levels), and Partnerships for the Goals (Strengthen the means of 
implementation and revitalize the Global Partnership for Sustainable Development). 

The goals are broad based and interdependent. Each of the 17 SDGs has a list of targets that 
are measured with indicators. Given the importance accorded by the Government of India to 
achieving SDGs, NITI Aayog decided to come out with the progress through a single measurable 
index that would serve as an advocacy tool and trigger action at the State level. With this purpose, 
SDG India Index report was launched by NITI Aayog in December 2018. 

The SDG India Index is an aggregate measure which can be understood and used by 
everyone - planners, policymakers, academicians, businesses, civil society and the general public. 
It has been designed to provide an aggregate assessment of the performance of all Indian States 
and UTs, and to help leaders and change makers evaluate their performance on social, economic 
and environmental parameters. It aims to measure India and its States’ progress towards the SDGs 
for 2030. 

 
There are already several index numbers in related areas, like food insecurity by M.S. 

Swaminathan Research Foundation (MSSRF), global hunger index (GHI) by IFPRI, Yale’s 
environmental performance index, sustainable environmental performance index by DES 
Uttarakhand and IIFM, SDG indices by NITI Aayog and some related work by Nigam (2018a, b). 

 
Work on GHI and SDG indices by NITI Aayog follows MSSRF methodology and hence 

suffers from all those limitations as in food insecurity indices by MSSRF. A major limitation is 
the unweighted form of these indices and also use of arithmetic mean as average even in the 
presence of extreme values. 

The present work aims at proposing weights to develop weighted index numbers for SDGs. 
The methodology followed on developing weights for different SDG indicators is essentially the 
one developed recently by Nigam (2019). We demonstrate the utility of the proposed methodology 
by applying it to data on poverty SDG.  

 
2. Niti Aayog Methodology 

Just as a preliminary and for the sake of completeness, it is essential to describe briefly the 
SDG India Index. For details one may refer to SDG Index India Report, 2018 by Niti Aayog. 

 
To make data comparable across indicators, State-wise data values of each of the Priority 

Indicators were rescaled from its raw form into a score ranging from 0 to 100, with 0 denoting 
lowest performer and 100 indicating that the target has been achieved.  

 
For indicators where increasing value means better performance (e.g. forest area coverage), 

score was computed as follows: 
															𝑥# = 	 %&'()	(%)

,(%)&'()	(%)
× 100                                                                                                (1)
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where, x = raw data value, min(x) = minimum observed value of the indicator in the dataset, T(x) 
= national target value of the indicator, 𝑥# = normalized value after rescaling. 

 
For indicators where increasing value means worse performance (e.g. Poverty rate), score 

was computed as follows: 
 

														𝑥# = 	 01 −	 %&,(%)
'2%(%)&,(%)

3 × 100              (2)

      

where, x = raw data value, max(x) = maximum observed value of the indicator in the dataset, T(x) 
= national target value of the indicator, 𝑥# = normalized value after rescaling. 

In instances where States and Union Territories (UTs) performed better than the target, their 
Index Score has been capped at 100. 

 
SDG Index Score: For each of the Goals under SDGs (except Goals 12, 13, 14 and 17), SDG 
India Index Score was computed for each State/UT. This was calculated as the arithmetic mean of 
the normalised values of all the Priority Indicators within the Goal. In calculating the average, 
equal weights were assigned to each indicator and the arithmetic mean was rounded off to the 
nearest whole number. The Goal scores for the respective states are computed using 

												𝐼(56𝑁(5, 𝐼(59: = ∑ <
=>?
× 𝐼(59

=>?
9@<                (3) 

where, Iij = Goal score for State i under SDG j, Nij = Number of non-null indicators for State I 
under SDG j, Iijk = Normalised value for State i of indicator k under SDG j.  

The Goal Score Iij for State i under SDG j was then rounded off to the nearest whole number 
to give the SDG Index Score. Based on the SDG India Index, States and UTs were classified into 
4 categories under each of the SDGs (except Goals 12, 13, 14 and 17): 

 
• Achiever – when SDG India Index score is equal to 100 

• Front Runner – when SDG India Index score is less than 100 but greater than or equal to 
65 

• Performer – when SDG India Index score is less than 65 but greater than or equal to 50 

• Aspirant – when SDG India Index score is less than 50 

Composite SDG India Index Score: Every State’s and UT’s composite SDG India Index score 
was finally computed to quantify the overall progress of the States and UTs towards the SDGs. 
This was calculated as the arithmetic mean of the Goal scores across 13 out of the 17 Goals. This 
was done by assigning equal weight to every Goal score and the arithmetic mean was rounded off 
to the nearest whole number. 

															𝐼(6𝑁(, 𝑁(5, 𝐼(59: =
<
=>
∑ 𝐼(5 × 6𝑁(5, 𝐼(59:
=>
5@<              (4) 
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where, Ii = Composite SDG index score of State i, Ni = Number of Goal scores for which State i 
has nonnull data, Iij = Goal score for State i under SDG j. 

The arithmetic mean of Goal scores are then rounded off to the nearest whole number to give 
the composite SDG India Index score for each State/UT. The States/UTs are again classified into 
the four categories (as described above): Achiever, Front Runner, Performer and Aspirant. 

 
3. Proposed Methodology 

 
When all the commodities are not of equal importance, we assign weight to each commodity 

relative to its importance and the index number computed from these weights is called a weighted 
index number. If the base year quantities are used as weights, then it also called the base year 
weighted index. Generally, planners and policymakers are entrusted to monitor the progress of 
those indicators which are more beneficial for the people. Therefore, identification of such 
indicators with their weights might be useful for measuring the real progress. For assigning the 
weights to different indicators, many methods can be adopted which depend upon the availability 
of time series data (Regression Method), Group Exercises (Analytical Hierarchy Process) and so 
on. Here we have proposed gap between target and current progress of base year as the weight. It 
is not easy to assign weights to respective indicators by regression and other related methods as 
the availability of time series data is a big challenge. We have adopted a new method where we 
take the base year data of target and achievement and assign the weights as their gap. More the 
gap, less the weight is the simple phenomenon of this gap-based weight assignment methodology. 
In contrast, NITI AAYOG SDG India Index methodology provides the index score with equal 
weight to all indicators.  

 
Let wjk, be the weight assigned to the kth indicator in the jth goal, there being p goals and 

nj indicators in the jth goal,  j = 1,…,p, k= 1,…, nj.  It may be noted that the total number of weights 
is the sum of nj over j.     

 
We first describe how to work out the weights for the SDG index.  
 

Step 1. Compute the gap between current/baseline figure (raw data) and the target. If the target 
has already been achieved, fix the weight as 100. If the target is yet to be achieved compute 
the relative gap. Relative gap is the ratio of the gap and the current value. The weight is 
then the inverse of the relative gap. Using the inverse as the weight ensures that poor 
performing indicators (with larger relative gap) are assigned lower weight and contribute 
little to the overall index score.  

Step 2. The next step is to normalize the weights and make them vary between 0 and 1. The 
normalized weights are obtained as the ratio of the inverse of relative gap and the total of 
inverse of relative gaps.  

Step 3. The overall index number of the indicators, which are yet to achieve their targets, is the 
product of weights and the current values of indicators. 

Step 4. The overall weighted SDG index number is given by the arithmetic mean of 100 and the 
index number of the indicators which are yet to achieve their targets (as computed in Step 
3). 
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The above method can easily be extended to include minor variants of the case discussed above. 

4. Example 
 
Consider the all India SDG raw data on poverty as given in Niti Aayog’s SDG Index. Table 

1 gives raw data, unweighted and weighted SDG indices of Indian States on poverty. First five 
columns starting from third column give raw data, and the next five columns give their normalized 
values using formulae (1) and (2). These also give unweighted SDG indices and their average 
(arithmetic mean) gives the unweighted SDG index (SDG 1 in Table 1) as reported in the India 
SDG index, 2018. The next column gives the rank of states labeled as rank (1). The following 
column gives weighted SDG indices, weights based upon the gap and target values as per the 
proposed methodology in steps 1-5, and their average gives the weighted SDG index (SDG 2 in 
Table 1). The last column gives the rank of states labeled as rank (2).  

 
A comparison between ranks (1) and (2) show that the ranks of states are changed with no 

definite pattern. Nevertheless, the ranks (2) are more logical and realistic. An examination of the 
two ranks reveals that Tamil Nadu which ranked 1 in the unweighted category with the index score 
68 is also top ranked with score 99 in the weighted index category. On the other hand, Haryana 
which ranked 25 in the unweighted category with the score 25, has rank 1 in the weighted category 
with a score of 99. Uttarakhand’s weighted index is also ranked on top though it ranked 7 in the 
unweighted category. As a matter of fact, besides Haryana and Uttarakhand, Gujarat, Mizoram 
and Daman & Diu are also on the top with identical scores of 99.  

 
The above comparison opens up the debate on how the ranks of SDG 2 are changing in a 

haphazard manner vis-a-vis SDG 1. The issue was a point of thorough discussion on first author’s 
Special lecture on Hunger and Related SDGs in a 2-days Workshop on SDGs at Hyderabad (23-
24 January 2020). The Workshop was organized by Ministry of Statistics and Programme 
Implementation (MoSPI), Government of India, with the objective of Capacity Building of Senior 
Indian Statistical Services officers of Deputy Director General and above level. The discussion led 
to a recommendation that it needs a full-fledged research study of around 2 - years duration to find 
answers to different types of questions bothering us. The authors are already working on it and the 
results obtained will be reported in a separate communication in the future. 

 
Yet another problem that needs to be examined is in the normalization of Priority Indicators, 

which were rescaled from its raw form into a score ranging from 0 to 100, with 0 denoting lowest 
performer and 100 indicating that the target has been achieved.  If we consider the Percentage of 
population living below the national poverty line, the first indicator of the goal Poverty given in 
the first column of Raw data in Table 1, we note that for all raw data values 9.2, 5.09, 8.06, and 
few others the Index Score is 100. This seems illogical and requires rescaling modification. Similar 
is the scenario in case of Index Scores 0. It requires again substantial efforts to modify formulae 
(1) and (2). 
 
5. Choice of Other Weights 

 
Besides gaps between current/baseline value, there can be other choices of weights. We may 

pick up inverse of the number of observations used to compute the value for a given indicator. 
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Another choice could be the coefficient of variation for each indicator value. If we choose more 
than one weight, then the overall weight can be taken as the geometric mean of all the weights.  

 
While computing weighted index numbers usually geometric mean is preferred against 

arithmetic mean or harmonic mean. In most cases, we may have weights with extreme values and 
this makes geometric mean superior to arithmetic mean. The easier interpretability of geometric 
mean makes it a better choice than harmonic mean. While computing weighted index numbers 
usually geometric mean is preferred against arithmetic mean or harmonic mean.  

 
Biggest hurdle in choosing more than one weight is the non-availability of data on these 

weights. However, it is advisable to use as many weights as possible to derive a good weighted 
index. 
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Table 1: Unweighted and Weighted SDG Indices of Indian States 
 

(The description of column numbers is given in Note 2 at the end of the table) 

 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) 

  
Raw Data Index Score 

    

1 AnP 9.2 74.6 87.77 17.4 15.34 100 74 72 16 72 67 5 86 24 
2 ArP 34.67 58.3 85.56 20.5 0.23 18 57 67 19 100 52 22 79 31 
3 AS 31.98 10.4 87.1 66.1 3.42 27 7 71 66 94 53 21 94 10 

4 BI 33.74 12.3 75.63 53.9 3.13 21 9 44 53 94 45 30 94 10 

5 CH 39.93 68.5 77.25 66.2 15.77 0 67 48 66 71 50 25 83 28 
6 Goa 5.09 15.9 98.15 7.4 1.62 100 13 96 6 97 62 9 98 6 

7 GU 16.63 23.1 80.92 8.9 14.06 80 20 57 8 74 48 27 86 24 

8 Hy 11.16 12.2 80.16 13.5 14.52 99 9 55 12 73 50 25 99 1 

9 HP 8.06 25.8 91.12 13.1 9.37 100 23 80 12 83 60 12 89 18 
10 J&K 10.35 4.2 88.79 54 12.33 100 1 74 53 77 61 10 86 24 
11 JR 36.96 13.3 70.34 41.6 4.38 10 10 32 41 92 37 35 93 12 

12 UK 11.26 19.5 90.1 49.4 8.88 99 17 77 49 84 65 7 99 1 
13 KN 20.91 28.1 84.26 19.9 8.45 66 26 64 19 85 52 22 87 21 

14 KL 7.05 47.7 87.98 20.4 3.4 100 46 73 19 49 66 6 80 29 

15 MP 31.65 17.7 79.68 61.1 21.42 29 15 54 61 61 44 31 77 32 

16 MH 17.35 15 86.4 8.7 17.18 78 12 69 7 68 47 29 86 24 
17 MN 36.89 3.6 96.46 26.2 2.95 10 0 92 25 95 44 31 96 9 

18 ML 11.87 34.6 97.3 28 4.24 97 32 94 27 92 68 4 97 8 

19 MZ 20.4 45.4 99.94 47.5 0.62 67 43 100 47 99 71 2 99 1 

20 NL 18.88 6.1 98.91 29.7 3.03 73 3 98 29 94 59 13 98 6 

21 OR 32.59 47.7 84.76 72.6 7.11 25 46 65 72 87 59 13 88 19 

22 PB 8.26 21.2 81.63 19.1 6.59 100 18 58 18 88 56 19 90 15 

23 RJ 14.71 18.7 85.07 56.1 16.51 87 16 66 55 70 59 13 88 19 

24 SK 8.19 30.3 94.16 29.4 11.75 100 28 87 28 78 64 8 90 15 

25 TN 11.28 64.1 98.83 29.5 4.56 99 63 97 28 92 76 1 99 1 

26 TG Null 66.4 77.06 12.2 8.92 Null 65 48 11 84 52 22 87 21 

27 TR 14.05 58.1 94.38 32.6 5.34 89 57 87 32 90 71 2 93 12 

28 UP 29.43 6.1 84.3 48.7 5.36 36 3 64 48 90 48 27 90 15 
29 WB 19.98 33.4 87.63 28.7 8.28 69 31 72 28 85 57 17 87 21 

30 AN  1 5.7 92.46 1.4 0.97 100 2 83 0 98 57 17 51 36 

31 CD 21.81 21.3 Null 13.7 19.7 63 19 Null 12 64 39 34 80 29 

32 DN 39.31 30.8 Null 2.6 24.94 2 28 Null 1 54 21 37 73 33 
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33 DD 9.86 17 Null 19.3 0.67 100 14 Null 18 99 58 16 99 1 
34 DL 9.91 16.4 Null 7.9 54.52 100 13 Null 7 0 30 36 56 35 

35 LK 2.77 3.4 56.13 17.5 0 100 0 0 16 100 43 33 58 34 

36 PD 9.69 32.8 93.78 21.4 3.97 100 30 63 20 93 61 10 93 12 
 

IN 21.92 28.7 84.75 36.4 10.39 62 26 65 35 81 54 20 70 
 

 
Tt  10.95 100 100 100 0 100 100 100 100 100 100       

 

Note 1: AnP – Andhra Pradesh; ArP – Arunachal Pradesh; AS – Assam; BI – Bihar; CH – Chhattisgarh; 
GU – Gujarat; HY – Haryana; HP – Himachal Pradesh; J&K – Jammu and Kashmir; JR – Jarkhand; UK – 
Uttarakhand; KN – Karnataka; KL – Kerala; MP – Madya Pradesh; MH – Maharashtra; MN – Manipur; 
ML – Meghalaya; MZ – Mizoram; NL – Nagaland; OR – Orissa; PB – Punjab; RJ – Rajasthan; SK – 
Sikkim; TN – Tamil Nadu; TG – Telangana; TR – Tripura; UP – Uttar Pradesh; WB – West Bengal; AN – 
Andaman and Nicobar Islands; CD – Chandigarh; DN – Dadra and Nagar Haveli; DD – Daman and Diu; 
DL – Delhi; LK – Lakshadweep; PD – Pondicherry; IN – India; Tt – Target. 

Note 2: The columns are  

(1) Serial Number 
(2) State 
(3) % population living below National Poverty line 
(4) % households with any usual member covered by any health scheme or health insurance 
(5) Persons provided employment as % of persons who demanded employment under MGNREGA 
(6) % of the population (out of total eligible population) receiving social protection benefits maternity 

benefits  
(7) Number of homeless households per 10,000 households 
(8) % of population living below National Poverty line 
(9) % of households with any usual member covered by any health scheme or health insurance  
(10) Persons provided employment as a percentage of persons who demanded employment under 

MGNREGA  
(11) Proportion of the population (out of total eligible population) receiving social protection benefits 

maternity benefits %  
(12) Number of homeless households per 10,000 households  
(13) SDG 1 Index score 
(14) Rank (1)  
(15) SDG 2 Index score  
(16) Rank (2) 
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Abstract
A casino offers a game which involves a symmetric quaternary random walk on a parity

dial with twelve nodes labeled as (1, 11, 3, 9, 5, 7, 6, 8, 4, 10, 2, 0), reading clockwise. A player
begins at Node 0; she tosses a copper coin to decide whether to move clockwise (if heads)
or counterclockwise (if tails); simultaneously she tosses a silver coin to decide whether she
will move one step (if tails) or two steps (if heads) in the direction determined by the copper
coin. Whenever she lands at a new node she is said to have ‘captured’ it. If a player
intends to capture c nodes and she wishes to toss the coins k times, then her admission fee
is (25 + 25c+ k) cents (one quarter to play, one quarter per node to capture and one penny
per toss). The game ends as soon as either c nodes (other than Node 0) are captured or k
tosses are over, whichever event happens earlier; and the player earns as many nickels as the
sum of the labels of the captured nodes. How should the player determine c and k?

The player’s optimal choices can be derived from the theory of stochastic processes.
Alternatively, optimal choices can be anticipated through a computer simulation. Lessons
learned from the game empower entrepreneurs and consumers behave optimally to determine
when and how to intervene to benefit from an opportunity and/or to prevent a catastrophe.

Key words: Probability mass function; Stopping time; Optimal strategy; Central limit
theorem; Law of large numbers.

AMS Subject Classifications: 60G50, 05C81

1. Introduction

When you agree to play a game of chance offered by a casino, you should expect to
lose money on average. You accept this loss in anticipation of some entertainment, and a
rare possibility of winning big. When millions of players play the game multiple times, the
casino makes a positive profit even after paying occasional windfalls, administrative costs,
staff salaries, discounts and government taxes. When a game appears to be favorable to the
player, it attracts many participants. Of course, if a game were truly favorable to the player,

Corresponding Author: Jyotirmoy Sarkar
Email: jsarkar@iupui.edu



64 JYOTIRMOY SARKAR [Vol. 18, No. 1

the casino would stop offering the game. But if a game only appears to favor the player, the
casino can entice more players play it more often, and earn more profit for itself. The casino
must know ahead of time the exact long-run performance of each game it offers, while the
player is oftentimes attracted by the lure of apparent gain. Sarkar (2020 a) introduced such
a game of a random walk on a parity dial, and proposed a wide variety of modifications to
the game. In this paper, we change the rules of the random moves—from binary walk to
quaternary walk—and find the optimal decision for the player.

The game serves as a model for decisions made by entrepreneurs and customers—
both parties maximize their gains while abiding by some rules and coping with inherent
uncertainty. The optimal decisions for each party may be derived using the theory of
stochastic processes. See Ross (1996) for the general theory, and see Sarkar (2006) and
Maiti and Sarkar (2019) for random walks on a circle. However, the theory being generally
inaccessible to the common person, one can take recourse to a computer simulation involving
repeated plays of the game. Lessons learned from the game equip all parties engaged in the
marketplace to determine when and how to participate to benefit from an opportunity and/or
to prevent a catastrophe. For an optimization problem of a different flavor (investing the
smallest amount of input to extract a desired quality of output), see Sarkar (2020 b).

In Section 2, we describe the game of quaternary walk on the parity dial. In Section 3,
for c ≤ 3, we discover the optimal number of tosses k using exact probability distributions.
In Section 4, for 4 ≤ c ≤ 11, we find the optimal k via simulation. In Section 5, we give some
theoretical results and beckon the reader to discover more. Section 6 compares the game of
quaternary walk with that of binary walk. In Section 7, we pose some modified games and
invite the reader to discover new optimal decisions.

All computations are done using the freeware R. Some codes are given in the Appendix.

2. Rules of the Game

Consider a network of twelve nodes arranged in a circle. The nodes are labeled l =
(1, 11, 3, 9, 5, 7, 6, 8, 4, 10, 2, 0) reading clockwise. See Fig. 1. Note that the labels li (1 ≤ i ≤
12) are distinct non-negative integers, obtained from the usual dial of a clock by changing
the top node from 12 to 0; and interchanging nodes within pairs (2, 11), (4, 9), and (6, 7).
Note that all odd values are on the right half (going clockwise from the top), while all even
values are on the left half (going counterclockwise from the top) of the dial. Therefore, we
call this network the parity dial.

Sarkar (2020 a) studied the following: “A player pays an admission price to play a
game of random walks on the parity dial by repeatedly tossing a fair coin. Starting from
Node 0, after each toss the player moves one position clockwise (if heads) or one position
counterclockwise (if tails); and she captures the visited node. The player has total liberty
to determine c, the number of nodes she intends to capture, and k, the number of times she
wishes to toss. The game ends as soon as either c nodes (other than Node 0) are captured
or k tosses are over. The player pays an admission price of (25c + k) cents, and earns as
reward as many nickels as the sum of the labels on the captured nodes. How should the
player determine (c, k) to maximize her expected net reward?”
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Figure 1: The usual dial of a clock and the parity dial

The answer to that problem is (6, 28) for which the player pays 178 cents and earns
160.7961 cents on average (with a standard deviation (SD) of 0.0243 cents). Therefore, she
loses on average 9.66% of her wager. With any other (c, k) game, she will lose even more.
In this optimal game, the player tosses on average 16.2 times.

There are many possible modifications to the game. In this paper, we change the
nature of the random walk: Instead of going one step clockwise or one step counterclockwise
according as the outcome of a toss of a fair coin is heads or tails, we allow each move to be
one or two steps clockwise, or one or two steps counterclockwise according to the outcome of
tossing two coins simultaneously. We call this modified game the quaternary random walk
game and the original game the binary random walk game. Since in the quaternary walk
game the player has more opportunities of capturing a new node in each move than in the
binary walk game, the admission fee of the quaternary walk game is one quarter more than
the admission fee of the binary walk game. The stopping rule and the reward amount remain
the same as before. We still ask the same question: How should the player determine (c, k)
to maximize her expected net reward?”

More specifically, the player begins at Node 0. She tosses a copper coin and a silver coin
simultaneously. The outcome of the copper coin determines whether to move clockwise (if
heads) or counterclockwise (if tails). The outcome of the silver coin determines whether she
will move one step (if tails) or two steps (if heads) in the direction determined by the copper
coin. Whenever she lands at a new node for the first time she is said to have ‘captured’ it.
She does not capture the node she skips over. If a player intends to capture c nodes and she
wishes to toss the coins k times, then she must pay an admission fee of (25 + 25c+ k) cents
(one quarter to avail the quaternary walk game, one quarter per node she wishes to capture
and one penny per toss or the pair of coins). At the random time T , when either c nodes
(other than Node 0) are captured or k tosses are over, whichever event happens earlier, the
game stops; and the player earns as many nickels as the sum of the labels of the captured
nodes.

Here’s how the game is played: The player begins at Node 0; and after each toss of
the copper and the silver coins, the player moves one step clockwise if the outcome is HT,
two steps clockwise if HH, or one step counterclockwise if the outcome is TT or two steps
counterclockwise if TH; that is, each of the four moves happens with probability 1/4. She is
said to have captured a node on the first visit to it. She does not visit or capture the node
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she skips over. When the c nodes (other than Node 0) are captured or when the k tosses
are over, whichever event happens earlier, the player must stop. Here is a simple way to
think about the stopping time T : Toss the coin k times; let Zt denote the number of nodes
captured (other than Node 0) after t tosses (for t = 1, 2, . . . , k). Either the game stops after
k tosses, if fewer than c nodes are captured; or it stops as soon as c nodes are captured.
That is,

T =
{min{1 ≤ t ≤ k : Zt = c}, if Zk ≥ c;
k, if Zk < c. (1)

Let ST denote the random set of nodes visited and captured by the random walk on the
parity dial when the game ends. The player will earn as many nickels N as the sum of the
labels in ST . Thus, her reward is N = ∑

i∈ST
li nickels or 5N cents, where li is the label of

Node i. How should the player choose (c, k) to maximize her expected net reward?

3. Analyzing the (c, k) Games for c = 1, 2, 3

In this section we study the (c, k) games for c = 1, 2, 3, using the exact probability
mass function (PMF) of N , the number of nickels earned when the game ends.

3.1 The (1, 1) game

Obviously, c = 1 is a terrible choice for the player. For then, she must also choose
k = 1 toss (since there is no opportunity to toss after capturing one node with the first toss);
and she will earn 10, 2, 1, 11 nickels with probability 1/4 each. Therefore, per play she will
pay 51 cents; she will earn, on average, 5(10 + 2 + 1 + 11)/4 = 30 cents; and lose 21 cents—a
whopping 41.2% loss!

3.2 Prospects of the (2, k) games

How about choosing c = 2? Surely, in this case k ≥ 2, since with only one toss, it is not
possible to capture two nodes. But with only two tosses, there is 3/4 chance of capturing
two distinct nodes and a pretty high chance of 1/4 that the player will return to 0 after
capturing just one node. With three tosses there is a 1/16 or 6.25% chance of revisiting
the already captured node and earn no additional reward. Consider a simple-minded player,
Amber, who is contemplating tossing k = 4 tosses. She reasons as follows:

“I will toss the coin k = 4 times. There is a very small chance (less than 2%) that
I will capture only one node from {1, 2, 10, 11}. With a high chance I will capture
two nodes out of {1, 2, 3, 4, 8, 9, 10, 11}. Since this set has an average of 6, the two
nodes I will capture are worth 12 nickels or 60 cents, on average. Since I have to pay
25 + 25(2) + 4 = 79 cents, my loss will be about 24.05%. The game is highly unfair! I
won’t play.”

Later that day Amber wondered: “Why is the average sum of all possible pairs 12?”
She listed the

(
8
2

)
= 28 pairs, computed the within-pair sums and averaged them. Indeed,

the average turned out to be 12. (We encourage the reader to verify the same.) However,
Amber did not stop there. As she stared at the list, all at once it dawned on her that not all
possible pairs of nodes are admissible: In fact, 16 pairs are inadmissible and only 12 pairs
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are admissible. More precisely, with Node 8 we can pair up only Node 10; with Node 4 we
can pair up only Nodes 2 and 10. Similarly, with Node 9 we can pair up only Node 11; with
Node 3 we can pair up only Nodes 1 and 11. Finally, we can have all 6 pairs from among
nodes {1, 2, 10, 11}. Therefore, when we capture two nodes, the total number of nickels we
will earn are

8 + 10, 4 + 2, 4 + 10; 9 + 11, 3 + 1, 3 + 11; 1 + 2, 1 + 10, 1 + 11, 2 + 10, 2 + 11, 10 + 11.

Thus the sums (after sorting) are 3, 4, 6, 11, 12, 12, 13, 14, 14, 18, 20, 21. Hence, the average
earning is 12 + 1/3 nickels, or 61 + 2/3 cents; and the player’s loss is about 21.94%. Amber
was fascinated with her finding. “What can I do with my discovery?” she asked herself while
tossing and turning that night.

Next day, Amber went to the casino and told the manager: “The (c = 2, k = 4)
game allows me to earn 12 nickels on average. So it will be a fair game if you charge
60 cents, instead of 79 cents.”

The manager said: “Look, we don’t let players dictate games. But I will make an
exception for you, Amber, and only for today. Tell you what? I will even give you one
free toss. Go ahead, and play the (c = 2, k = 5) game on payment of 60 cents.”

Amber was ecstatic! She said to herself: “This is my lucky day! I can earn about
5/3 of a penny per game; or about $1.66 per 100 games.”

Amber jumped to action. However, after playing 100 times, she lost about 5 dollars!
What went wrong? Did the casino tamper with the random walk? Amber quit the game;
and visited her statistician friend, Staci, for an explanation.

Staci explained that Amber was correct in thinking she will capture two nodes with
a high probability. In fact, with 4 tosses the chance of not capturing two nodes is only
1/64; and with 5 tosses it is 1/256. She was also correct in identifying the admissible pairs,
whether she tossed 4 times or 5. However, she had blundered in assuming that all admissible
pairs are equally likely. They are not! To demystify the reason for her loss, Staci must help
Amber understand the exact probability distribution of N , the number of nickels captured.

We already noted that when the copper and the silver coins are tossed for the first time,
then N is equally likely to be in {10, 2, 1, 11}. If the coins are tossed twice, then enumerating
all 42 = 16 possible outcomes we see that N takes values

18, 14, 12, 10; 6, 12, 2, 3; 3, 1, 12, 4; 11, 12, 14, 20.

For k ≥ 3 tosses, manually enumerating all 4k outcomes becomes tedious. However, one can
write a small program (see the Appendix for a code in our favorite software R) to do the
job efficiently, and tabulate the values of N in Table 1. Some theoretical properties of the
frequencies in Table 1 are discussed in Section 5. Table 1 shows that the possible values of
N are not equally likely, as Amber was prone to assume.

Based on the exact distribution of N , the number of nickels earned, under the (2, k)
game, we can compute the expected loss under the publicly available admission price of
75 + k cents. This is shown in Table 2. When c = 2, the optimal number of tosses where
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Table 1: The distribution of number of nickels earned when c = 2 and k ≥ 1

deno- N nickels
k minator 1 2 3 4 6 10 11 12 13 14 18 20 21
1 4 1 1 0 0 0 1 1 0 0 0 0 0 0
2 16 1 1 2 1 1 1 1 4 0 2 1 1 0
3 64 1 1 10 4 4 1 3 20 2 8 4 4 2
4 256 1 1 42 17 17 1 9 84 8 34 17 17 8
5 1024 1 1 170 68 68 1 35 340 34 136 68 68 34
6 4096 1 1 682 273 273 1 137 1364 136 546 273 273 136

the percentage loss is minimized is k∗ = 4. Moreover, in Section 5 we will show that as
k → ∞, the expected reward increases monotonically (but at a progressively slower rate),
until it approaches an asymptotic value of 55 + 1/3 cents, but the price keeps on increasing
linearly. Hence, as k increases, the percentage loss initially decreases steadily (though at
a progressively slower rate), and later it monotonically increases until it approaches the
asymptotic value of one. As we shall see in Section 4, this property holds for all c ≥ 2.

Table 2: Expected loss when c = 2 and k ≥ 1

nickels cents
k mean SD E[Reward] E[Loss] Price E[% Loss]
1 6.00 5.52 30.000 46.000 76 60.52
2 9.63 5.81 48.125 28.875 77 37.50
3 10.75 5.54 53.75 24.25 78 31.09
4 10.98 5.44 54.90 24.10 79 30.51
5 11.05 5.42 55.25 24.75 80 30.94
6 11.06 5.41 55.30 25.70 81 31.73

15 11.07 5.40 55.33 34.66 90 38.51

When the casino manager offered the (c = 2, k = 5) game to Amber for an admission
fee of 60 cents, he knew quite well that Amber’s expected loss will be 60− 5(11.047) = 4.77
cents, or 7.95%. Hence, in view of the central limit theorem [see Dudewicz and Mishra
(1988), for example], after playing the (c = 2, k = 5) game 100 times, Amber should have
expected an approximately normally distributed net loss with a mean of 4.77 dollars and a
standard deviation of 0.542 dollars. Amber’s actual experience seems to be less than half a
standard deviation below the expected value. There is no reason to suspect any foul play
on part of the casino. With Staci’s expert guidance and some self-study using Wikipedia
(2020), Amber learned a whole lot about the central limit theorem. (Readers will act wisely
to do the same.)

Let us return to the publicly available (2, k) game with an admission fee of 75+k cents.
Regarding the optimality of k = 4, we have two additional messages for our simple-minded
gambler friend Amber.

First, we should explain to her that k = 4 is better than k = 5. If after 4 tosses she
already captures two nodes, she cannot use her fifth toss at all. The only time she can make
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use of the fifth toss, is when she captures only one node after four tosses. This means after
four tosses she has earned 1, 2, 10, or 11 nickels with probability 4−4 each, and returned
to Node 0. Using the fifth toss, she can capture a new node with an average node label
of 23/4, 22/4, 14/4, 13/4 respectively for the above four cases. Thus, over and above what
she has earned with four tosses, the additional expected earning with the fifth toss is only
4−4 × (23 + 22 + 14 + 13)/4 = 0.07032 nickels, or 0.3516 cents. This is exactly the amount
the casino manager had offered Amber when permitting a free fifth toss. Why should any
other player (and Amber on any other day) pay an extra penny at the beginning of the game
knowing that on average they will earn about one-third of a penny more?

Second, consider a make-belief scenario to convince Amber why she should not pay
for any more than 4 tosses. Suppose that after 4 tosses Amber has captured only one node
(and returned to Node 0); and she has earned 1, 2, 10, or 11 nickels, which events happen
with probability 4−4 each. Suppose also that the casino very generously offers her at no cost
an unlimited number of tosses until she captures a new node! Then Amber is expected to
earn an additional 11.07 − 10.98 = .09 nickels, or 0.45 cents. See a more detailed reason
in Section 5. If Amber had to pay even one penny more for these infinitely-many tosses
she would certainly lose even more than 7.95% of her wager. If this make-belief scenario is
too incredible to be true, we can transform it into a more realistic scenario: At the outset
when Amber agrees to pay 60 cents, the casino makes this offer: “Should you fail to capture
two nodes with your 4 tosses, we will let you toss an unlimited number of times (until you
capture a second node) if you will pay just one penny more right now.” However, we have
already reasoned that accepting this offer is more disadvantageous to the player than to
simply toss 4 times. For there is a high chance that she will forfeit her unlimited number of
tosses anyways!

When our gambler friend Amber learns all these truth, having chosen c = 2, she should
pay for exactly 4 tosses and be prepared to lose roughly 8% of her wager. On any other
day, her admission price will be 79 cents, just like for any other player. But will she have
the appetite to lose 30.5% per play? Although choosing (c = 2, k = 4) is surely better than
choosing (c = 1, k = 1), which had an expected loss of 41.2%, it is not an attractive offer to
a gambler. Games that are so unattractive to the gambler are not conducive to the casino’s
business prospect either. The gambler must inspect other choices.

3.3 Prospects of the (3, k) games

Amber, slightly more enlightened by now, continues to investigate other alternative
choices of (c, k) games. She has learned that it is not enough to simply list the possible
number of nickels she will earn. It is important to know the associated probabilities also.
Correcting her flawed logic in case of c = 2 and paying heed to our above messages, Amber
might reason as follows:

“For c = 1, I choose k = 1 toss; I pay 51 cents, earn 30 cents on average and lose
about 41%. For c = 2, I just learned that I should choose k = 4 tosses, or pay a total
of 79 cents. I expect to earn 55 cents on average; and so I lose about 30%. Perhaps for
c = 3, I ought to choose k = 32 = 9 tosses, or pay $1.09. But how can I calculate the
actual probability distribution of the reward? I know, I will imitate the R codes for
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the (c = 2, k = 4) game that Staci gave me and write the codes for the (c = 3, k = 9)
game.”

Amber modified our R codes for the (c = 2, k = 4) game and constructed the exact
distribution of N for the (c = 3, k = 9) game involving 49 = 262144 possible sequences of
outcomes shown in Table 3. With PMF so constructed, Amber computed the mean and the
SD of the expected reward. (We urge the reader to do the same.)

Table 3: Exact reward distribution, mean and SD for the (c = 3, k = 9) game

N nickels
value 1 2 3 4 5 6 7 8 9 10
freq 1 1 10 15 0 10223 10208 0 4680 1
value 11 12 13 14 15 16 17 18 19 20
freq 31 5700 33694 35249 31331 31331 1555 15 6235 14903
value 21 22 23 24 25 26 27 28 29 30
freq 10238 21419 19864 6235 10915 0 4680 0 1555 1555

mean(N)=16.68917 SD(N)=5.285686 Total frequency=49 = 262144

After hanging out with her statistician friend, Staci, long enough, Amber has learned
to ask some critical questions. This is what she asked next:

“Why am I using k = 9 tosses? Am I being duped to thinking k = c2 because the
formula held true for c = 1, 2? But the optimal k may be different. If I choose a higher
k, computing the PMF is time consuming. But if I choose a smaller k, I can compute
the PMF quickly. In this latter case, although I may earn less, I will also pay less.
Maybe I will reduce my percentage loss! Let me try various values of 5 ≤ k ≤ 8 for
c = 3.”

What she found is documented in Table 4.

Table 4: Expected loss when c = 3 and 5 ≤ k ≤ 9

nickels cents
k mean(N) SD(N) E[Reward] E[Loss] Price E[% Loss]
5 15.99121 5.698083 79.96 25.04 105 23.85
6 16.36841 5.499275 81.84 24.16 106 22.79
7 16.56256 5.376299 82.81 24.19 107 22.60
8 16.64687 5.317425 83.23 24.77 108 22.93
9 16.68917 5.285686 83.45 25.55 109 23.44

Thus, Amber discovered that for c = 3, the optimal choice for k (that minimizes the
percentage loss) is not 32, rather it is k = 7. For the (c = 3, k = 7) game, we show the exact
PMF in Table 5. In particular, the mean reward is 82.81 cents with a SD of 26.88 cents.
Moreover, she wins (earns over $1.09) with probability P{N ≥ 22} = .2487; she never wins
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more that half-a-dollar; but she loses over half-a-dollar with probability P{N ≤ 11} = .1031.
The player wins over a quarter with probability only P{N ≥ 27} = .0294; but she loses over
a quarter with a high probability of P{N ≤ 16} = .6266.

Table 5: Exact reward distribution, mean and SD for the (c = 3, k = 7) game

N nickels
value 1 2 3 4 5 6 7 8 9 10
freq 1 1 126 7 0 627 620 0 292 1
value 11 12 13 14 15 16 17 18 19 20
freq 15 544 2050 2145 1919 1919 95 7 387 919
value 21 22 23 24 25 26 27 28 29 30
freq 634 1311 1216 387 679 0 292 0 95 95

mean(N)=16.56256 SD(N)=5.376299 Total freq. =47 = 16384

4. The Best Choice of (c, k) for c ≥ 4

Amber has learned the inevitable truth that the reward random walk game on the
parity dial is unfavorable to her if she chooses c = 1, 2, 3. Perhaps she has already resigned
to accepting that every (c, k) game will be unfavorable to her. Consequently, she is willing
to tolerate a 10% loss per play, in exchange for the entertainment and thrill she experiences
during the game. What if she chooses c ≥ 4? Amber dived deeper into her thoughts.

“I see my percentage loss keeps on reducing as I try higher values of c. I must try
other values 4 ≤ c ≤ 11. Perhaps I can reduce my loss further; maybe I can even
earn a positive return on investment! I won’t bet on it though; I will be happy if
my loss is under 10%. Nonetheless, for each c, finding the corresponding optimal k
requires computing the exact PMF of the number of nickels captured in the (c, k) game.
However, such computations become exceedingly time consuming as k ≥ 10 becomes
large, since 4k increases exponentially. What can I do? I suppose I need some help
from superwoman. Let me visit Staci once more.”

And so she did. Incredibly, Staci had another trick up her sleeve. She said:

“Amber, you do not need to know the exact PMF. You only need to know the mean
(and perhaps the SD) of the reward you will earn. There is a law of large numbers
[see Dudewicz and Mishra (1988), for example] that says: “If from any distribution
(with a finite expectation), you take many, many (independent) observations, then
the long-run sample mean will be close to the expected value of the distribution.” So
simply replicate the game many times (say, 102m times); and then compute the mean
and the SD of the rewards earned in these plays. That mean will approximate the long
run expected reward, with the precision of approximation given by the standard error
(SE), which equals SD/10m. You can learn more about this law of large numbers by
reading Wikipedia (2020).”
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Amber was so overjoyed to learn about this wonderful trick that she forgot to ask Staci
anything about the optimal choice of k. Left to her own devices, she reasoned: “For c = 2
and 3, the corresponding optimal k were respectively 4 and 7. I think k = 1+c(c+1)/2 may
hold true, in general.” Amber modified the codes again to play the game 104 times, where
each game consists of tossing a pair of fair copper and silver coins (or equivalently, choosing
from a discrete uniform random variable which takes values −2,−1, 1, 2 equally likely) until
either c nodes are captured or k = 1 + c(c + 1)/2 tosses are over, whichever event happens
first. See the codes for simulation in the Appendix. The average reward and the SD of the
rewards earned in these repeated games suffice to approximate the expected loss and the
associated SE. Thereafter, it is easy to calculate the expected percentage loss as a fraction
of the admission fee. The results of her simulation study are summarized in Table 6.

Table 6: Expected reward and loss to capture c ≥ 3 nodes in k = 1 + c(c + 1)/2
tosses, via simulation based on 104 iterations

cents
c k Price E[Reward] SE E[Loss] E[% Loss]
2 4 79 54.97 0.27 24.03 30.42
3 7 107 82.80 0.27 24.20 22.61
4 11 136 112.90 0.26 23.10 16.99
5 16 166 143.63 0.26 22.37 13.48
6 22 197 174.83 0.25 22.17 11.25
7 29 229 205.74 0.25 23.26 10.16
8 37 262 236.93 0.24 25.07 †9.57
9 46 296 267.74 0.22 28.24 †9.55
10 56 331 297.44 0.18 33.56 10.14
11 67 367 326.01 0.14 40.99 11.17

Amber concluded that all (c, k) games are unfavorable to her. Only two games were
within her tolerance limit of 10% loss—(8, 37), (9, 46)—with the latter being slightly preferable.
Are Amber’s above reasoning justified?

Amazingly, our friend Amber has reasoned very wisely. We applaud her quick understanding
of the law of large numbers and her smart implementation of the simulation. Nonetheless, she
could have done a little better: Corresponding to each c, instead of relying on her conjecture
k = 1 + c(c + 1)/2, she should have searched for the optimal k, again via a more thorough
simulation study. Then she could discover the best available choice.

While we could simulate the game for all values of k ≥ c, we follow a smart search
algorithm. For c = 2, we already know the optimal choice is k = 4. For c = 3, we successively
tried k = 5, 6, 7, 8, 9. Since the optimal value turns out to be k = 7, for the next choice c = 4,
we should successively try k ≥ 8. When the optimal value for k is found (by continuing as
long as expected percentage loss decreases, and as soon as it begins to increase, by trying
out one more value of k to verify that the increasing trend continues), we stop the search.
Then we repeat the process for the next value of c starting with the value of k greater
than the optimal value for the previous c. In Table 7, we report the performance of the
optimal k for each c ≥ 2, together with the performance of two values of k below and and
two values of k above the optimal as demonstration. In summary, the optimal values are
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k∗(c) = (1, 4, 7, 10, 14, 18, 22, 27, 32, 39, 48) for c = 1, 2, . . . , 11.

Table 7: Expected reward and expected loss for 2 ≤ c ≤ 11 and associated optimal
k∗ together with two values below and two values above it

cents cents
c k price E[rew] E[loss] E[%loss] c k price E[rew] E[loss] E[%loss]

2 77 48.10 28.90 37.53 5 105 79.88 25.12 23.92
3 78 53.73 24.27 31.12 6 106 81.86 24.14 22.77

2 4 79 54.88 24.12 ∗30.53 3 7 107 82.79 24.21 ∗22.62
5 80 55.26 24.74 30.92 8 108 83.26 24.74 22.91
6 81 55.31 25.69 31.71 9 109 83.42 25.58 23.47
8 133 109.37 23.63 17.77 12 162 140.13 21.87 13.50
9 134 111.10 22.90 17.09 13 163 141.40 21.60 13.25

4 10 135 112.18 22.82 ∗16.90 5 14 164 142.34 21.66 ∗13.21
11 136 112.79 23.21 17.07 15 165 142.99 22.01 13.34
12 137 113.22 23.78 17.36 16 166 143.46 22.54 13.58
16 191 170.29 20.71 10.84 20 220 199.89 20.11 9.14
17 192 171.47 20.53 10.69 21 221 201.15 19.85 8.98

6 18 193 172.43 20.57 ∗10.66 7 22 222 202.10 19.90 ∗8.96
19 194 173.19 20.81 10.73 23 223 202.96 20.04 8.98
20 195 173.79 20.21 10.88 24 224 203.70 20.30 9.06
25 250 229.90 20.10 8.04 30 280 258.78 21.22 7.58
26 251 230.98 20.02 7.98 31 281 259.90 21.10 7.51

8 27 252 232.01 19.99 ∗7.93 †9 32 282 260.96 21.04 †∗7.46
28 253 232.90 20.10 7.94 33 283 261.85 21.15 7.47
29 254 233.70 20.30 7.99 34 284 262.66 21.34 7.51
37 312 288.02 23.98 7.69 46 346 314.63 31.37 9.07
38 313 288.98 24.02 7.67 47 347 315.56 31.44 9.06

10 39 314 289.98 24.02 ∗7.65 11 48 348 316.51 31.49 ∗9.05
40 315 290.82 24.18 7.67 49 349 317.40 31.60 9.05
41 316 291.66 24.34 7.70 50 350 318.15 31.85 9.10

Based on the results of Table 7, we learn that Amber’s conjecture for the optimal
k∗, as a function of c ≥ 4, was wrong. Moreover, we learn that the best choice game is
(c = 9, k = 32); and with this choice, a gambler faces a 7.47% expected loss (instead of
a 9.55% loss as Amber had anticipated based on Table 6 where she misjudged k to be
46 when c = 9). Amazingly, Amber was right in choosing c = 9. But she was acting
suboptimally by spending 46− 32 = 14 cents more to increase her expected reward by only
267.71− 260.96 = 6.75 cents. Having discovered the optimal choice, the gambler must stick
to playing only the (c = 9, k = 32) game, for any other game would cause her to lose a higher
percentage of her wager.

Our increasingly wiser, inquisitive friend Amber cannot stop asking more questions.
Here is a sample of questions she asked. (Readers will do well to ask more questions.)

(1) “How many nodes will I actually capture (when I set out to capture 9 nodes)?”
(2) “How many times will I actually toss (for more tosses mean more entertainment)?

Equivalently, what is the distribution of the stopping time T defined in Eq. (1)?”
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(3) “How much reward will I collect?”

The answers to Amber’s questions are not numbers, rather they are random variables
that can be described by their PMFs. These PMFs need not be exact; it suffices to estimate
them based on simulation. These are reported in Table 8 and Figures 2 and 3 based on
simulation involving 106 iterations.

Table 8: Frequencies of the number of nodes the gambler captured when playing
the (c = 9, k = 32) game 106 times

c k 3 4 5 6 7 8 9 total
9 32 2 245 3590 18864 49448 91004 836847 106

Figure 2: When playing the (c = 9, k = 32) game 106 times, the stopping time T
has a mean 21.98, SD 7.20, three quartiles 16, 21, 28. Moreover, about 16.4% of
times fewer than 9 nodes are captured in all 32 tosses.

Figure 3: When playing the (c = 9, k = 32) game 106 times, the number of nickels
the gambler earned has a mean 52.19, SD 5.98 and three quartiles 50, 53, 56.

As we satisfy Amber’s curiosity, additional features of the optimal game (c = 9, k = 32)
are revealed. For this game, the gambler has about 83.7% chance of capturing all 9 nodes
she intended to capture and an additional 9.1% chance of capturing 8 nodes. Thus, there is
a 7.2% chance of capturing 7 or fewer nodes when all 32 tosses are over. The mean number
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of tosses until 9 nodes are captured (or 32 tosses are over) is 21.98, with a standard deviation
of 7.20. About 82.0% of times the gambler will have to forgo one or more tosses (for she has
already captured 9 nodes), and 16.3% of times she will wish she could toss more often (for
she has not captured 9 nodes with 32 tosses). Also, for the same game, while she wagers
282 cents, she has a 19.7% chance of coming out a winner with 57 nickels or more (that is,
earning more than her wager). She has a 15% chance of losing over half-a-dollar and a 2.2%
chance of losing over a dollar.

5. Theoretical Results

For want of space we refrain from studying at length the manifold theoretical issues.
We illustrate only a few theoretical queries to whet the readers’ appetite; but we leave many
other interesting questions for the readers to pursue on their own.

5.1 Theory when c = 2

In Subsection 3.2, we learned that for c = 2, the optimal number of tosses is k = 4, with
a 30.51% expected percentage loss. In particular, this means that the additional expected
reward earned by the fifth toss over and above that earned in the first four tosses must be less
than 0.695 cents. For otherwise, paying for five tosses would be better than paying for four.
In fact, this additional expected reward was shown in Table 2 to be 55.25 − 54.90 = 0.35.
The reason was explained to the gambler as a first message regarding the optimality of k = 4.
Here we continue the argument by computing the additional expected reward earned in each
successive toss, shown in Table 9. There we see that between the fourth and the fifth tosses
the exact additional expected reward is 72/45 = 9/128 nickels, or 0.3516 cents. Moreover,
the additional expected reward earned by an infinite number of tosses after the first four
tosses until two nodes are captured is(72

45 + 58
46

)
+
(72

47 + 58
48

)
+ . . . =

(144
211 + 29

211

) [
1 + 1

16 + 1
162 + . . .

]
= 173

211
16
15 = 0.0901

nickels, or 0.4505 cents.

Here is another way to derive the expected reward until the gambler captures two nodes
(using an unlimited number of tosses). We consider two mutually exclusive, exhaustive cases.

Case 1: With the first two tosses she captures two distinct nodes (with probability
3/4), and the number of nickels she earns on average is

1
4

[(
1 + 16

4

)
+
(

2 + 15
4

)
+
(

10 + 14
4

)
+
(

11 + 13
4

)]
= 1

4

[
24 + 58

4

]
= 9 + 5

8 . (2)

Case 2: With the remaining probability 1/4, the gambler does not capture two distinct
nodes with the first two tosses. In fact, with probability 1/16, she captures Node 1 and then
returned to Node 0. Thereafter, how many nickels will she earn on average, if she is allowed
an unlimited number of additional tosses until she captures a second node? Call this average
number of additional nickels µ1. Then by conditioning on the next two moves, we see that
µ1 satisfies the following recursive relation

µ1 = 10 + 2 + 11
4 + 1

4

[2 + 11 + 3 + µ1

4

]
.
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Table 9: Additional reward earned in each successive toss when c = 2

k nickels cents
1 10 2 1 11 24/4 = 6 30

8 4 2 0
4 10 0 1
2 0 11 3
0 1 3 9

2 14 15 16 13 58/42 = 29/8 145/8
0 10 10 10
2 0 2 2
1 1 0 1

11 11 11 0
3 14 22 23 13 72/43 = 9/8 45/8

8 4 2 0
4 10 0 1
2 0 11 3
0 1 3 9

4 14 15 16 13 58/44 145/128
0 10 10 10
2 0 2 2
1 1 0 1

11 11 11 0
5 14 22 23 13 72/45 45/128
6 14 15 16 13 58/46 145/1024
7 14 22 23 13 72/47 45/1024
...

...
...

sum 6 + 29+9
8 ∗ 16

15 = 11 1
15 55 1

3

Solving the above recursive relation, we obtain µ1 = 108/15 nickels. Likewise, with probability
1/16, she captures Node 2 and then returns to Node 0; and thereafter, she will eventually
earn on average µ2 = 103/15 nickels. With probability 1/16, she captures Node 10 and
then returns to Node 0; thereafter, she will eventually earn on average µ10 = 70/15 nickels.
Finally, with probability 1/16, she captures Node 11 and then returns to Node 0; thereafter,
she will eventually earn on average µ11 = 65/15 nickels. Thus, in Case 2, the number of
nickels the gambler earns on average is

1
16 [µ1 + µ2 + µ10 + µ11] = 1

16

[108 + 103 + 70 + 65
15

]
= 173

120 . (3)

Adding Eq. (2) and Eq. (3) together, on average the gambler earns

9 + 5
8 + 173

120 = 9 + 248
120 = 11 1

15

nickels, or 551
3 cents.
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5.1.1 Formula for the PMF of N for the (c = 2, k) game

In Table 1, we documented the distribution of N , the number of nickels earned, for
1 ≤ k ≤ 6 using a computer software code. Here we shall discover a pattern among these
frequencies and hence write down the formulas in general, so that we can construct the exact
distribution of N for larger values of k without having to use the codes. First, from rows
corresponding to odd k = 2i − 1 ≥ 3, we subtract Row 1; and from rows corresponding to
even k = 2i ≥ 4, we subtract Row 2. See Table 10.

Table 10: To discover patterns in the frequencies of N for various k ≥ 1, subtract
the first row from all odd rows 3 or higher and the second row from all even
rows 4 or higher.

N nickels
k 1 2 3 4 6 10 11 12 13 14 18 20 21
1 1 1 0 0 0 1 1 0 0 0 0 0 0
2 1 1 2 1 1 1 1 4 0 2 1 1 0
3 0 0 10 4 4 0 2 20 2 8 4 4 2
4 0 0 40 16 16 0 8 80 8 32 16 16 8
5 0 0 170 68 68 0 34 340 34 134 68 68 34
6 0 0 680 272 272 0 136 1360 136 544 272 272 136
...

...
...

...
2i− 1 ( 0 0 5 2 2 0 1 10 1 4 2 2 1 )×f2i−1

2i ( 0 0 5 2 2 0 1 10 1 4 2 2 1 )×f2i

Then we divide each row 3 or higher by the entry fi in the last column (under N = 21)
to see that the quotient vector is a constant! It remains to find a formula for fi, for then we
can reverse the steps (multiply the constant quotient vector by fi, and add Row 1 or Row 2
according as i is odd or even) to reconstruct all frequencies in each row.

The entry in the last column in any even position is four times the entry in the
immediately previous odd position; that is, f2i = 4f2i−1. The entries in the odd positions
are: (0, 2, 34, 546, . . .), which satisfy the recursive relation f2i+1 = 16 f2i−1 +2, and hence the
formula

f2i−1 = 2
15(16i−1 − 1). (4)

Thereafter, using Eq. (4), we can obtain the limiting probabilities as

P{N = 21|k = 2i− 1} = f2i−1

42i−1 = 2
15

16i−1 − 1
42i−1 → 2

1516−1/2 = 1
30;

and
P{N = 21|k = 2i} = f2i

42i
= 4f2i−1

4 42i−1 = f2i−1

42i−1 . . .→
2
1516−1/2 = 1

30 .

In particular, as k → ∞, either through even values or through odd values, in the
limit the number N of nickels earned takes on values (3, 4, 6, 11, 12, 13, 14, 18, 20, 21) with
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associated probabilities (5, 2, 2, 1, 10, 1, 4, 2, 2, 1)/30. Hence, the limiting mean and SD of N
are respectively 11+1/15 and 5.41. Equivalently, the expected reward is 55+1/3 cents with
a SD of 27.05 cents.

5.2 Theory when c = 3

In Subsection 3.3, we learned that for c = 3, the optimal number of tosses is k = 7, with
a 22.60% expected percentage loss. In particular, this means that the additional expected
reward earned by the eighth toss over and above that earned in the first 7 tosses must be
less than 0.774 cents. In fact, this additional expected reward was shown in Table 2 to be
83.23−82.81 = 0.42. Likewise, the additional expected reward earned by an infinite number
of tosses after the first 7 tosses until three nodes are captured is about 83.64 − 82.81 =
0.83 ± 0.0263 > 0.774, obtained by simulating the (c = 3, k = 20) game 106 times. This
means that to a player who agrees to play the (c = 3, k = 7) game on payment of $1.07, if
the casino offers an unlimited number of tosses until three nodes are captured on payment
of just one penny more, then the gambler should take it. But if the charge is two pennies or
higher, the gambler should decline the offer.

The exact probability distribution of N , the number of nickels earned until three nodes
are captured or k tosses are over, are documented in Table 11 using a modified code along
the lines of that used to construct Table 1.

As we demonstrated in Subsection 5.1 for the case of c = 2, we now invite the reader
to find a formula for the frequencies in Table 11. If the game must stop as soon as the player
captures three nodes (using as many tosses as needed), then we conjecture that the PMF of
the number of nickels the player will earn is as given in Table 12. If our conjecture holds,
then the player will earn on average 16.79 nickels (SD 5.30), or 83.95 cents (SD 26.48 cents).

5.3 Theory when c = 9

To a player willing to play the overall optimal game (c = 9, k = 32) with an admission
fee of $2.82 at a 7.46% expected loss, if the casino offers an unlimited number of tosses until
nine nodes are captured on payment of 8 cents or less, then the gambler should take it. But
if the charge is 9 cents or higher, then the gambler should decline the offer. How did we
discover this threshold? We simply estimated the expected rewards of the (c = 9, k = 100)
game and the (c = 9, k = 32) game via simulation based on 106 plays of each game, and then
we computed their difference 269.19− 260.96 = 8.23 cents with a SD of .04 cents. It sufficed
to consider k = 100 because in all but 108 cases of the 106 plays of the (c = 9, k = 100)
game, all 9 nodes were captured. Among the other 108 cases, 99 times 8 nodes are captured
and the remaining 7 times 7 nodes are captured.

6. Binary Vs. Quaternary Random Walks

In this paper, we have studied a game that allows a symmetric quaternary random walk
on the parity dial. How does this game compare with the original game of a symmetric binary
random walk on the parity dial studied by Sarkar (2020 a)? In Table 13, we summarize the
expected performance of the (c, k∗) game for 1 ≤ c ≤ 11 and the associated optimal number
of tosses k∗ side by side for the two types of random walks.
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Table 11: Frequencies of N for c = 3 and 1 ≤ k ≤ 9

--------------------------------------------------------
row N\k-> 1 2 3 4 5 6 7 8 9

--------------------------------------------------------
[1,] 1 1 1 1 1 1 1 1 1 1
[2,] 2 1 1 1 1 1 1 1 1 1
[3,] 3 0 2 6 14 30 62 126 254 510
[4,] 4 0 1 1 3 3 7 7 15 15
[5,] 6 0 1 2 10 37 156 627 2544 10223
[6,] 7 0 0 1 7 34 149 620 2529 10208
[7,] 9 0 0 1 4 18 72 292 1168 4680
[8,] 10 1 1 1 1 1 1 1 1 1
[9,] 11 1 1 3 3 7 7 15 15 31

[10,] 12 0 4 13 32 78 196 544 1676 5700
[11,] 13 0 0 5 24 116 492 2050 8340 33694
[12,] 14 0 2 5 29 121 523 2145 8743 35249
[13,] 15 0 0 4 23 109 465 1919 7781 31331
[14,] 16 0 0 4 23 109 465 1919 7781 31331
[15,] 17 0 0 0 1 5 23 95 387 1555
[16,] 18 0 1 1 3 3 7 7 15 15
[17,] 19 0 0 1 5 23 95 387 1555 6235
[18,] 20 0 1 3 14 55 228 919 3712 14903
[19,] 21 0 0 3 9 40 155 634 2543 10238
[20,] 22 0 0 2 15 73 317 1311 5321 21419
[21,] 23 0 0 2 14 68 294 1216 4934 19864
[22,] 24 0 0 1 5 23 95 387 1555 6235
[23,] 25 0 0 2 9 41 167 679 2723 10915
[24,] 27 0 0 1 4 18 72 292 1168 4680
[25,] 29 0 0 0 1 5 23 95 387 1555
[26,] 30 0 0 0 1 5 23 95 387 1555
--------------------------------------------------------
[All] sum 4 4ˆ2 4ˆ3 4ˆ4 4ˆ5 4ˆ6 4ˆ7 4ˆ8 4ˆ9
--------------------------------------------------------

Table 12: A conjecture regarding the limiting distribution, mean and SD of N ,
the number of nickels earned, for the (c = 3, k =∞) game

value 6 7 9 13 14 15 16 17 19
freq 7 7 3 22 23 20 20 1 4
value 20 21 22 23 24 25 27 29 30
freq 10 7 14 13 4 7 3 1 1

mean(N)=16.79 SD(N)=5.30 Total freq=167

For symmetric quaternary walk games, the optimal choice is the (9, 32) game with an
admission fee of $2.82 and a 21.04 cents (or 7.46%) expected loss. The same for symmetric
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Table 13: Expected percentage loss for 1 ≤ c ≤ 11 and associated optimal k∗

symmetric binary walk symmetric quaternary walk
cents % cents

c k∗ price E[rew] E[loss] E[loss] k∗ price E[rew] E[loss] E[% loss]
1 1 26 7.50 18.50 71.15 1 51 30.00 21.00 41.17
2 6 56 44.31 11.69 20.88 4 79 54.88 24.12 30.53
3 10 85 70.13 14.87 17.50 7 107 82.79 24.21 22.62
4 16 116 102.27 13.73 11.84 10 135 112.18 22.82 16.90
5 22 147 131.53 15.47 10.53 14 164 142.34 21.66 13.21
6 28 178 160.76 17.24 †9.69 18 193 172.43 20.57 10.66
7 36 211 189.72 21.28 10.09 22 222 202.10 19.90 8.96
8 44 244 220.29 23.71 9.72 27 252 232.01 19.99 7.93
9 54 279 248.65 30.35 10.88 32 282 260.96 21.04 †7.46

10 64 314 279.96 34.04 10.84 39 314 289.98 24.02 7.65
11 72 347 304.72 42.28 12.18 48 348 316.51 31.49 9.05

binary walk games is the (6, 28) game with an admission fee of $1.78 and a 17.20 cents (or
9.66%) expected loss. However, in the optimum quaternary walk game, the gambler tosses
the pair of coins on average 21.98 times (with an SD of 7.20), which can be calculated from
Table 8, and in the optimum binary walk game, she tosses the coin on average 16.2 times
(with an SD of 6.23). Thus, the gambler loses just under a penny per toss in the optimum
quaternary walk game, and just over a penny per toss in the optimum binary walk game.
The entertainment value (proportional to the number of tosses) of the optimum quaternary
walk game is only marginally higher than that of the optimum binary walk game.

7. Modifications to the Game

The reward random walk (binary or quaternary) on the parity dial is designed to
educate gamblers make optimal decisions when the casino offers a game. Recognizing
that different gamblers may respond differently, the casino may offer modifications to the
initial offer—creating new decision-making opportunities. Sarkar (2020 a) proposed four
modifications to the binary walk game: Should the player

(a) interchange nodes within any of the pairs (1, 2), (3, 4), (5, 6), (8, 9), (10, 11)?
(b) permute nodes (8, 9, 10, 11)?
(c) permute nodes (5, 6, 7)?
(d) pay an extra fee of dk/10e cents for the option to sell back at any time the remaining

tosses at half-a-penny each?

Here we pose those same modifications to the quaternary walk game. Let us also pose
a couple of new modifications:

(1) For the ternary random walk (which goes from any node to its two neighboring nodes
and the node diametrically opposite it with probability 1/3 each), how much admission
fee (of the form a0 + a1 c + k, where a0, a1 are constants) should the casino charge so
that even after making the optimal choice of (c, k), the gambler will lose between 5%
and 10% of her wager?
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(2) Change the usual dial of a 24-hour clock into a parity dial by replacing 24 by 0,
and interchanging the pairs (2, 23), (4, 21), (6, 19), (8, 17), (10, 15), (12, 13). Advice the
casino how much admission fee they should charge in order to construct a reasonably
attractive game (which is still profitable to the casino) involving either a binary, a
ternary or a quaternary random walk on this new parity dial.
We also encourage interested readers to construct new games out of other random

walks, such as those in Sarkar (2020 a) and Barhoumi, et al. (2020), and study business and
economics lessons drawn from them.
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APPENDIX: R Codes

1. Compute exact distribution of N for the (2, 4) game

### (c=2, k=4)
rf=c(1,11,3,9,5,7,6,8,4,10,2,0)
rew=rep(0,4ˆ4); j=1; toss=c(-2,-1,1,2)
for (x1 in toss){

for (x2 in toss){
for (x3 in toss){

for (x4 in toss){
u=c(y1,y2,y3,y4)
cu=cumsum(u); cu=cu-12*floor(cu/12); cu=cu[cu>0]
f1=min(length(unique(cu)),2); cu=unique(cu)[1:f1]
rew[j]=sum(rf[cu])
j=j+1
} } } }

table(rew)
mean(rew)
sd(rew)

2. Simulate random reward earned in any (c, k) game

### random reward earned when 4 neighbors are equally likely
rw4=function(f,k){ # f=vertices to capture, k=tosses allowed

rf=c(1,11,3,9,5,7,6,8,4,10,2,0); toss=c(-2,-1,1,2)
step=sample(toss,k,replace=T)
cs=cumsum(step); cs=cs-12*floor(cs/12); cs=cs[cs>0]
f1=min(length(unique(cs)),f)
cs=unique(cs)[1:f1]
sum(rf[cs]) }

data=replicate(10ˆ6, rw4(6, 28)) # vary
mean(data)
sd(data)
table(data)

k=2 # initialize the number of tosses
for (c in 2:11){

k=k+c; pay=25*(c+1)+k
data=replicate(10ˆ4,rw4(c,k))
me=5*mean(data); se=5*sd(data)/10ˆ2
print( round(c(c, k, pay, me, se, 100*(1-me/pay)), 2) )
}
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3. Document and verify optimal k, for each c, via simulation

### optimal (c,k) in rw4
k0=c(1, 4, 7, 10, 14, 18, 22, 27, 32, 39, 48)
for (f in 2:11){

k1=k0[f]-2; k2=k0[f]+2
for (k in k1:k2){

data=replicate(10ˆ6,rw4(f,k))
price=25+25*f+k
reward=5*mean(data)
se=5*sd(data)/10ˆ3
print( round(c(k, price, reward, se, 100*(1-reward/price)),2) ) }

}
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Abstract 

Taking the clue from Odumade and Singh (2010), we have suggested a procedure to 
improve the randomized response model envisaged by Tarray and Singh (2014). If there exist 
two sensitive variables associated to the principal study sensitive variable then those variables 
could be used to develop ratio type adjustments to the conventional estimators of the population 
mean of a sensitive variable due to Tarray and Singh (2014). Conditions are obtained under 
which the suggested ratio-type estimators are better than estimators of Bar-Lev et al (2004) and 
Tarray and Singh (2014). Numerical illustrations are given in support of the present study. 

Key words:  Randomized response model; Study variable; Auxiliary variable; Bias; Mean 
Squared Error. 
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1.  Introduction 
 
Obtaining information pertaining to sensitive or stigmatizing characteristics has been a 

vexing problem that is encountered in sample surveys. The questions that make the respondent 
suffer embarrassment if he (or she) answers the question affirmatively prompt him (or her) to 
select the path that is least likely to jeopardize his (or her) reputation. This would then entail data 
that are mostly unreliable. Research in statistical methodology to devise schemes to elicit 
answers in the above context has been in the direction of finding methods that ensure anonymity 
to the respondent in as far as his answer is concerned. It is believed that if the interviewer does 
not know what the answer from the respondent to the sensitive question is, then the respondent 
feels safe in responding truthfully to the sensitive question. In this direction, an attempt has been 
made by Warner (1965) by introducing an innovative technique commonly referred to as 
randomized response (RR) technique for estimating the proportion of population possessing 
certain stigmatized character (say) by protecting the privacy of respondents and preventing the 
unacceptable rate of non-response. 
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Since Warner's (1965) model, a rich growth of literature can be found by the researchers 
for collecting data on both the qualitative and the quantitative variables. For details, one can refer 
to Horvitz et al. (1967), Greenberg et al. (1969), Franklin (1989), Fox and Tracy (1986), Grewal 
et al. (2005-2006), Hong (2005-2006), Ryu et al. (2005-2006), Mahajan et al. (2007), Perri 
(2008), Singh and Chen (2009), Odumade and Singh (2009, 2010), Singh and Tarray (2012, 
2013, 2014), Barabesi et al. (2014) and Singh and Gorey (2016), etc. 
 
1.1  Eichhorn and Hayre’s (1983) model 
 

Eichhorn and Hayre (1983) introduced the following RRT model that is based on 
multiplicative scrambling to collect information on sensitive quantitative variables like income, 
tax evasion, amount of drug used etc. If Y is the true response and S is a scrambling variable 
(independent of Y) with mean  and standard deviation , then the reported response is given by 

.                                                                                                                          (1.1) 

It is assumed that the distribution of the scrambling variable S is known. In other words, 
mean  and variance  are assumed to be known and positive. Obviously , 

which leads to an estimator of the population mean under simple random sampling with 
replacement (SRSWR) scheme given by 

,                                                                                                      (1.2) 

where is the sample mean of the reported responses. The variance of  is given by 

 ,                                                                                  (1.3) 

where  and  are the coefficients of variation of scrambling variable S and 
the study variable Y, and  is the standard deviation of the study variable y. We shall now 
discuss a randomized response model studied by Bar-Lev et al (2004), which we call BBB model 
hereafter. 

1.2  Bar-Lev, Bobovitch and Boukai’s (2004) RR model 

In the BBB model, each respondent is requested to rotate a spinner unobserved by the 
interviewer. If the spinner stops in the shaded area then the respondent is requested to report the 
real response on the sensitive variable, say . If the spinner stops in the non-shaded area then 
the respondent is requested to report the scrambled response, say , where S is any scrambling 
variable and its distribution is assumed to be known. Let p be the proportion of the shaded area 
of the spinner and  be the non-shaded area of the spinner as demonstrated in the Figure 
1.1. 
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Fig. 1.1: BBB randomized response device 

 
Let  be the response from the ith respondent using BBB randomized response procedure. 
Then  has the distribution: 

                                                                               (1.4) 

An unbiased estimator of the population mean  is given by 

 .                                                                                               (1.5) 

The variance under SRSWR sampling is given by 

,                                                                                 (1.6) 

where  

 .                                                                                  (1.7) 

In Section 1.3, we have revisited the Tarray and Singh (2014) RR models and in section 1.4 
description of optimal model of Tarray and Singh (2014) is given. 

1.3  A revisit to Tarray and Singh (2014) RR model-I 

Using the knowledge of mean  of scrambling variable S and the design parameter p, 
Tarray and Singh’s (2014) have suggested a randomized response procedure. In the Tarray and 
Singh’s (2014) procedure the distribution of interviewee’s response to the sensitive question is: 

                                                                        (1.8) 

The expected value of  is given by  
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           . 

Thus an unbiased estimator of the population mean   is given by  

.                                                                                                   (1.9) 

The variance of  is given by 

.                                                                                                        (1.10) 

The variance of  is obtained as follow  

 

           

           

           

           

           .                                                                            (1.11) 

Thus, the variance of  is given by  
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                   ,                                                                           (1.12) 

where 

 . 

 
We note that the variance of  obtained in (1.12) is correct while the variance of 

expression obtained by Tarray and Singh (2014, p.89, equation (2.5)) is incorrect therefore we 
have revisited the RR model (1.8) due to Tarray and Singh (2014). 
From (1.3) and (1.12) we have   

 

which is always positive if  

.                                                                                             (1.13) 

Thus, the Tarray and Singh’s (2014) estimator  is more efficient than Eichhorn and 
Hayre’s (1983) estimator  as long as the condition (1.13) is satisfied. Further from (1.6) and 
(1.12) we have  

 

which is positive if  
  

i.e. if  

.                                                                            (1.14) 

Thus the estimator  due to Tarray and Singh (2014) is more efficient than the Bar-Lev et al 
(2004) estimator  if the condition (1.14) is satisfied. 

 
To see the merits of the Tarray and Singh’s (2014) unbiased estimator  we have 

computed the percent relative efficiency (PRE) of  with respect to  and  by 
using the formulae: 

                                                   (1.15) 
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                                                            (1.16) 

for different values of . Findings are given in Tables 1.1 and 1.2. Tables1.1 and 
1.2 show that the values of  and  are greater than 100%. 
Thereby meaning is that the Tarray and Singh’s (2014) estimator  is better than Eichhorn 
and Hayre’s (1983) estimator  and Bar-Lev et al’s (2004) estimator  for the 
parametric values closed in Tables 1.1 and 1.2. 

1.4  Tarray and Singh (2014) RR model- II 

Tarray and Singh (2014) have suggested another RR model based on the knowledge of 
mean and square of the coefficient of variation  of the scrambling variable S and 
design parameter p. In this model, the distribution of the responses is given by  

     

                                            (1.17) 

An unbiased estimator of the population mean  based on RR model (1.17) is given by  

                                                                                                           (1.18) 

and the variance is given by 

                                                                               (1.19) 

where 

. 

Tarray and Singh (2014) have shown that the estimator  is always better than 
Eichhorn and Hayre (1983) estimator . They have further shown that the  is more 

efficient than the  due to Bar-Lev et al (2004) if the condition . 

2.  Proposed Ratio-Type Estimator Based on Tarray and Singh (2014) Model-I 

2.1.  Notations 
Following Tripathi and Chaubey (1992) let  that is these two auxiliary 

sensitive variables have common mean. Let  be the sensitive variable under study whose mean 
is to be estimated. A simple random sample with replacement (SRSWR) of  respondents is 
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selected. Then each one of the respondents selected in the sample is requested to rotate three 
spinners. 

 

   
Spinner-I Spinner-II Spinner-III 

 
Fig. 2.1: Three spinners 

The first spinner is used to gather scrambled response  on the real study variable  with 
the distribution of responses as: 

                                                                (2.1) 

where the values of  are known. 
 

The second spinner is used to gather scrambled response  on the first auxiliary sensitive 
variable  with the distribution of responses as: 

                                                                (2.2) 

where the values of  are known. 
 

The third spinner is used to gather scrambled response  on the second auxiliary 
sensitive variable  with the distribution of responses as: 

                                                             (2.3) 

where the value of  are known. 

iZ iY

( ) ( )
ï
ï
î

ïï
í

ì

-
-

=
,pprobailitywith

p
SY

pyprobabilitwith
p

Y

Z
i

i

i

1
1 q

( )q,p

iZ1

iX1

( ) ( )
ï
ï
î

ïï
í

ì

-
-

=
,pprobailitywith

p
SX

pyprobabilitwith
p
X

Z
i

i

i

1
11

11

1
1

1

1

1
1 q

( )q,p1

iZ2

iX 2

( ) ( )
ï
ï
î

ïï
í

ì

-
-

=
,pprobailitywith

p
SX

pyprobabilitwith
p
X

Z
i

i

i

2
22

22

2
2

2

2

1
1 q

( )q,p2

   Scrambled 
   Respon 
   Z1i=  

 

( ) 11

1i1

p1
SX
q-

 
)1( p-  p

 Real   Response 
      Zi =  

p
Yi

Scrambled 
Response 

Zi =  
( )q- p1

SYi

Scrambled Respons 

Z2i =  
( ) 22

2i2

p1
SX
q-

     Real                        
     Respons 
 Z1i =  

1

i1

p
X

 )1( 1p-  
1p

Real  Response 

Z2i =  
2

i2

p
X

      

    

       

)p1( 2-

 
2p



 HOUSILA P. SINGH AND SWARANGI M. GOREY [Vol. 18, No. 1 92 

Assume that the sample mean of the scrambled responses obtained from the respondents in 
the sample as ,  and  are given by: 

,  and . 

Let us define: 

, ,  

such that 
  

and it can be shown that  

, ,  

,  ,  

, and ,  

where  and  are the coefficients of variation of the auxiliary sensitive 
variables  and ,  are the standard deviations of ,   is the correlation 
coefficient between  and ,  is the correlation coefficient between  and ,   is 
the correlation coefficient between  and ,  

, , . 

We note that: 

                                                                             (2.4) 

Proof of the results in (2.4) is simple, so omitted. 

2.2.  Proposed ratio type estimator  
 
Motivated by Odumade and Singh (2014) we define a ratio estimator for the population 

mean  (based on the randomized response model-I due to Tarray and Singh (2014) as:  
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.                                                                                                            (2.5) 

Note that  
. 

Thus the ratio estimator in (2.5) can be written in terms of as: 

=  

We assume that  so that  is expandable in terms of . 

Thus 
 

           
or 

.                                                    (2.6) 

Taking expectation of both sides of (2.5) we get the bias of the ratio estimator  to the first 
degree of approximation as  
 

      

 
Thus, we obtained the following theorem. 
Theorem 2.1: The bias in the proposed ratio estimator  to the first degree of approximation 
is given by: 
 

           (2.7) 

 
Squaring both the sides of (2.6) and neglecting terms of  having power greater than two 
we have  

.                                                 (2.8) 
 
Taking expectation of both sides of (2.8) we get the mean squared error (MSE) of the ratio 
estimator  to the first degree of approximation, as  

 
 

                                            

 
Thus, we established the following theorem. 
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Theorem 2.2: The mean square error of the proposed ratio estimator  to the first degree of 
approximation is given by: 

 
 

                                     .                                    (2.9) 

2.3  Efficiency of the proposed ratio estimator 
 
From (1.6), (1.12) and (2.9) it follows that the proposed ratio-type estimator  is more 

efficient than: 
 

(i) the Bar-Lev et al (2004) estimator  if 

    

i.e. if  

   .                             (2.10) 

(ii) the Tarray and Singh (2014) estimator  if 

 

i.e. if  
 

 .                                                                (2.11) 

 
Thus, the proposed ratio estimator  will be more efficient than Bar-Lev et al’s (2004) 
estimator  and Tarray and Singh (2014) estimator   as long as the conditions (2.10) 
and (2.11) are satisfied respectively. In order to see the performance of the proposed ratio-type 
estimator   relative to BBB model and Tarray and Singh’s (2014) model, we have 
computed the percent relative efficiencies (PREs) using the following formulae: 

(i) Bar-Lev et al (2004) estimator  

.                                                                     (2.12) 

 
We wrote the MATLAB code and retained those results where the percent relative 

efficiency (PRE) values are between 300 and 600 to discover the situations where the proposed 
model can perform better than the Bar-Lev et al (2004) model. In this study we have made a very 
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on which the percent relative efficiency of the ratio estimator depends. It is to be noted that the 
PRE is free from the sample size n and principal population parameter of interest  the 
population mean of the study variable y. 
 

We have also written the code to find the values of the parameters 
 by keeping  each equal to 

0.7. We changed the value of   between 0.1 to 0.5 with a step of 0.2. 
The values of  were changed between 0 and 1 with a step of 0.5. The values 

 were changed between 0.1 to 0.9 with a step of 0.2 and that of was 
changed between -0.9 to +0.9 with a step of 0.2. Findings are given in Table 2.1. 

Table 2.3: Descriptive statistics of the percent relative efficiency 
Relative Efficiency 

Mean 525.31 
Standard Error  11.37 
Median 553.47 
Standard Deviation 90.28 
Sample Variance 8150.42 
Kurtosis 1.75 
Skewness –1.78 
Range 285.58 
Minimum 313.99 
Maximum 599.57 
Count 63 

It is observed from Table 2.3 that the average percent relative efficiency is 525.31% with 
the standard deviation 90.28 with median 553.47%, minimum of 313.99% and maximum of 
599.57% (see Table 2.1). We also note that there are 63 cases where the percent relative 
efficiency of the proposed ratio estimator remains between 300 to 600.  

(ii) Tarray and Singh (2014) estimator  

.                                                                      (2.13) 

We have also written the code to find the values of the parameters 
 by keeping  each equal to 0.7. We changed the 

value of   between 0.1 to 0.5 with a step of 0.2. The values of 
 were changed between 0 and 1 with a step of 0.5. The values  were 

changed between 0.1 to 0.9 with a step of 0.2 and that of was changed between –0.9 to +0.9 
with a step of 0.2. Findings are given in Table 2.2. 
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Table 2.4: Descriptive statistics of the percent relative efficiency 
Relative Efficiency 

Mean 429.27 
Standard Error  15.89 
Median 387.27 
Standard Deviation 111.26 
Sample Variance 12379.12 
Kurtosis –1.55 
Skewness 0.39 
Range 285.82 
Minimum 302.12 
Maximum 587.94 
Count 49 

 Table 2.4 shows that the average percent relative efficiency is 429.27% with the standard 
deviation 111.26 with median 387.27%, minimum of 302.12% and maximum of 587.94% (see 
Table 2.2). It has been observed that there are 49 cases where the percent relative efficiency of 
the proposed ratio estimator remains between 300 to 600.  

 
3.  Proposed Power Transformation Ratio Type Estimator Based on Tarray and Singh 

(2014) Model –I 
 
Using the repeated substitution method due to Srivastava (1967) and Garcia and Cebrian 

(1996), we consider a new power transformation ratio type estimator for the population 

mean  as: 

,                                                                     (3.1) 

where  is a suitably chosen real constant. For example if  then the proposed power 
transformation ratio type estimator  reduces to the Tarray and Singh (2014) estimator

.  If   then the proposed power transformation ratio type estimator  reduces to 

the ratio estimator . Expressing that the proposed transformation ratio-type estimator  
in terms of ,  and , we have:  

.                                              (3.2) 

We assume that  and  so that  and  are expandable. Now 
expanding the right hand side of (3.2), multiplying out and neglecting terms of  having 
power greater than two we have       
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        (3.3) 

Taking expectation of both sides of (3.3) we get the bias of  to the first degree of 
approximation as 

 

Thus, we established the following theorem. 
Theorem 3.1. The bias in the proposed power transformation ratio type estimator  is 
given by: 

 

      
.                        (3.4)

  
The mean squared error of the proposed estimator  is obtained as follows. Squaring both 
sides of (3.3) and neglecting terms of  having power greater than two we have  
 

 .                                                   (3.5) 
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Thus, we arrived at the following theorems. 
 
Theorem 3.2. The mean squared error of the estimator to the first degree of 
approximation is given by  
  

 

                                   (3.6) 

 
Theorem 3.3. The optimum value of (for which the MSE  in (3.6) is minimum) and 

the minimum MSE of the estimator  are respectively given by  

 

     (say)                                                                                                                  (3.7) 
and 

 

                                                        (3.8) 

3.1.  Efficiency comparison  
 
3.1.1. When the scalar  does not coincide exactly with its optimum value  
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i.e. if  

                                                                       (3.9) 

where 
 ,  

  and 

. 

Thus, we state the following theorem. 
 
Theorem 3.4. The proposed power transformation ratio-type estimator    is more efficient 
than the Bar-Lev et al’s (2004) estimator  as long as the condition (3.9) is satisfied. 
Further from (1.12) and (3.6)  
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i.e. if     

i.e. if     ,                                                                                                    (3.10) 

where  is given by (3.7) . 
Thus. we state the following theorem. 
 
Theorem 3.5. The proposed power transformation ratio-type estimator  is more efficient 
than the Tarray and Singh’s (2014) estimator  as long as the condition (3.10) is satisfied. 
Further from (2.8) and (3.6)  
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i.e. if     

i.e. if                                                                                                           (3.11) 

where  

           

and  is same as given by (3.7). 

Thus, we established the following theorem. 
Theorem 3.6. The proposed power transformation ratio-type estimator    is more efficient 

than the proposed ratio type estimator  as long as the condition (3.11) is satisfied. 

3.1.2.  When the Optimum Value  of the Scalar is Exactly Known 

  
which is non-negative if  

                                                                                                                     (3.12) 

Thus, we state the following theorem. 
Theorem 3.7. The proposed power transformation ratio-type estimator  (at its optimum 

condition i.e. when ) is better than Bar-Lev et al (2004) estimator  if . 
Further from (1.12) and (3.8) we have 
 

            

                     provided                                                                         (3.13) 

Thus, we state the following theorem. 
Theorem 3.8. The proposed power transformation ratio-type estimator   (at its optimum 
condition i.e. when ) is better than Tarray and Singh’s (2014) estimator  unless

, the case where both the estimator  and  are equally efficient. 
Next from (2.9) and (3.8) we have 
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    provided .                                                (3.14) 
Thus, we state the following theorem 
Theorem 3.9. The proposed power transformation ratio-type estimator   (at its optimum 

condition i.e. when ) is more efficient than the proposed ratio type estimator  unless 

A=B, the case where both estimators  and   are equally efficient. 

3.2.  Relative efficiency of the power transformation ratio type estimator  
 
In order to see the magnitude, we computed the percent relative efficiency of the proposed 

power transformation ratio-type estimator  with respect to:  
 

(i) Bar-Lev et al (2004) estimator   

                                                                   (3.15) 

We have also written the code to find the values of the parameter 
 by keeping  each equal to 

0.7. We changed the value of   between 0.1 to 0.5 with a step of 0.2. 
The values of  were changed between 0 and 1 with a step of 0.5. The values 𝜌"#$, 
𝜌"#& and 𝜌#$#& were changed between 0.1 to 0.9 with a step of 0.2 and that of was changed 
between –0.9 to +0.9 with a step of 0.2. 
 
Findings are shown in Table 3.1. 

Table 3.3: Descriptive statistics of the percent relative efficiency 
Relative Efficiency 

Mean 507.30 
Standard Error  13.64 
Median 551.71 
Standard 
Deviation 95.50 
Sample Variance 9121.35 
Kurtosis 0.38 
Skewness –1.47 
Range 292.18 
Minimum 300.17 
Maximum 592.35 
Count 49 
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Table 3.3 depicts that the average percent relative efficiency is 507.30% with the standard 
deviation 95.50 with median 551.71%, minimum of 300.17% and maximum of 592.35% (see 
Table 3.1). It has been observed that there are 49 cases where the percent relative efficiency of 
the proposed ratio estimator remains between 300 to 600. It has been observed that a choice of 
larger values of ,  and  may lead to inefficient results, thus the choice of these values is 
must while using the proposed ratio method in actual practice. 
 
(ii) Tarray and Singh (2014) estimator  

                                                                    (3.16) 

We have also written the code to find the values of the parameters 
 by keeping  each equal to 0.7. We 

changed the value of   between 0.1 to 0.5 with a step of 0.2. The values 
of  were changed between 0 and 1 with a step of 0.5. The values  
were changed between 0.1 to 0.9 with a step of 0.2 and that of was changed between -0.9 to 
+0.9 with a step of 0.2. Findings are shown in Table 3.2. 

Table 3.4: Descriptive statistics of the percent relative efficiency 
Relative Efficiency 

Mean 441.89 
Standard Error  13.04 
Median 379.03 
Standard Deviation 92.18 
Sample Variance 8497.77 
Kurtosis –1.83 
Skewness 0.09 
Range 253.31 
Minimum 300.90 
Maximum 554.21 
Count 50 

It is observed from Table 3.4 that the average percent relative efficiency is 441.89% with the 
standard deviation 92.18 with median 379.03%, minimum of 300.90% and maximum of 
554.21% (see Table 3.2). It has been observed that there are 50 cases where the percent relative 
efficiency of the proposed ratio estimator remains between 300 to 600.  
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4. Proposed Ratio-Type Estimator Based on Tarray And Singh (2014) Model-II 
 
4.1.  Notations 
 

By Tripathi and Chaubey (1992) let  that is these two auxiliary sensitive 
variables have common mean. Let  be the sensitive variable under study whose mean is to be 
estimated.  Consider we selected a simple random sample with replacement (SRSWR) of  
respondents.  Then each one of the respondents selected in the sample is requested to rotate three 
spinners. 

 

   
Spinner-I Spinner-II Spinner-III 

 
Fig. 4.1: Three spinners 

The first spinner is used to collect scrambled response  on the real study variable  with the 
distribution of responses as: 

                                                   (4.1) 

where the value of  is assumed to be known. 
 
The second spinner is used to collect scrambled response  on the first auxiliary 

sensitive variable  with the distribution of responses as: 

                                                       (4.2) 

where the value of  is assumed to be known. 
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The third spinner is used to collect scrambled response  on the second auxiliary 
sensitive variable  with the distribution of responses as: 

                                                       (4.3) 

where the value of  is assumed to be known. 
Assume that the sample mean of the scrambled responses obtained from the respondents 

in the sample as ,  and  are given by: 

,  and . 

Let us define: 

, ,  

such that 
  

and it can be shown that  

,  

,  

,  

,  

,  

and 

,  

where  and  are the coefficients of variation of the auxiliary sensitive 

variables  and  respectively,  

: is the correlation coefficient between ,  

: is the correlation coefficient between ,  
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,  and . 

 
4.2.  Proposed ratio type estimator  
 

We define a ratio estimator for the population mean  (based on the randomized response 
model-II due to Tarray and Singh (2014) as:  

                                                                                                          (4.4) 

Note that  
. 

Thus the ratio estimator in (4.4) can be written in terms of as: 

 

We assume that  so that  is expandable in terms of . 

Thus 
 

           
or 

                                                 (4.5) 
 

Theorem 4.1: The bias in the proposed ratio estimator  to the first degree of approximation 
is given by: 
 

            (4.6) 

Proof- Taking expectation of both sides of (4.5) we get the bias of the ratio estimator  to 
the first degree of approximation as  
 
     

                 

                             

which proves the theorem. 
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Theorem 4.2: The mean square error of the proposed ratio estimator  to the first degree of 
approximation is given by: 

 
 

                                                                          (4.7) 

Proof. Squaring both the sides of (4.5) and neglecting terms of  having power greater 
than two we have  

                                           (4.8) 
 
Taking expectation of both sides of (4.8) we get the mean squared error (MSE) of the ratio 
estimator  as  

 
 

                                                                             

which proves the theorem. 

4.3.  Efficiency of the proposed ratio estimator 

From (1.6), (1.19) and (4.7) it follows that the proposed ratio-type estimator  is more 
efficient than: 

 
(i) the Bar-Lev et al (2004) estimator  if 

    

i.e. if  
 

                                  (4.9) 

 
(ii) the Tarray and Singh (2014) estimator  if 
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Thus, the proposed ratio estimator  will be more efficient than Bar-Lev et al’s (2004) 
estimator  and Tarray and Singh (2014) estimator   as long as the conditions (4.9) 
and (4.10) are satisfied respectively. 

 
We have computed the percent relative efficiencies (PREs) in order to see the performance 

of the proposed ratio-type estimator   with respect to Bar-Lev et al (2004) estimator  
by using the formula: 

                                                                      (4.11) 

We have also written the code to find the values of the parameter 
 by keeping  each equal to 

0.7. We changed the value of   between 0.1 to 0.5 with a step of 0.2. 
The values of  were changed between 0 and 1 with a step of 0.5. The values 

 were changed between 0.1 to 0.9 with a step of 0.2 and that of was 
changed between -0.9 to +0.9 with a step of 0.2. Findings are given in Table 4.1. 

Table 4.3: Descriptive statistics of the percent relative efficiency 
Relative Efficiency 

Mean 542.31 
Standard Error  1.41 
Median 539.91 
Standard Deviation 10.00 
Sample Variance 99.92 
Kurtosis –1.47 
Skewness 0.44 
Range 24.00 
Minimum 531.91 
Maximum 555.91 
Count 50 

It is observed from Table 4.3 that the average percent relative efficiency is 542.31% with the 
standard deviation 10.00with median 539.91%, minimum of 531.91% and maximum of 555.91% 
(see Table 4.1). It has been observed that there are 50 cases where the percent relative efficiency 
of the proposed ratio estimator remains between 300 to 600. It has been observed that a choice of 
larger values of ,  and  may lead to inefficient results, thus the choice of these values is 
must while using the proposed ratio method in actual practice. 

We have also computed the percent relative efficiencies (PREs) of the proposed ratio-
type estimator  with respect to Tarray and Singh (2014) estimator  by using the 
formula: 
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                                                                       (4.12) 

 
We have also written the code to find the values of the parameter 

 by keeping  each equal to 0.7. We 
changed the value of   between 0.1 to 0.5 with a step of 0.2. The values 

 were changed between 0.1 to 0.9 with a step of 0.2 and that of was 
changed between –0.9 to +0.9 with a step of 0.2. Findings are given in Table 4.2. 
 

Table 4.4: Descriptive statistics of the percent relative efficiency 
Relative Efficiency 

Mean 542.31 
Standard Error  1.41 
Median 539.91 
Standard Deviation 10.00 
Sample Variance 99.92 
Kurtosis –1.47 
Skewness 0.44 
Range 24.00 
Minimum 531.91 
Maximum 555.91 
Count 50 

Table 4.4 demonstrates that the average percent relative efficiency is 369.77% with the standard 
deviation 17.03 with median 368.97%, minimum of 348.97% and maximum of 396.97% (see 
Table 8). It has been observed that there are 50 cases where the percent relative efficiency of the 
proposed ratio estimator remains between 300 to 600.  

5.  Proposed Power Transformation Ratio Type Estimator Based on Tarray and Singh 
(2014) Model –II 
 
A generalized version of the ratio-type estimator   is given by: 

,                                                       (5.1) 

where  is a suitably chosen real constant. For example if  then the proposed power 
transformation ratio type estimator  reduces to the Tarray and Singh (2014) estimator

. If  then the proposed estimator  reduces to the ratio estimator . 
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Proceeding as earlier the bias and MSE of the estimator  can be easily obtained and 
given in the following theorems. 
Theorem 5.1. The bias in the proposed estimator  is given by: 

 

                  .     (5.2) 

 
Theorem 5.2. The mean squared error of the estimator to the first degree of 
approximation is given by   

 

                                 (5.3) 

The optimum value of  and the resulting minimum MSE of the estimator  are given in 
the following theorem. 
Theorem 5.3. The optimum value of (for which the MSE  in (5.3) is minimum) and 

the minimum MSE of the estimator  are respectively given by  

 

      (say)                                                                                                                (5.4) 
and 

 

                                             (5.5) 

Proof is simple so omitted. 

5.1  Efficiency comparison  
 
5.1.1. When the scalar  does not coincide exactly with its optimum value  
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which is less than zero if 
 

i.e. if     

                                                                   (5.6) 

where 
,  

  ,  

 . 

Thus, we state the following theorem. 
 
Theorem 5.4. The proposed estimator  is more efficient than the Bar-Lev et al’s (2004) 
estimator  as long as the condition (5.6) is satisfied. 
Further from (1.19) and (5.3) we have 

   

                                
 

which is non negative if 
   
i.e. if     

i.e. if                                                                                                           (5.7) 

where  is given by (5.4) . 
Thus, we state the following theorem. 
 
Theorem 5.5. The proposed estimator  is more efficient than the Tarray and Singh’s 
(2014) estimator  as long as the condition (5.7) is satisfied. 
Further from (4.8) and (5.3) we have   
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which is positive if 
  

i.e. if     

i.e. if     

i.e. if                                                                                                         (5.8) 

and  is same as given by (5.4). 

Thus, we established the following theorem. 
 
Theorem 5.6. The proposed estimator    is more efficient than the proposed ratio type 

estimator  as long as the condition (5.8) is satisfied. 

5.1.2  When the optimum value  of the scalar is exactly known 
 

  

which is non negative if  
                                                                                                                       (5.9) 

Thus, we state the following theorem. 
 
Theorem 5.7. The proposed power transformation ratio-type estimator  (at its optimum 

condition i.e. when ) is better than Bar-Lev et al (2004) estimator  if . 

Further from (1.19) and (5.5) we have 
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Thus, we state the following theorem. 
 
Theorem 5.8. The proposed power transformation ratio-type estimator   (at its optimum 
condition i.e. when ) is better than Tarray and Singh’s (2014) estimator  unless

, the case where both the estimator  and  are equally efficient. 

Next from (4.8) and (5.5) we have  

 provided .       (5.11)                        

Thus, we state the following theorem 
Theorem 5.9. The proposed estimator  (at its optimum condition i.e. when ) is 

more efficient than the proposed ratio type estimator  unless , the case where both 

estimators  and   are equally efficient. 

5.2  Relative efficiency of the power transformation ratio type estimator  
 
To see the performance of the proposed estimator  we computed the percent relative 

efficiency of the proposed estimator  with respect to Bar-Lev et al (2004) estimator  
by using the formula 

 

                                                                    

(5.12) 
 
We have also written the code to find the values of the parameter 

 by keeping  each equal to 
0.7. We changed the value of   between 0.1 to 0.5 with a step of 0.2. 
The values of  were changed between 0 and 1 with a step of 0.5. The values 

 were changed between 0.1 to 0.9 with a step of 0.2 and that of was 
changed between -0.9 to +0.9 with a step of 0.2. Findings are displayed in Table 5.1 

Table 5.3: Descriptive statistics of the percent relative efficiency 
Relative Efficiency 

Mean 496.26 
Standard Error  14.66 
Median 555.07 
Standard 103.68 
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Deviation 
Sample Variance 10749.68 
Kurtosis –0.98 
Skewness –0.89 
Range 296.27 
Minimum 300.66 
Maximum 596.93 
Count 50 

 
It is observed from the Table 5.3that the average percent relative efficiency is 496.26% 

with the standard deviation 103.68 with median 555.07%, minimum of 300.66% and maximum 
of 596.93% (see Table 5.1). It has been observed that there are 50 cases where the percent 
relative efficiency of the proposed ratio estimator remains between 300 to 600. It has been 
observed that a choice of larger values of ,  and  may lead to inefficient results, thus the 
choice of these values is must while using the proposed ratio method in actual practice. 

 
We have further computed the percent relative efficiency of the proposed estimator  

with respect to Tarray and Singh (2014) estimator  by using the formula: 

                                                                     (5.12) 

 
We have also written the code to find the values of the parameter 

 by keeping  each equal to 0.7. We 
changed the value of   between 0.1 to 0.5 with a step of 0.2. The values 

 were changed between 0.1 to 0.9 with a step of 0.2 and that of was 
changed between -0.9 to +0.9 with a step of 0.2.  
 
Findings are presented in Table 5.2. 

Table 5.4: Descriptive statistics of the percent relative efficiency 

Relative Efficiency 
Mean 408.09 
Standard Error  13.94 
Median 379.79 
Standard 
Deviation 

98.62 

Sample Variance 9727.28 
Kurtosis –1.32 
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Skewness 0.43 
Range 294.50 
Minimum 300.37 
Maximum 594.87 
Count 50 

Table 5.4 exhibits that the average percent relative efficiency is 408.09% with the standard 
deviation 98.62 with median 379.79%, minimum of 300.37% and maximum of 594.87% (see 
Table 5.2). It has been observed that there are 50 cases where the percent relative efficiency of 
the proposed ratio estimator remains between 300 to 600.  

6.  Conclusion 
 

 In this paper, taking clue from Odumade and Singh (2010), two new ratio-type and  power 
transformation ratio-type estimators have been proposed and compared to BBB model and 
Tarray and Singh (2014) randomized response model. In the case of scrambled response unlike 
the repeated substitution method due to Srivastava (1967) and Garcia and Cebrian (1996) it has 
been observed in general enormity of percent relative efficiency of ratio estimator remains better 
than the power transformation ratio-type estimator. 

Acknowledgement 
 
Authors are indeed thankful to the learned referee and Dr. Rajender Parsad, Executive Editor for 
their valuable suggestions that helped in preparing nice presentation of the paper. 

References 
 
Bar-Lev, S. K., Bobovitch, E. and Boukai, B. (2004). A note on randomized response models for 

quantitative data. Metrika, 60, 255-260.  
Barabesi, L., Diana, G. and Perri, P. F. (2014). Horvitz-Thompson estimation with randomized 

response and non-response. Model Assisted Statistics and Applications, 9(1), 3-10. 
Eichhorn, B. H. and Hayre, L. S. (1983). Scrambled randomized response methods for obtaining 

sensitive quantitative data. Journal of Statistical Planning and Inference, 7, 307-316. 
Fox, J. A. and Tracy, P. E. (1986). Randomized Response: A Method of Sensitive Surveys. 

Newbury Park, CA: SAGE Publications. 
Garcia, M. R. and Cebrian, A. A. (1996). Repeated substitution method: The ratio estimator for 

the population variance. Metrika, 43, 101-105. 
Greenberg, B., Abul-Ela, A., Simmons, W. R. and Horvitz, D. G. (1969). The unrelated 

question randomized response: theoretical framework.  Journal of the American Statistical 
Association, 64 (5), 529-539. 

Grewal, I. S., Bansal, M. L. and Sidhu. S. S. (2005-2006). Population mean corresponding to 
Horvitz-Thompson’s estimator for multi-characteristics using randomized response 
technique. Model Assisted Statistics and Applications, 1, 215-220. 

Hong, Z. (2005-2006). Estimation of mean in randomized response surveys when answers are 
incompletely truthful. Model Assisted Statistics and Applications, 1, 221-230. 



2020] IMPROVEMENT IN RANDOMISED RESPONSE MODEL  

 
 

115 

Horvitz, D. G., Shah, B. V. and Simmons, W. R. (1967). The unrelated question randomized 
response model. Proceedings of the Social Statistical Section, American Statistical 
Association, 65-72. 

Mahajan, P. K., Sharma, P. and Gupta, R. K. (2007). Optimum stratification for allocation 
proportional to strata totals for scrambled response. Model Assisted Statistics and 
Applications, 2(2), 81-88. 

Odumade, O. and Singh, S. (2009). Improved Bar-Lev, Bobovitch, and Boukai randomized 
response models. Communication in Statistics - Simulation and Computation, 38(3), 473-
502. 

Odumade, O. and Singh, S. (2010). An alternative to the Bar-Lev, Bobovitch, and Boukai 
randomized response model. Sociological Method and Research, 39(2), 206-221. 

Perri, P. F. (2008). Modified randomized devices for Simmons’ model. Model Assisted Statistics 
and Applications, 3(3), 233-239. 

Ryu, J. B., Kim, J. M., Heo, T. Y.  and Park, C. G. (2005-2006). On stratified randomized 
response sampling. Model Assisted Statistics and Applications, 1, 31–36. 

Singh, H. P. and Tarray, T. A. (2012). A stratified unknown repeated trial in randomized 
response sampling. Communication of the Korean Statistical Society, 19(6), 751-759. 

Singh, H. P. and Tarray, T. A. (2014). A dexterous randomized response model for estimating a 
rare sensitive attribute using Poisson distribution. Statistics and Probability Letters, 90, 42-
45. 

Singh, H. P. and Tarray, T. A. (2013). A modified survey technique for estimating the proportion 
and sensitivity in a dichotomous finite population. International Journal of Advanced 
Scientific and Technical Research, 3(6), 459-472. 

Singh, H. P. and Gorey, S. M. (2016). An improved version of Gjestvang and Singh’s 
randomized response model. Model Assisted Statistics and Applications, 11 (3), 185-190. 

Singh, S. and Cheng, S. C. (2009). Utilization of higher order moments of scrambling variables 
in randomized response sampling. Journal of Statistical Planning and Inference, 139, 
3377-3380. 

Srivastava, S. K. (1967). An Estimator Using auxiliary information in sample surveys.              
Calcutta Statistical Association Bulletin, 16, 121-132.  

Tarray, T. A. and Singh, H. P. (2014). A proficient randomized response model. ISTAT˙IST˙IK: 
Journal of the Turkish Statistical Association, 7(3), 987-98. 

Tripathi, T. P. and Chaubey, Y. P. (1992). Improved estimation of a finite population mean based 
on paired observations. Communication in Statistics-Theory and Methods, 21, 3327-3333. 

Warner, S. L. (1965). Randomized Response:  A survey technique for eliminating evasive 
answer bias. Journal of American Statistical Association, 60, 63-69. 

 
  



 HOUSILA P. SINGH AND SWARANGI M. GOREY [Vol. 18, No. 1 116 

Annexure 

 

Table 1.1: The Percent Relative Efficiency of the Tarray and Singh (2014) 
estimator  with respect to Eichhorn and Hayre’s (1983) estimator 

 

 P   PRE 
1.00 0.1 0.10 0.10 8996.82 
1.50 0.1 0.10 0.15 5632.14 
2.00 0.1 0.10 0.20 3753.53 
2.50 0.1 0.10 0.40 1296.88 
1.00 0.1 0.25 0.10 2493.11 
1.50 0.1 0.25 0.15 2150.34 
2.00 0.1 0.25 0.20 1816.14 
2.50 0.1 0.25 0.40 964.46 
1.00 0.1 0.50 0.10 714.55 
1.50 0.1 0.50 0.15 687.20 
2.00 0.1 0.50 0.20 653.70 
2.50 0.1 0.50 0.40 511.73 
1.00 0.1 0.75 0.10 339.61 
1.50 0.1 0.75 0.15 334.65 
2.00 0.1 0.75 0.20 328.22 
2.50 0.1 0.75 0.40 295.81 
1.00 0.1 1.00 0.10 204.52 
1.50 0.1 1.00 0.15 203.28 
2.00 0.1 1.00 0.20 201.65 
2.50 0.1 1.00 0.40 192.76 
1.00 0.1 1.25 0.10 141.29 
1.50 0.1 1.25 0.15 140.98 
2.00 0.1 1.25 0.20 140.56 
2.50 0.1 1.25 0.40 138.18 
1.00 0.1 1.50 0.10 106.76 
1.50 0.1 1.50 0.15 106.72 
2.00 0.1 1.50 0.20 106.68 
2.50 0.1 1.50 0.40 106.40 
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Table 1.2: The Percent Relative Efficiency of the Tarray and Singh (2014) 
estimator  with respect to Bar-Lev et al’s (2004) estimator   

 P   PRE 
1.00 0.1 0.10 0.10 9472.82 
1.50 0.1 0.10 0.15 4257.56 
2.00 0.1 0.10 0.20 2479.42 
2.50 0.1 0.10 0.40 1038.23 
1.00 0.1 0.25 0.10 2728.67 
1.50 0.1 0.25 0.15 1955.97 
2.00 0.1 0.25 0.20 1458.49 
2.50 0.1 0.25 0.40 811.33 
1.00 0.1 0.50 0.10 790.60 
1.50 0.1 0.50 0.15 683.47 
2.00 0.1 0.50 0.20 603.03 
2.50 0.1 0.50 0.40 462.48 
1.00 0.1 0.75 0.10 376.62 
1.50 0.1 0.75 0.15 340.49 
2.00 0.1 0.75 0.20 315.93 
2.50 0.1 0.75 0.40 277.17 
1.00 0.1 1.00 0.10 227.00 
1.50 0.1 1.00 0.15 208.62 
2.00 0.1 1.00 0.20 197.43 
2.50 0.1 1.00 0.40 183.84 
1.00 0.1 1.25 0.10 156.88 
1.50 0.1 1.25 0.15 145.28 
2.00 0.1 1.25 0.20 138.77 
2.50 0.1 1.25 0.40 133.05 
1.00 0.1 1.50 0.10 118.56 
1.50 0.1 1.50 0.15 110.23 
2.00 0.1 1.50 0.20 105.81 
2.50 0.1 1.50 0.40 103.01 
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Table 2.1: The Percent Relative Efficiency of the proposed estimator  with 
respect to Bar-Lev et al’s (2004) estimator  for the different choice of the 
parameters with   

            PRE 

0.3 0.3 0.3 0.3 0.3 0.1 -0.9 0.1 0.1 0.5 0.5 0.5 570.80 
0.1 0.1 0.1 0.1 0.3 0.1 -0.9 0.3 0.1 0 0 0 524.70 
0.1 0.1 0.1 0.1 0.3 0.3 -0.9 0.1 0.1 0 0 0 534.29 
0.3 0.3 0.3 0.3 0.3 0.3 -0.9 0.1 0.1 0.5 0.5 0.5 580.39 
0.1 0.1 0.1 0.1 0.3 0.5 -0.9 0.1 0.1 0 0 0 553.47 
0.3 0.3 0.3 0.3 0.3 0.5 -0.9 0.1 0.1 0.5 0.5 0.5 599.57 
0.5 0.5 0.5 0.5 0.5 0.5 -0.9 0.1 0.1 1 1 1 313.99 
0.1 0.1 0.1 0.1 0.3 0.1 -0.7 0.1 0.1 0 0 0 524.70 
0.3 0.3 0.3 0.3 0.3 0.1 -0.7 0.1 0.1 0.5 0.5 0.5 570.80 
0.1 0.1 0.1 0.1 0.3 0.3 -0.7 0.1 0.1 0 0 0 534.29 
0.3 0.3 0.3 0.3 0.3 0.3 -0.7 0.1 0.1 0.5 0.5 0.5 580.39 
0.1 0.1 0.1 0.1 0.3 0.5 -0.7 0.1 0.1 0 0 0 553.47 
0.3 0.3 0.3 0.3 0.3 0.5 -0.7 0.1 0.1 0.5 0.5 0.5 599.57 
0.5 0.5 0.5 0.5 0.5 0.5 -0.7 0.1 0.1 1 1 1 313.99 
0.1 0.1 0.1 0.1 0.3 0.1 -0.5 0.1 0.1 0 0 0 524.70 
0.3 0.3 0.3 0.3 0.3 0.1 -0.5 0.1 0.1 0.5 0.5 0.5 570.80 
0.1 0.1 0.1 0.1 0.3 0.3 -0.5 0.1 0.1 0 0 0 534.29 
0.3 0.3 0.3 0.3 0.3 0.3 -0.5 0.1 0.1 0.5 0.5 0.5 580.39 
0.1 0.1 0.1 0.1 0.3 0.5 -0.5 0.1 0.1 0 0 0 553.47 
0.3 0.3 0.3 0.3 0.3 0.5 -0.5 0.9 0.1 0.5 0.5 0.5 599.57 
0.5 0.5 0.5 0.5 0.5 0.5 -0.5 0.1 0.1 1 1 1 313.99 
0.1 0.1 0.1 0.1 0.3 0.1 -0.3 0.1 0.1 0 0 0 524.70 
0.3 0.3 0.3 0.3 0.3 0.1 -0.3 0.1 0.1 0.5 0.5 0.5 570.80 
0.1 0.1 0.1 0.1 0.3 0.3 -0.3 0.3 0.1 0 0 0 534.29 
0.3 0.3 0.3 0.3 0.3 0.3 -0.3 0.3 0.1 0.5 0.5 0.5 580.39 
0.1 0.1 0.1 0.1 0.3 0.5 -0.3 0.9 0.9 0 0 0 553.47 
0.3 0.3 0.3 0.3 0.3 0.5 -0.3 0.9 0.9 0.5 0.5 0.5 599.57 
0.5 0.5 0.5 0.5 0.5 0.5 -0.3 0.9 0.9 1 1 1 313.99 
0.1 0.1 0.1 0.1 0.3 0.1 -0.1 0.9 0.9 0 0 0 524.70 
0.3 0.3 0.3 0.3 0.3 0.1 -0.1 0.9 0.9 0.5 0.5 0.5 570.80 
0.1 0.1 0.1 0.1 0.3 0.3 -0.1 0.7 0.9 0 0 0 534.29 
0.3 0.3 0.3 0.3 0.3 0.3 -0.1 0.7 0.9 0.5 0.5 0.5 580.39 
0.1 0.1 0.1 0.1 0.3 0.5 -0.1 0.3 0.3 0 0 0 553.47 
0.3 0.3 0.3 0.3 0.3 0.5 -0.1 0.3 0.3 0.5 0.5 0.5 599.57 
0.5 0.5 0.5 0.5 0.5 0.5 -0.1 0.3 0.3 1 1 1 313.99 
0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.3 0 0 0 524.70 
0.3 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.3 0.5 0.5 0.5 570.80 
0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.5 0.3 0.5 0.5 0.5 580.39 
0.1 0.1 0.1 0.1 0.3 0.3 0.1 0.7 0.3 0 0 0 534.29 
0.1 0.1 0.1 0.1 0.3 0.5 0.1 0.5 0.1 0 0 0 553.47 
0.3 0.3 0.3 0.3 0.3 0.5 0.1 0.5 0.1 0.5 0.5 0.5 599.57 
0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.5 0.1 1 1 1 313.99 
0.1 0.1 0.1 0.1 0.3 0.1 0.3 0.1 0.3 0 0 0 524.70 
0.3 0.3 0.3 0.3 0.3 0.1 0.3 0.1 0.3 0.5 0.5 0.5 570.80 
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.5 0.5 0.5 580.39 
0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.5 0.1 0 0 0 534.29 
0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.9 0.1 1 1 1 313.99 
0.1 0.1 0.1 0.1 0.3 0.5 0.3 0.1 0.3 0 0 0 553.47 
0.3 0.3 0.3 0.3 0.3 0.5 0.3 0.1 0.3 0.5 0.5 0.5 599.57 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.1 1 1 1 313.99 
0.1 0.1 0.1 0.1 0.3 0.5 0.5 0.3 0.1 0 0 0 553.47 
0.3 0.3 0.3 0.3 0.3 0.5 0.5 0.3 0.1 0.5 0.5 0.5 599.57 
0.1 0.1 0.1 0.1 0.3 0.3 0.5 0.9 0.7 0 0 0 534.29 
0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.9 0.7 0.5 0.5 0.5 580.39 
0.1 0.1 0.1 0.1 0.3 0.1 0.5 0.9 0.7 0 0 0 524.70 
0.3 0.3 0.3 0.3 0.3 0.1 0.5 0.9 0.7 0.5 0.5 0.5 570.80 
0.1 0.1 0.1 0.1 0.3 0.1 0.7 0.9 0.1 0 0 0 524.70 
0.3 0.3 0.3 0.3 0.3 0.1 0.7 0.9 0.1 0.5 0.5 0.5 570.80 
0.1 0.1 0.1 0.1 0.3 0.3 0.7 0.3 0.3 0 0 0 534.29 

*
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Table 2.2: The Percent Relative Efficiency of the proposed ratio estimator 
 with respect to Tarray and Singh’s (2014)  estimator for different 

choices of the parameters with    
         PRE 

0.1 0.1 0.1 0.1 0.3 0.1 -0.9 0.1 0.1 355.67 
0.5 0.5 0.5 0.5 0.5 0.1 -0.9 0.7 0.5 315.54 
0.5 0.5 0.5 0.5 0.3 0.1 -0.9 0.1 0.1 450.47 
0.3 0.3 0.3 0.3 0.3 0.3 -0.9 0.5 0.5 302.12 
0.1 0.1 0.1 0.1 0.3 0.1 -0.9 0.3 0.1 533.30 
0.3 0.3 0.3 0.3 0.3 0.1 -0.9 0.3 0.1 576.75 
0.3 0.3 0.3 0.3 0.5 0.5 -0.9 0.1 0.5 307.58 
0.3 0.3 0.3 0.3 0.3 0.3 -0.5 0.3 0.1 587.94 
0.5 0.5 0.5 0.5 0.5 0.1 -0.9 0.3 0.1 315.54 
0.3 0.3 0.3 0.3 0.3 0.5 -0.9 0.9 0.7 321.30 
0.5 0.5 0.5 0.5 0.3 0.1 -0.9 0.5 0.1 343.87 
0.3 0.3 0.3 0.3 0.3 0.3 -0.9 0.7 0.5 302.12 
0.3 0.3 0.3 0.3 0.5 0.5 -0.9 0.3 0.5 307.58 
0.5 0.5 0.5 0.5 0.5 0.1 -0.9 0.3 0.9 315.54 
0.3 0.3 0.3 0.3 0.3 0.5 -0.9 0.1 0.9 321.30 
0.3 0.3 0.3 0.3 0.3 0.3 -0.9 0.1 0.1 587.94 
0.3 0.3 0.3 0.3 0.3 0.3 -0.3 0.3 0.1 587.94 
0.3 0.3 0.3 0.3 0.3 0.1 0.9 0.9 0.9 576.75 
0.3 0.3 0.3 0.3 0.3 0.1 0.7 0.7 0.9 576.75 
0.3 0.3 0.3 0.3 0.5 0.5 0.9 0.5 0.1 307.58 
0.3 0.3 0.3 0.3 0.3 0.3 0.1 0.3 0.3 587.94 
0.5 0.5 0.5 0.5 0.5 0.5 0.9 0.5 0.1 349.11 
0.3 0.3 0.3 0.3 0.3 0.5 -0.9 0.7 0.1 321.30 
0.5 0.5 0.5 0.5 0.3 0.5 -0.9 0.7 0.1 372.65 
0.1 0.1 0.1 0.1 0.3 0.5 -0.9 0.7 0.1 386.04 
0.3 0.3 0.3 0.3 0.3 0.5 -0.9 0.7 0.1 417.64 
0.5 0.5 0.5 0.5 0.3 0.5 -0.9 0.7 0.1 480.84 
0.3 0.3 0.3 0.3 0.3 0.3 -0.1 0.1 0.3 587.94 
0.1 0.1 0.1 0.1 0.3 0.5 -0.9 0.7 0.1 566.87 
0.3 0.3 0.3 0.3 0.3 0.3 -0.5 0.7 0.3 302.12 
0.5 0.5 0.5 0.5 0.3 0.3 -0.5 0.7 0.3 353.46 
0.1 0.1 0.1 0.1 0.3 0.3 -0.5 0.7 0.3 365.80 
0.3 0.3 0.3 0.3 0.3 0.3 -0.5 0.7 0.3 397.39 
0.5 0.5 0.5 0.5 0.3 0.3 -0.3 0.7 0.3 460.59 
0.1 0.1 0.1 0.1 0.3 0.3 -0.3 0.7 0.3 544.49 
0.3 0.3 0.3 0.3 0.3 0.3 -0.3 0.7 0.3 587.94 
0.5 0.5 0.5 0.5 0.5 0.3 -0.3 0.7 0.3 326.73 
0.5 0.5 0.5 0.5 0.5 0.1 0.5 0.3 0.9 315.54 
0.5 0.5 0.5 0.5 0.3 0.1 0.7 0.3 0.9 343.87 
0.1 0.1 0.1 0.1 0.3 0.1 0.7 0.3 0.9 355.67 
0.3 0.3 0.3 0.3 0.3 0.1 0.7 0.5 0.5 387.27 
0.3 0.3 0.3 0.3 0.3 0.3 -0.7 0.1 0.1 587.94 
0.5 0.5 0.5 0.5 0.3 0.1 0.7 0.5 0.5 450.47 
0.1 0.1 0.1 0.1 0.3 0.1 0.7 0.5 0.5 533.30 
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.3 587.94 
0.3 0.3 0.3 0.3 0.3 0.1 0.7 0.5 0.5 576.75 
0.1 0.1 0.1 0.1 0.3 0.1 -0.7 0.1 0.1 355.67 
0.3 0.3 0.3 0.3 0.3 0.1 -0.7 0.1 0.1 387.27 
0.5 0.5 0.5 0.5 0.3 0.1 -0.7 0.1 0.1 450.47 
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Table 3.1: The Percent Relative Efficiency of the proposed power transformation 
ratio-type estimator *

Powery  with respect to Bar-Lev et al’s  (2004) estimator BBBy  for 
different choices of the parameters with 7021 .ppp ===      

gC  1g
C  

2g
C  yC  1xC  2xC  1yxr  2yxr  21xxr  q  1q  2q  0a  PRE 

0.3 0.3 0.3 0.3 0.1 0.1 -0.5 0.1 0.1 0.5 0.5 0.5 1.80 553.96 
0.5 0.5 0.5 0.3 0.3 0.1 -0.5 0.1 0.1 1 1 1 0.53 553.28 
0.3 0.3 0.3 0.3 0.5 0.1 -0.5 0.1 0.1 0.5 0.5 0.5 0.31 553.15 
0.5 0.5 0.5 0.3 0.1 0.1 -0.3 0.1 0.1 1 1 1 1.20 552.16 
0.3 0.3 0.3 0.3 0.3 0.1 -0.3 0.1 0.1 0.5 0.5 0.5 0.33 551.72 
0.5 0.5 0.5 0.3 0.5 0.1 -0.3 0.1 0.1 1 1 1 0.19 551.64 
0.3 0.3 0.3 0.3 0.1 0.1 -0.1 0.1 0.1 0.5 0.5 0.5 0.60 551.08 
0.5 0.5 0.5 0.3 0.3 0.1 -0.1 0.1 0.1 1 1 1 0.13 550.88 
0.3 0.3 0.3 0.3 0.5 0.1 -0.1 0.1 0.1 0.5 0.5 0.5 0.07 550.85 
0.5 0.5 0.5 0.3 0.1 0.1 0.1 0.1 0.1 1 1 1 0.00 550.72 
0.3 0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.5 0.5 0.5 -0.07 550.76 
0.5 0.5 0.5 0.3 0.5 0.1 0.1 0.1 0.1 1 1 1 -0.05 550.78 
0.3 0.3 0.3 0.3 0.3 0.1 0.3 0.1 0.1 0.5 0.5 0.5 -0.27 551.36 
0.5 0.5 0.5 0.3 0.5 0.1 0.3 0.1 0.1 1 1 1 -0.17 551.42 
0.3 0.3 0.3 0.3 0.3 0.1 0.5 0.1 0.1 0.5 0.5 0.5 -0.47 552.68 
0.5 0.5 0.5 0.3 0.5 0.1 0.5 0.1 0.1 1 1 1 -0.29 552.79 
0.3 0.3 0.3 0.3 0.3 0.1 0.7 0.1 0.1 0.5 0.5 0.5 -0.67 554.72 
0.5 0.5 0.5 0.3 0.5 0.1 0.7 0.1 0.1 1 1 1 -0.41 554.88 
0.3 0.3 0.3 0.3 0.3 0.1 0.9 0.1 0.1 0.5 0.5 0.5 -0.87 557.48 
0.3 0.3 0.3 0.3 0.5 0.1 0.9 0.1 0.1 0.5 0.5 0.5 -0.53 557.69 
0.3 0.3 0.3 0.3 0.1 0.1 -0.9 0.3 0.1 0.5 0.5 0.5 3.60 563.68 
0.3 0.3 0.3 0.5 0.1 0.1 -0.9 0.3 0.1 0.5 0.5 0.5 6.00 301.14 
0.3 0.3 0.3 0.3 0.5 0.1 -0.9 0.3 0.1 0.5 0.5 0.5 0.58 559.01 
0.3 0.3 0.3 0.3 0.5 0.1 -0.7 0.3 0.1 0.5 0.5 0.5 0.46 555.92 
0.3 0.3 0.3 0.3 0.5 0.1 -0.5 0.3 0.1 0.5 0.5 0.5 0.34 553.54 
0.3 0.3 0.3 0.3 0.5 0.1 -0.3 0.3 0.1 0.5 0.5 0.5 0.22 551.88 
0.3 0.3 0.3 0.3 0.5 0.1 -0.1 0.3 0.1 0.5 0.5 0.5 0.10 550.95 
0.3 0.3 0.3 0.3 0.5 0.1 0.1 0.3 0.1 0.5 0.5 0.5 -0.02 550.73 
0.3 0.3 0.3 0.3 0.5 0.1 0.3 0.3 0.1 0.5 0.5 0.5 -0.14 551.24 
0.3 0.3 0.3 0.3 0.5 0.1 0.5 0.3 0.1 0.5 0.5 0.5 -0.26 552.46 
0.3 0.3 0.3 0.3 0.5 0.1 0.7 0.3 0.1 0.5 0.5 0.5 -0.38 554.40 
0.3 0.3 0.3 0.3 0.5 0.1 0.9 0.3 0.1 0.5 0.5 0.5 -0.50 557.07 
0.3 0.3 0.3 0.3 0.1 0.1 -0.9 0.5 0.1 0.5 0.5 0.5 4.20 568.36 
0.3 0.3 0.3 0.5 0.1 0.1 -0.9 0.5 0.1 0.5 0.5 0.5 7.00 314.14 
0.5 0.5 0.5 0.3 0.3 0.1 -0.9 0.5 0.1 1 1 1 1.07 560.96 
0.3 0.3 0.3 0.5 0.5 0.3 -0.7 0.9 0.1 0.5 0.5 0.5 1.24 311.58 
0.5 0.5 0.5 0.5 0.1 0.3 -0.5 0.9 0.1 1 1 1 16.00 529.14 
0.3 0.3 0.3 0.5 0.1 0.3 -0.5 0.9 0.1 0.5 0.5 0.5 16.00 364.19 
0.5 0.5 0.5 0.5 0.1 0.3 -0.5 0.9 0.1 1 1 1 16.00 377.35 
0.3 0.3 0.3 0.3 0.5 0.3 -0.5 0.9 0.1 0.5 0.5 0.5 0.62 568.45 
0.5 0.5 0.5 0.5 0.5 0.3 -0.5 0.9 0.1 1 1 1 1.04 300.18 
0.3 0.3 0.3 0.3 0.1 0.5 -0.9 0.1 0.1 0.5 0.5 0.5 4.20 592.36 
0.5 0.5 0.5 0.5 0.1 0.5 -0.9 0.1 0.1 1 1 1 7.00 338.14 
0.3 0.3 0.3 0.3 0.3 0.5 -0.9 0.1 0.1 0.5 0.5 0.5 1.07 584.96 
0.5 0.5 0.5 0.5 0.3 0.5 -0.9 0.1 0.1 1 1 1 1.78 317.58 
0.3 0.3 0.3 0.3 0.5 0.5 -0.9 0.1 0.1 0.5 0.5 0.5 0.60 583.72 
0.5 0.5 0.5 0.5 0.1 0.3 -0.7 0.7 0.1 1 1 1 14.00 469.14 
0.3 0.3 0.3 0.5 0.1 0.3 -0.7 0.7 0.1 0.5 0.5 0.5 14.00 304.19 
0.5 0.5 0.5 0.5 0.1 0.3 -0.7 0.7 0.1 1 1 1 14.00 317.35 
0.3 0.3 0.3 0.3 0.1 0.1 -0.5 0.1 0.1 0.5 0.5 0.5 1.80 553.96 
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Table 3.2: The Percent Relative Efficiency of the proposed power 
transformation ratio-type estimator *

Powery  with respect to Tarray and Singh 
(2014) estimator 1STy  for different choices of the parameters with 

7021 .ppp ===      

gC  1g
C  

2g
C  yC  1xC  2xC  1yxr  2yxr  21xxr  0a  PRE 

0.3 0.3 0.3 0.3 0.5 0.1 0.3 0.1 0.1 -0.17 537.18 
0.3 0.3 0.3 0.3 0.1 0.1 0.5 0.1 0.1 -1.20 361.90 
0.3 0.3 0.3 0.3 0.1 0.1 0.5 0.1 0.1 -1.20 537.91 
0.3 0.3 0.3 0.3 0.3 0.1 0.5 0.1 0.1 -0.47 362.42 
0.3 0.3 0.3 0.3 0.3 0.1 0.5 0.1 0.1 -0.47 538.43 
0.3 0.3 0.3 0.3 0.5 0.1 0.5 0.1 0.1 -0.29 362.53 
0.3 0.3 0.3 0.3 0.5 0.1 0.5 0.1 0.1 -0.29 538.55 
0.3 0.3 0.3 0.3 0.1 0.1 0.7 0.1 0.1 -1.80 363.70 
0.3 0.3 0.3 0.3 0.1 0.1 0.7 0.1 0.1 -1.80 539.71 
0.3 0.3 0.3 0.3 0.3 0.1 0.7 0.1 0.1 -0.67 364.46 
0.3 0.3 0.3 0.3 0.3 0.1 0.7 0.1 0.1 -0.67 540.47 
0.3 0.3 0.3 0.3 0.5 0.1 0.7 0.1 0.1 -0.41 364.62 
0.3 0.3 0.3 0.3 0.5 0.1 0.7 0.1 0.1 -0.41 540.63 
0.3 0.3 0.3 0.3 0.1 0.1 0.9 0.1 0.1 -2.40 366.22 
0.3 0.3 0.3 0.3 0.1 0.1 0.9 0.1 0.1 -2.40 542.23 
0.3 0.3 0.3 0.3 0.3 0.1 0.9 0.1 0.1 -0.87 367.22 
0.3 0.3 0.3 0.3 0.3 0.1 0.9 0.1 0.1 -0.87 543.23 
0.3 0.3 0.3 0.3 0.5 0.1 0.9 0.1 0.1 -0.53 367.43 
0.3 0.3 0.3 0.3 0.5 0.1 0.9 0.1 0.1 -0.53 543.44 
0.3 0.3 0.3 0.3 0.1 0.1 -0.9 0.3 0.1 3.60 373.42 
0.3 0.3 0.3 0.3 0.1 0.1 -0.9 0.3 0.1 3.60 549.43 
0.5 0.5 0.5 0.5 0.1 0.1 -0.9 0.3 0.1 6.00 311.26 
0.3 0.3 0.3 0.3 0.5 0.1 -0.9 0.3 0.1 0.58 368.75 
0.3 0.3 0.3 0.3 0.5 0.1 -0.9 0.3 0.1 0.58 544.77 
0.3 0.3 0.3 0.3 0.1 0.1 -0.7 0.3 0.1 3.00 369.46 
0.3 0.3 0.3 0.3 0.1 0.1 -0.7 0.3 0.1 3.00 545.47 
0.3 0.3 0.3 0.3 0.5 0.1 -0.7 0.3 0.1 0.46 365.66 
0.3 0.3 0.3 0.3 0.5 0.1 -0.7 0.3 0.1 0.46 541.67 
0.3 0.3 0.3 0.3 0.5 0.1 -0.5 0.3 0.1 0.34 363.28 
0.3 0.3 0.3 0.3 0.5 0.1 -0.5 0.3 0.1 0.34 539.30 
0.3 0.3 0.3 0.3 0.5 0.1 -0.3 0.3 0.1 0.22 361.62 
0.3 0.3 0.3 0.3 0.5 0.1 -0.3 0.3 0.1 0.22 537.64 
0.3 0.3 0.3 0.3 0.5 0.1 -0.1 0.3 0.1 0.10 360.69 
0.5 0.5 0.5 0.5 0.1 0.3 0.5 0.5 0.1 5.00 308.26 
0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.5 0.1 0.00 368.46 
0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.5 0.1 0.00 544.47 
0.3 0.3 0.3 0.3 0.1 0.3 0.7 0.5 0.1 2.40 374.22 
0.3 0.3 0.3 0.3 0.1 0.3 0.7 0.5 0.1 2.40 550.23 
0.3 0.3 0.3 0.3 0.3 0.3 0.9 0.5 0.1 -0.40 369.90 
0.3 0.3 0.3 0.3 0.3 0.3 0.9 0.5 0.1 -0.40 545.91 
0.3 0.3 0.3 0.3 0.1 0.3 -0.9 0.7 0.1 9.00 361.45 
0.5 0.5 0.5 0.5 0.1 0.3 -0.9 0.7 0.1 15.00 383.26 
0.3 0.3 0.3 0.3 0.1 0.3 -0.9 0.7 0.1 9.00 449.46 
0.5 0.5 0.5 0.5 0.1 0.3 -0.9 0.7 0.1 15.00 424.92 
0.5 0.5 0.5 0.5 0.1 0.3 -0.9 0.7 0.1 15.00 508.26 
0.3 0.3 0.3 0.3 0.5 0.3 -0.5 0.9 0.1 0.62 554.21 
0.5 0.5 0.5 0.5 0.5 0.3 -0.5 0.9 0.1 1.04 310.30 
0.3 0.3 0.3 0.3 0.5 0.3 -0.3 0.9 0.1 0.50 374.81 
0.3 0.3 0.3 0.3 0.5 0.3 -0.3 0.9 0.1 0.50 550.82 
0.5 0.5 0.5 0.5 0.5 0.3 -0.3 0.9 0.1 0.84 300.90 
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Table 4.1: The Percent Relative Efficiency of the proposed ratio-type 
estimator **

Ratioy  with respect to Bar-Lev et al (2004) estimator BBBy  for 
different choices of the parameters with 7021 .ppp ===     

gC  1g
C  

2g
C  yC  1xC  2xC  1yxr  2yxr  21xxr  0a  PRE 

0.3 0.3 0.3 0.3 0.1 0.1 -0.9 0.5 0.1 0.5 531.97 
0.3 0.3 0.3 0.3 0.3 0.1 -0.9 0.5 0.1 0.5 539.91 
0.3 0.3 0.3 0.3 0.5 0.1 -0.9 0.5 0.1 0.5 555.91 
0.3 0.3 0.3 0.3 0.1 0.1 -0.7 0.5 0.1 0.5 531.91 
0.3 0.3 0.3 0.3 0.3 0.1 -0.7 0.5 0.1 0.5 539.91 
0.3 0.3 0.3 0.3 0.5 0.1 -0.7 0.5 0.1 0.5 555.91 
0.3 0.3 0.3 0.3 0.1 0.1 -0.5 0.5 0.1 0.5 531.91 
0.3 0.3 0.3 0.3 0.3 0.1 -0.5 0.5 0.1 0.5 539.91 
0.3 0.3 0.3 0.3 0.5 0.1 -0.5 0.5 0.1 0.5 555.91 
0.3 0.3 0.3 0.3 0.1 0.1 -0.3 0.5 0.1 0.5 531.91 
0.3 0.3 0.3 0.3 0.3 0.1 -0.3 0.5 0.1 0.5 539.91 
0.3 0.3 0.3 0.3 0.5 0.1 -0.3 0.5 0.1 0.5 555.91 
0.3 0.3 0.3 0.3 0.1 0.1 -0.1 0.5 0.1 0.5 531.91 
0.3 0.3 0.3 0.3 0.3 0.1 -0.1 0.5 0.1 0.5 539.91 
0.3 0.3 0.3 0.3 0.5 0.1 -0.1 0.5 0.1 0.5 555.91 
0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.5 0.1 0.5 531.91 
0.3 0.3 0.3 0.3 0.3 0.1 0.1 0.5 0.1 0.5 539.91 
0.3 0.3 0.3 0.3 0.5 0.1 0.1 0.5 0.1 0.5 555.91 
0.3 0.3 0.3 0.3 0.1 0.1 0.3 0.5 0.1 0.5 531.91 
0.3 0.3 0.3 0.3 0.3 0.1 0.3 0.5 0.1 0.5 539.91 
0.3 0.3 0.3 0.3 0.5 0.1 0.3 0.5 0.1 0.5 555.91 
0.3 0.3 0.3 0.3 0.1 0.1 0.5 0.5 0.1 0.5 531.91 
0.3 0.3 0.3 0.3 0.3 0.1 0.5 0.5 0.1 0.5 539.91 
0.3 0.3 0.3 0.3 0.5 0.1 0.5 0.5 0.1 0.5 555.91 
0.3 0.3 0.3 0.3 0.1 0.1 0.7 0.5 0.1 0.5 531.91 
0.3 0.3 0.3 0.3 0.3 0.1 0.7 0.5 0.1 0.5 539.91 
0.3 0.3 0.3 0.3 0.5 0.1 0.7 0.5 0.1 0.5 555.91 
0.3 0.3 0.3 0.3 0.1 0.1 0.9 0.5 0.1 0.5 531.91 
0.3 0.3 0.3 0.3 0.3 0.1 0.9 0.5 0.1 0.5 539.91 
0.3 0.3 0.3 0.3 0.5 0.1 0.9 0.5 0.1 0.5 555.91 
0.3 0.3 0.3 0.3 0.1 0.1 -0.9 0.7 0.1 0.5 531.91 
0.3 0.3 0.3 0.3 0.3 0.1 -0.9 0.7 0.1 0.5 539.91 
0.3 0.3 0.3 0.3 0.5 0.1 -0.9 0.7 0.1 0.5 555.91 
0.3 0.3 0.3 0.3 0.1 0.1 -0.7 0.7 0.1 0.5 531.91 
0.3 0.3 0.3 0.3 0.3 0.1 -0.7 0.7 0.1 0.5 539.91 
0.3 0.3 0.3 0.3 0.5 0.1 -0.7 0.7 0.1 0.5 555.91 
0.3 0.3 0.3 0.3 0.1 0.1 -0.5 0.7 0.1 0.5 531.91 
0.3 0.3 0.3 0.3 0.3 0.1 -0.5 0.7 0.1 0.5 539.91 
0.3 0.3 0.3 0.3 0.5 0.1 -0.5 0.7 0.1 0.5 555.91 
0.3 0.3 0.3 0.3 0.1 0.1 -0.3 0.7 0.1 0.5 531.91 
0.3 0.3 0.3 0.3 0.3 0.1 -0.3 0.7 0.1 0.5 539.91 
0.3 0.3 0.3 0.3 0.5 0.1 -0.3 0.7 0.1 0.5 555.91 
0.3 0.3 0.3 0.3 0.1 0.1 -0.1 0.7 0.1 0.5 531.91 
0.3 0.3 0.3 0.3 0.3 0.1 -0.1 0.7 0.1 0.5 539.91 
0.3 0.3 0.3 0.3 0.5 0.1 -0.1 0.7 0.1 0.5 555.91 
0.3 0.3 0.3 0.3 0.1 0.1 0.1 0.7 0.1 0.5 531.91 
0.3 0.3 0.3 0.3 0.3 0.1 0.1 0.7 0.1 0.5 539.91 
0.3 0.3 0.3 0.3 0.5 0.1 0.1 0.7 0.1 0.5 555.91 
0.3 0.3 0.3 0.3 0.1 0.1 0.3 0.7 0.1 0.5 531.91 
0.3 0.3 0.3 0.3 0.3 0.1 0.3 0.7 0.1 0.5 539.91 

 



2020] IMPROVEMENT IN RANDOMISED RESPONSE MODEL  

 
 

123 

 

Table 4.2: The Percent Relative Efficiency of the proposed ratio-type 
estimator **

Ratioy  with respect to Tarray and Singh (2014) estimator 2STy for 
different choices of the parameters with 7021 .ppp ===  

gC  1g
C  

2g
C  yC  1xC  2xC  1yxr  2yxr  21xxr  PRE 

0.5 0.5 0.5 0.5 0.1 0.1 -0.9 0.1 0.1 348.97 
0.5 0.5 0.5 0.5 0.3 0.1 -0.9 0.1 0.1 356.97 
0.5 0.5 0.5 0.5 0.5 0.1 -0.9 0.1 0.1 372.97 
0.5 0.5 0.5 0.5 0.1 0.1 -0.7 0.1 0.1 348.97 
0.5 0.5 0.5 0.5 0.3 0.1 -0.7 0.1 0.1 356.97 
0.5 0.5 0.5 0.5 0.5 0.1 -0.7 0.1 0.1 372.97 
0.5 0.5 0.5 0.5 0.1 0.1 -0.5 0.1 0.1 348.97 
0.5 0.5 0.5 0.5 0.3 0.1 -0.5 0.1 0.1 356.97 
0.5 0.5 0.5 0.5 0.5 0.1 -0.5 0.1 0.1 372.97 
0.5 0.5 0.5 0.5 0.1 0.1 -0.3 0.1 0.1 348.97 
0.5 0.5 0.5 0.5 0.3 0.1 -0.3 0.1 0.1 356.97 
0.5 0.5 0.5 0.5 0.5 0.1 -0.3 0.1 0.1 372.97 
0.5 0.5 0.5 0.5 0.1 0.1 -0.1 0.1 0.1 348.97 
0.5 0.5 0.5 0.5 0.3 0.1 -0.1 0.1 0.1 356.97 
0.5 0.5 0.5 0.5 0.5 0.1 -0.1 0.1 0.1 372.97 
0.5 0.5 0.5 0.5 0.1 0.1 0.1 0.1 0.1 348.97 
0.5 0.5 0.5 0.5 0.3 0.1 0.1 0.1 0.1 356.97 
0.5 0.5 0.5 0.5 0.5 0.1 0.1 0.1 0.1 372.97 
0.5 0.5 0.5 0.5 0.1 0.1 0.3 0.1 0.1 348.97 
0.5 0.5 0.5 0.5 0.3 0.1 0.3 0.1 0.1 356.97 
0.5 0.5 0.5 0.5 0.5 0.1 0.3 0.1 0.1 372.97 
0.5 0.5 0.5 0.5 0.1 0.1 0.5 0.1 0.1 348.97 
0.5 0.5 0.5 0.5 0.3 0.1 0.5 0.1 0.1 356.97 
0.5 0.5 0.5 0.5 0.5 0.1 0.5 0.1 0.1 372.97 
0.5 0.5 0.5 0.5 0.1 0.1 0.7 0.1 0.1 348.97 
0.5 0.5 0.5 0.5 0.3 0.1 0.7 0.1 0.1 356.97 
0.5 0.5 0.5 0.5 0.5 0.1 0.7 0.1 0.1 372.97 
0.5 0.5 0.5 0.5 0.1 0.1 0.9 0.1 0.1 348.97 
0.5 0.5 0.5 0.5 0.3 0.1 0.9 0.1 0.1 356.97 
0.5 0.5 0.5 0.5 0.5 0.1 0.9 0.1 0.1 372.97 
0.5 0.5 0.5 0.5 0.3 0.3 0.5 0.1 0.1 364.97 
0.5 0.5 0.5 0.5 0.5 0.3 0.5 0.1 0.1 380.97 
0.5 0.5 0.5 0.5 0.3 0.3 0.7 0.1 0.1 364.97 
0.5 0.5 0.5 0.5 0.5 0.3 0.7 0.1 0.1 380.97 
0.5 0.5 0.5 0.5 0.3 0.3 0.9 0.1 0.1 364.97 
0.5 0.5 0.5 0.5 0.5 0.3 0.9 0.1 0.1 380.97 
0.5 0.5 0.5 0.5 0.5 0.5 -0.9 0.1 0.1 396.97 
0.5 0.5 0.5 0.5 0.5 0.5 -0.7 0.1 0.1 396.97 
0.5 0.5 0.5 0.5 0.5 0.5 -0.5 0.1 0.1 396.97 
0.5 0.5 0.5 0.5 0.5 0.5 -0.3 0.1 0.1 396.97 
0.5 0.5 0.5 0.5 0.5 0.5 -0.1 0.1 0.1 396.97 
0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.1 0.1 396.97 
0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.1 0.1 396.97 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.1 0.1 396.97 
0.5 0.5 0.5 0.5 0.5 0.5 0.7 0.1 0.1 396.97 
0.5 0.5 0.5 0.5 0.5 0.5 0.9 0.1 0.1 396.97 
0.5 0.5 0.5 0.5 0.5 0.3 -0.3 0.1 0.1 380.97 
0.5 0.5 0.5 0.5 0.3 0.3 -0.1 0.1 0.1 364.97 
0.5 0.5 0.5 0.5 0.5 0.3 -0.1 0.1 0.1 380.97 
0.5 0.5 0.5 0.5 0.3 0.3 0.1 0.1 0.1 364.97 
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Table 5.1: The Percent Relative Efficiency of the proposed estimator **
Powery  with 

respect to Bar-Lev-et al (2004) estimator BBBy  for different choices of parameter with  
7021 .ppp ===  

gC  1gC  2gC
 

yC  1xC  2xC
 

1yxr  2yxr
 

21xxr
 

q  1q  2q  0a  PRE 

0.5 0.5 0.5 0.5 0.1 0.5 -0.9 0.5 0.1 1 1 1 17.00 553.66 
0.5 0.5 0.5 0.5 0.3 0.5 -0.9 0.5 0.1 1 1 1 2.89 339.77 
0.5 0.5 0.5 0.5 0.1 0.5 -0.7 0.5 0.1 1 1 1 16.00 520.66 
0.3 0.3 0.3 0.3 0.3 0.5 -0.7 0.5 0.1 0.5 0.5 0.5 1.53 574.53 
0.5 0.5 0.5 0.5 0.3 0.5 -0.7 0.5 0.1 1 1 1 2.56 323.44 
0.5 0.5 0.5 0.5 0.1 0.5 -0.5 0.5 0.1 1 1 1 15.00 320.48 
0.3 0.3 0.3 0.3 0.3 0.5 -0.5 0.5 0.1 0.5 0.5 0.5 1.33 569.37 
0.5 0.5 0.5 0.5 0.3 0.5 -0.5 0.5 0.1 1 1 1 2.22 309.10 
0.5 0.5 0.5 0.5 0.1 0.5 -0.3 0.5 0.1 1 1 1 14.00 460.66 
0.3 0.3 0.3 0.3 0.3 0.5 -0.3 0.5 0.1 0.5 0.5 0.5 1.13 564.93 
0.5 0.5 0.5 0.5 0.1 0.5 -0.1 0.5 0.1 1 1 1 13.00 433.66 
0.3 0.3 0.3 0.3 0.3 0.5 -0.1 0.5 0.1 0.5 0.5 0.5 0.93 561.21 
0.5 0.5 0.5 0.5 0.1 0.5 0.1 0.5 0.1 1 1 1 12.00 408.66 
0.3 0.3 0.3 0.3 0.3 0.5 0.1 0.5 0.1 0.5 0.5 0.5 0.73 558.21 
0.3 0.3 0.3 0.3 0.1 0.5 0.3 0.5 0.1 0.5 0.5 0.5 6.60 596.93 
0.5 0.5 0.5 0.5 0.1 0.5 0.3 0.5 0.1 1 1 1 11.00 385.66 
0.3 0.3 0.3 0.3 0.3 0.5 0.3 0.5 0.1 0.5 0.5 0.5 0.53 555.93 
0.3 0.3 0.3 0.3 0.1 0.5 0.5 0.5 0.1 0.5 0.5 0.5 6.00 589.37 
0.5 0.5 0.5 0.5 0.1 0.5 0.5 0.5 0.1 1 1 1 10.00 364.66 
0.3 0.3 0.3 0.3 0.1 0.5 0.7 0.5 0.1 0.5 0.5 0.5 5.40 582.53 
0.5 0.5 0.5 0.5 0.1 0.5 0.7 0.5 0.1 1 1 1 9.00 345.66 
0.3 0.3 0.3 0.3 0.3 0.5 0.7 0.5 0.1 0.5 0.5 0.5 0.13 553.53 
0.3 0.3 0.3 0.3 0.1 0.5 0.9 0.5 0.1 0.5 0.5 0.5 4.80 576.41 
0.5 0.5 0.5 0.5 0.1 0.5 0.9 0.5 0.1 1 1 1 8.00 328.66 
0.3 0.3 0.3 0.3 0.3 0.5 0.9 0.5 0.1 0.5 0.5 0.5 -0.07 553.41 
0.3 0.3 0.3 0.3 0.1 0.5 -0.9 0.7 0.1 0.5 0.5 0.5 13.20 310.33 
0.5 0.5 0.5 0.5 0.1 0.5 -0.9 0.7 0.1 1 1 1 22.00 578.18 
0.5 0.5 0.5 0.5 0.1 0.5 -0.9 0.7 0.1 1 1 1 22.00 579.48 
0.3 0.3 0.3 0.3 0.3 0.5 -0.9 0.7 0.1 0.5 0.5 0.5 2.07 591.81 
0.5 0.5 0.5 0.5 0.3 0.5 -0.9 0.7 0.1 1 1 1 3.44 371.44 
0.5 0.5 0.5 0.5 0.1 0.5 -0.7 0.7 0.1 1 1 1 21.00 535.18 
0.3 0.3 0.3 0.3 0.3 0.5 -0.7 0.7 0.1 0.5 0.5 0.5 1.87 584.73 
0.5 0.5 0.5 0.5 0.1 0.5 -0.5 0.7 0.1 1 1 1 20.00 494.18 
0.3 0.3 0.3 0.3 0.3 0.5 -0.5 0.7 0.1 0.5 0.5 0.5 1.67 578.37 
0.5 0.5 0.5 0.5 0.3 0.5 -0.5 0.7 0.1 1 1 1 2.78 334.10 
0.3 0.3 0.3 0.3 0.5 0.5 -0.5 0.7 0.1 0.5 0.5 0.5 0.72 566.33 
0.5 0.5 0.5 0.5 0.5 0.5 -0.5 0.7 0.1 1 1 1 1.20 300.66 
0.3 0.3 0.3 0.3 0.3 0.5 -0.3 0.7 0.1 0.5 0.5 0.5 1.47 572.73 
0.5 0.5 0.5 0.5 0.3 0.5 -0.3 0.7 0.1 1 1 1 2.44 318.44 
0.3 0.3 0.3 0.3 0.5 0.5 -0.3 0.7 0.1 0.5 0.5 0.5 0.60 562.37 
0.5 0.5 0.5 0.5 0.1 0.5 -0.1 0.7 0.1 1 1 1 18.00 588.66 
0.3 0.3 0.3 0.3 0.5 0.5 -0.1 0.7 0.1 0.5 0.5 0.5 0.48 559.13 
0.3 0.3 0.3 0.3 0.3 0.5 0.1 0.7 0.1 0.5 0.5 0.5 1.07 563.61 
0.3 0.3 0.3 0.3 0.5 0.5 0.1 0.7 0.1 0.5 0.5 0.5 0.36 556.61 
0.3 0.3 0.3 0.3 0.3 0.5 0.3 0.7 0.1 0.5 0.5 0.5 0.87 560.13 
0.3 0.3 0.3 0.3 0.5 0.5 0.3 0.7 0.1 0.5 0.5 0.5 0.24 554.81 
0.3 0.3 0.3 0.3 0.3 0.5 0.5 0.7 0.1 0.5 0.5 0.5 0.67 557.37 
0.3 0.3 0.3 0.3 0.3 0.5 0.7 0.7 0.1 0.5 0.5 0.5 0.47 555.33 
0.3 0.3 0.3 0.3 0.3 0.5 0.9 0.7 0.1 0.5 0.5 0.5 0.27 554.01 
0.3 0.3 0.3 0.3 0.5 0.5 0.9 0.7 0.1 0.5 0.5 0.5 -0.12 553.73 
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Table 5.2: The Percent Relative Efficiency of the proposed power 
transformation ratio-type estimator **

Powery  with respect to Tarray and Singh’s 
(2014) 2STy  estimator for the different choices of the parameters with 

7021 .ppp ===   

gC  1g
C  

2g
C  yC  1xC  2xC  1yxr  2yxr  21xxr  0a  PRE 

0.5 0.5 0.5 0.5 0.1 0.5 0.1 0.7 0.1 17.00 354.87 
0.5 0.5 0.5 0.5 0.1 0.5 0.1 0.7 0.1 17.00 378.89 
0.5 0.5 0.5 0.5 0.1 0.5 0.3 0.7 0.1 16.00 307.86 
0.5 0.5 0.5 0.5 0.1 0.5 0.3 0.7 0.1 16.00 321.87 
0.5 0.5 0.5 0.5 0.1 0.5 0.3 0.7 0.1 16.00 345.89 
0.5 0.5 0.5 0.5 0.1 0.5 0.5 0.7 0.1 15.00 314.89 
0.3 0.3 0.3 0.3 0.1 0.5 -0.9 0.9 0.1 16.20 300.37 
0.1 0.1 0.1 0.1 0.1 0.5 -0.9 0.9 0.1 5.40 314.26 
0.3 0.3 0.3 0.3 0.1 0.5 -0.9 0.9 0.1 16.20 329.97 
0.3 0.3 0.3 0.3 0.1 0.5 -0.9 0.9 0.1 16.20 380.70 
0.1 0.1 0.1 0.1 0.1 0.5 -0.7 0.9 0.1 5.20 312.14 
0.3 0.3 0.3 0.3 0.1 0.5 -0.7 0.9 0.1 15.60 310.89 
0.3 0.3 0.3 0.3 0.1 0.5 -0.7 0.9 0.1 15.60 361.62 
0.1 0.1 0.1 0.1 0.1 0.5 -0.5 0.9 0.1 5.00 310.10 
0.3 0.3 0.3 0.3 0.1 0.5 -0.5 0.9 0.1 15.00 343.26 
0.1 0.1 0.1 0.1 0.1 0.5 -0.3 0.9 0.1 4.80 308.14 
0.3 0.3 0.3 0.3 0.1 0.5 -0.3 0.9 0.1 14.40 325.62 
0.5 0.5 0.5 0.5 0.1 0.5 -0.1 0.9 0.1 23.00 580.86 
0.1 0.1 0.1 0.1 0.1 0.5 -0.1 0.9 0.1 4.60 306.26 
0.5 0.5 0.5 0.5 0.1 0.5 -0.1 0.9 0.1 23.00 594.87 
0.3 0.3 0.3 0.3 0.1 0.5 -0.1 0.9 0.1 13.80 308.70 
0.5 0.5 0.5 0.5 0.1 0.5 0.1 0.9 0.1 22.00 535.86 
0.1 0.1 0.1 0.1 0.1 0.5 0.1 0.9 0.1 4.40 304.46 
0.5 0.5 0.5 0.5 0.1 0.5 0.1 0.9 0.1 22.00 549.87 
0.5 0.5 0.5 0.5 0.1 0.5 0.1 0.9 0.1 22.00 573.89 
0.5 0.5 0.5 0.5 0.1 0.5 0.3 0.9 0.1 21.00 492.86 
0.1 0.1 0.1 0.1 0.1 0.5 0.3 0.9 0.1 4.20 302.74 
0.5 0.5 0.5 0.5 0.1 0.5 0.3 0.9 0.1 21.00 506.87 
0.5 0.5 0.5 0.5 0.1 0.5 0.3 0.9 0.1 21.00 530.89 
0.5 0.5 0.5 0.5 0.1 0.5 0.5 0.9 0.1 20.00 451.86 
0.1 0.1 0.1 0.1 0.1 0.5 0.5 0.9 0.1 4.00 301.10 
0.5 0.5 0.5 0.5 0.1 0.5 0.5 0.9 0.1 20.00 465.87 
0.5 0.5 0.5 0.5 0.1 0.5 0.5 0.9 0.1 20.00 489.89 
0.5 0.5 0.5 0.5 0.1 0.5 0.7 0.9 0.1 19.00 412.86 
0.5 0.5 0.5 0.5 0.1 0.5 0.7 0.9 0.1 19.00 426.87 
0.5 0.5 0.5 0.5 0.1 0.5 0.7 0.9 0.1 19.00 450.89 
0.5 0.5 0.5 0.5 0.1 0.5 0.9 0.9 0.1 18.00 375.86 
0.5 0.5 0.5 0.5 0.1 0.5 0.9 0.9 0.1 18.00 389.87 
0.5 0.5 0.5 0.5 0.1 0.5 0.9 0.9 0.1 18.00 413.89 
0.5 0.5 0.5 0.5 0.1 0.5 -0.9 0.7 0.1 22.00 535.86 
0.1 0.1 0.1 0.1 0.1 0.5 -0.9 0.7 0.1 4.40 304.46 
0.5 0.5 0.5 0.5 0.1 0.5 -0.9 0.7 0.1 22.00 549.87 
0.5 0.5 0.5 0.5 0.1 0.5 -0.9 0.7 0.1 22.00 573.89 
0.5 0.5 0.5 0.5 0.1 0.5 -0.7 0.7 0.1 21.00 492.86 
0.1 0.1 0.1 0.1 0.1 0.5 -0.7 0.7 0.1 4.20 302.74 
0.5 0.5 0.5 0.5 0.1 0.5 -0.7 0.7 0.1 21.00 506.87 
0.5 0.5 0.5 0.5 0.1 0.5 -0.7 0.7 0.1 21.00 530.89 
0.5 0.5 0.5 0.5 0.1 0.5 -0.5 0.7 0.1 20.00 451.86 
0.1 0.1 0.1 0.1 0.1 0.5 -0.5 0.7 0.1 4.00 301.10 
0.5 0.5 0.5 0.5 0.1 0.5 -0.5 0.7 0.1 20.00 465.87 
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Abstract 

This article obtains the exact expressions for the single and product moments of order statistics 
from one parameter Lindley distribution when multiple outliers are present in the data. Using the 
obtained moment relations, we compute the single and product moments (e.g. means, variances and 
covariances) of various order statistics. Next, we explore the impact of the presence of pronounced 
outliers on these variances and covariances, while the shape parameters have been shifted in value. We 
also investigate the robustness issues of the sample L-moments.  

Key words: Order statistics; Outliers; Single and product moments; Covariances; Sample L-moments. 

AMS Subject Classification: 62G30; 62F10 
_____________________________________________________________________ 

1. Introduction  

In the fields of engineering, medical and biological science, the statistical analysis of 
lifetime data plays a significant role. In fact, the lifetime distributions are being used in different 
forms of investigations from the issue of survival time of manufactured items in engineering 
to the researches involving human diseases in biomedical sciences. In the literature, there are 
several statistical distributions available for modelling lifetime data. Among these 
distributions, the predominantly used one is exponential distribution (due to its closed form) 
for its survival function. The Lindley distribution belongs to the exponential family distribution 
and can be written as a mixture of exponential and gamma distributions. This distribution is 
better than exponential failure time distribution, wherein hazard rate is not unimodal or bathtub 
shaped [see Bakouch et al. (2012)]. The Lindley distribution, having an advantage over the 
exponential distribution, is due to the fact that the former possesses the increasing hazard rate 
and decreasing mean residual life time function (MRLF), whereas the latter one possesses 
constant hazard rate and MRLF. Maybe, owing to this nice property, recently many authors 
have paid their attention to Lindley distribution as a life time model in different perspectives 
[see Kumar and Jose (2018)]. Ghitany et al. (2008) showed through waiting time data that 
Lindley distribution provides a better model as compared to the well-known exponential 
distribution. This distribution also provides a better fit to competing risks lifetime data in 
contrast to exponential and Weibull distributions [see Mazuchelia and Achcarb (2011)].  A 
discrete Lindley model was introduced by Gomoz-Deniz and Calderin-Ojeda (2011) with its 
applications in collective risk modelling. Krishna and Kumar (2011) demonstrated that Lindley 
distribution might fit better than exponential, lognormal and gamma distributions in some real 
life problems under progressive Type-II censoring scheme. Mazucheli et al. (2019) introduced 
a transformed form of Lindley distribution i.e. unit-Lindley distribution and demonstrated that 
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unit-Lindley regression could offer a better fit as compared to beta regression model by using 
the data of inadequate water supply and sewage in the cities of Brazil from the southeast and 
northeast region. 

 
The specific area moments of order statistics has been consistently being used in other 

disciplines such as life testing, reliability theory, signal and image processing etc. In the early 
70s, many researchers started working on studies of order statistics based on outlier model due 
to the robustness issue. An outlier in a dataset is an observation that appears to be inconsistent 
with the remaining observations [see Prasad et al. (2008)]. In any dataset, the presence of single 
or multiple outlier(s) may leads to a flawed conclusion drawn from the experiment; thus it is 
important to detect and handle the outlier(s) efficiently. In fact, the detection of multiple 
outliers in comparison to detection of a single outlier is much more difficult [see Bhar et al. 
(2013)]. 

 
Much of the work on order statistics in connection with robustness issue has been 

focused when there is one outlier present in the sample (single outlier model), but nothing much 
in case of multiple outliers model. Barnett and Lewis (1994) extensively discussed the topic of 
development on the single outlier model. Arnold and Balakrishnan (1989) obtained the density 
function of rth order statistic as well as the joint density function of  and  (1  r < s  
n) when the sample of size is n and the sample contains an unknown single outlier. 
Balakrishnan (1994a) obtained the recurrence relations for the single and product moments of 
order statistics from right truncated exponential distribution under the multiple-outliers model. 
Balakrishnan ((1994b), 2007) provided many results on order statistics from multiple-outliers 
model and the robustness issues involved in those models. Sultan and Moshref (2014) obtained 
the exact expressions of order statistics for the single and product moments of order statistics 
from Weibull distribution under the multiple-outliers model (i.e. with slippage of 
observations).  

 
This article derives the exact expressions of order statistics for the single and product 

moments of order statistics from Lindley distribution when multiple outliers are present in the 
data. The rest of this article is organized as follows. In Section 2, we give the preliminaries 
which will be used to derive the main result. In Section 3, we derive the exact expression of 
the single and product moments of order statistics from Lindley distribution under the multiple-
outlier model. In Section 4, we obtain the L-moments of order statistics and also examine the 
robustness of the sample L-moments in the presence of outliers through some numerical 
illustrations. In Section 5, we establish some special cases. Finally, in Section 6, we sketch a 
conclusion of the article.   

    
2. Preliminaries  

Under the multiple outliers model set up, we assume that  are independent 
variables with  are  independent random variables from one form of the 
Lindley distribution with probability density function (pdf) f(x) given by  
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while  are the p independent random variables (i.e. p outliers) from another 
form of the Lindley distribution with pdf g(x) given by   

,             (2) 

 
where ,  are the shape parameters of pdfs  and   respectively. We also suppose 

that these parameters are linked with each other by a relationship . It can be 

shown that both the cumulative density functions (cdfs) are related with the corresponding pdfs 
by the following relationships:   

                (3) 

and  

.            (4) 

 
Let  denote the order statistics obtained from a sample of n 

observations. Then, the pdf of the rth order statistic , under the multiple-outliers model is as 
follows [see Childs (1996) and Sultan and Moshref (2014)]:  

 

 

      
,           

     (5) 
where 

 

and 

 

 
Similarly, the joint density function of the rth and sth order statistics  and  (1  r < 

s  n), under the multiple-outliers model is given by [see Childs (1994) and Sultan and Moshref 
(2014)]:  
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,   (6) 
 

where  

   

   

and    

 
3. Moments of Order Statistics 

In this section, we obtain the exact expressions for the single and product moments of 
order statistics from Lindley distribution based on multiple-outliers model (based on p-outliers 
observations). 

   
3.1.  Single moments   

In this subsection, we derive the kth moment of the rth order statistics  
under the multiple-outliers model.    

Relation 1: For  and k = 0, 1, 2,…. the kth moment  is given by 

  

  

 

 

   

                  (7) 
 

Proof:  For  and k = 0, 1, 2,… and by substituting equations (3) and (4) in equation 
(5), we have  

{ } { } { }å å -+
--

=

----

---=

--1

0

)1,1min(

)1,0max(

1
2 )()()()()()(

rs

j

rjpn

jpsi

jiri xFyFxGxFyfxgA

{ } { } { } 111 )(1)(1)()( +++-------- ---´ jispjipnjrs yGyFxGyG

{ } { } { }å å -+
--

=

---

--=

--1

0

)1,min(

),0max(

1
3 )()()()()()(

rs

j

rjpn

jpsi

jiri xFyFxGxFygxgA

{ } { } { } jispjipnjrs yGyFxGyG ++------- ---´ )(1)(1)()( 1 ¥<<<¥- yx

,
)!2()!2()!1(!)!1(!

!)!(
1 +++----------

-
=

jispjipnjrsjiri
ppnA

,
)!1()!1()!1(!)!1(!

!)!(
2 +++----------

-
=

jispjipnjrsjiri
ppnA

.
)!()!()!1(!)!1(!

!)!(
3 jispjipnjrsjiri

ppnA
++---------

-
=

[ ] nrpk
nr ££1,)(

::µ

,1 nr ££ [ ]pk
nr
)(

::µ

å ÷÷
ø

ö
çç
è

æ -+--
å ÷÷

ø

ö
çç
è

æ --
å ÷÷

ø

ö
çç
è

æ
å=

-+--

=

--

==

---

--=

1

0

1

00

)1,1min(

)1,0max(
1

2)(
:

11
][

ispn

l

sr

j

s

i

rpn

prs

k
nr l

ispn
j
sr

i
s

cp qµ

( ) 1

1

0

1

0 1)1(
)1(

11
+++-+--

+
++

=

+++-

= ++
-å ÷÷

ø

ö
çç
è

æ ++
å ÷÷

ø

ö
çç
è

æ +++-
´ jsrpispn

ml
jiml

q

jsrp

m q
ml

m
jsrp

tq
tq

[ ] 1)1()(
)1(

+++++-++--
++G

´ qkjsrpispn
qk

tq

å ÷÷
ø

ö
çç
è

æ ++-
å ÷÷

ø

ö
çç
è

æ +--
å ÷÷

ø

ö
çç
è

æ --
å ÷÷

ø

ö
çç
è

æ
å+

++-

=

+--

=

--

==

--

-=

jsrp

m

ispn

l

sr

j

s

i

rpn

prs m
jsrp

l
ispn

j
sr

i
s

c
00

1

00

)1,min(

),0max(
2

2 1
t

å
++

=
÷÷
ø

ö
çç
è

æ ++
´

1

0

1ml

q q
ml

( ) 11)1(
)1( +++-+--
+

++
- jsrpispn

ml
ji

tq
tq

[ ] 1)1()(
)1(

+++++-++--
++G

´ qkjsrpispn
qk

tq

,1 nr ££



2020] LINDLEY DISTRIBUTION IN PRESENCE OF MULTIPLE OUTLIERS  

 
 

131 

 

 

                      (8) 
 

Using binomial theorem in equation (8) and subsequently expanding the same we get 

 

  

 
 

                                  (9) 

 
Again, using binomial theorem in equation (9) and further simplifying we get the result 

in equation (7).                 
  

The expression in equation (7) is used to calculate the mean and variance of the order 

statistics when n = 6, p = 0, 1, 2,  and , h = 0.1, 0.2, 0.3, 0.4, 0.5 and are presented 

in Table 1 (Annexure). We can verify the results in Table 1 for the case p = 0, by using the 
well-known identity [see Arnold and Balakrishnan (1989), p. 6] 

 

. 

 
From Table 1, we see the following:  
 

(1) The variance decreases as p increases.  
(2) The variance is an increasing function of h for r = 1 and it is a decreasing function of h 

for r = 5, 6.  For r = 2, 3 and 4 the behaviour is not consistent.  
(3) For small r, the relative change in variance is more with the increase in the number of 

outliers from p = 1 to p = 2 for different values of h.   
 
3.2.   Product moments   

In this subsection, we derive the (k, l)th moment of the rth  and sth order statistics  
under the multiple-outliers model.    

Relation 2. For  and k, l = 0, 1, 2,…. the product moments  is given by  

 

 

{ } { } { } { } dxxGxFxGxF
x

xxcp srpspnsrs
krpn

prs

k
nr

11

0

)1,1(min

)1,0max(
1

2)(
: )(1)(1)()(

1
)1(][ ++-----

¥---

--=
--ò

++
+

å=
qq

qµ

{ } { } { } { } dxxGxFxGxF
x

xxc srpspnsrs
krpn

prs

11

0

)1,(min

),0max(
2

2 )(1)(1)()(
1

)1( ++-----
¥--

-=
--ò

++
+

å+
tt

t

jsrpispn

s

i

sr

j

ji
rpn

prs

k
nr j

sr
i
s

cp +++-+--
=

--

=

+
---

--= ++÷÷
ø

ö
çç
è

æ --
÷÷
ø

ö
çç
è

æ
-= å åå 1

0

1

0

)1,1(min

)1,0max(

2
1

)(
: )1()1(

11
)1(][

tq
qµ

( ) [ ] dxexxxx xjsrpispnjsrpispnk tqttqq )1()(11

0
1)1)(1( +++-++---+++--+--¥

+++++´ ò

jsrpispn

s

i

sr

j

ji
rpn

prs j
sr

i
s

c +++-+--
=

--

=

+
--

-= ++÷÷
ø

ö
çç
è

æ --
÷÷
ø

ö
çç
è

æ
-+ å åå 1

0

1

0

)1,(min

),0max(

2
2 )1()1(

11
)1(

tq
t

( ) [ ] dxexxxx xjsrpispnjsrpispnk tqttqq )1()(

0
1)1)(1( +++-++---++-+--¥

+++++´ ò

1=q
h
qt =

)1(
)2(6)(6

6

1
6: +

+
==å

= qq
qµ XE

i
i

[ ],),(
:, plk
nsrµ

,1 nsr £<£ [ ]plk
nsr
),(

::,µ

å å å å å å å å åå å=
=

--

= =

---

=

-+

=

----+

=

-+---

=

++++-

=

++

=

--

=

----

---=

i

b

ir

d

j

t

jrs

q

tjb

p

qjrsd

p

tjipn

p

qjisp

p

pp

l

rs

j

rjpn

jpsi

lk
nsr Ap

0

1

0 0

1

0 0

1

0

2

0

2

0

1

0

1

0

)1,2(min

)2,0max(

4
1

),(
:,

1 2 3 4

21

1

][ qµ



 MAHESH KUMAR PANDA  [Vol. 18, No. 1 132 

      

 

                
               

 

    

      

    
   

 

                

               
 

                      
 

                                                                     (10) 

Proof:   For  and k, l = 0, 1, 2,… and by using equations (3) and (4) in equation 
(6), we have  
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Using binomial theorem in equation (11) and subsequently expanding the same we get 

           
   

 

    

              
 

    

 

  
 

  

            
 

  

           
           

 
 

  

            
 

  

    

{ }{ } { }jirirs

j

rjpn

jpsi x

lk

xFyFxGxF
yx

yyxxA )()()()(
)1)(1(

)1()1( 11

0

)1,1min(

)1,0max( 0
2

22 -å å ò ò
++++
++

+ ----

=

----

---=

¥¥

qqtt
tq

{ } { } { } { }dxdyxGyGyFxGyG jispjipnjrs )(1)(1)(1)()( 11 ----´ +++-------

{ }{ } { }jirirs

j

rjpn

jpsi x

lk

xFyFxGxF
yx

yyxxA )()()()(
)1)(1(

)1()1( 11

0

)1,min(

),0max( 0
3

4 -å å ò ò
++++
++

+ ----

=

---

--=

¥¥

tttt
t

{ } { } { } { } .)(1)(1)(1)()( 11 dxdyxGyGyFxGyG jispjipnjrs ----´ +++-------

åååå å å å å å å å å=
++

=

++

=

++++-

=

--

=

----

---= =

--

= =

---

=

-+

=

----+

=

-+---

=

1

0

1

0

2

0

1

0

)1,2min(

)2,0max( 0

1

0 0

1

0 0

1

0

2

0
1

4),(
:,

43

2

21

141 2 3

][
pp

l

pp

l

qjisp

p

rs

j

rjpn

jpsi

i

b

ir

d

j

t

jrs

q

tjb

p

qjrsd

p

tjipn

p

lk
nsr Ap qµ

÷÷
ø

ö
çç
è

æ ----+
÷÷
ø

ö
çç
è

æ -+
÷÷
ø

ö
çç
è

æ ---
÷÷
ø

ö
çç
è

æ
÷÷
ø

ö
çç
è

æ --
÷÷
ø

ö
çç
è

æ
-´ +++

21

111
)1(

p
qjrsd

p
tjb

q
jrs

t
j

d
ir

b
iqtdb

÷÷
ø

ö
çç
è

æ ++
÷÷
ø

ö
çç
è

æ ++
÷÷
ø

ö
çç
è

æ ++++-
÷÷
ø

ö
çç
è

æ -+---
´

2

43

1

21

43

1122
l
pp

l
pp

p
qjisp

p
tjipn

1)1()1(

4231

+++---+

++

++
´ iprdipnb

pppp

tq
tq

{ } { }dxdyeeyx qjisptjipnyqjrsdtjbxll
x

lk )2()1()1()1(
0

21 ++++-+-+----+---+++-+-+¥ ¥ +
ò ò´ tqtq

åååå å ååå å å å å
++

=

++

=

++++-

=

--

=

----

---= =

--

= =

---

=

-+

=

----+

=

-+---

=

+
1

0

1

0

1

0

1

0

)1,1min(

)1,0max( 0

1

0 0

1

0 0

1

0

1

0
2

22
43

2

21

141 2 3

pp

l

pp

l

qjisp

p

rs

j

rjpn

jpsi

i

b

ir

d

j

t

jrs

q

tjb

p

qjrsd

p

tjipn

p
Atq

÷÷
ø

ö
çç
è

æ ----+
÷÷
ø

ö
çç
è

æ -+
÷÷
ø

ö
çç
è

æ ---
÷÷
ø

ö
çç
è

æ
÷÷
ø

ö
çç
è

æ --
÷÷
ø

ö
çç
è

æ
-´ +++

21

111
)1(

p
qjrsd

p
tjb

q
jrs

t
j

d
ir

b
iqtdb

÷÷
ø

ö
çç
è

æ ++
÷÷
ø

ö
çç
è

æ ++
÷÷
ø

ö
çç
è

æ ++++-
÷÷
ø

ö
çç
è

æ -+---
´

2

43

1

21

43

1111
l
pp

l
pp

p
qjisp

p
tjipn

1)1()1(

4231

+++---+

++

++
´ iprdipnb

pppp

tq
tq

{ } { }dxdyeeyx qjisptjipnyqjrsdtjbxll
x

lk )2()1()1()1(
0

21 ++++-+-+----+---+++-+-+¥ ¥ +
ò ò´ tqtq

åå å å å å å å å å+
++++-

=

--

=

----

---= =

--

= =

---

=

-+

=

----+

=

-+---

=

1

0

1

0

)1,1min(

)1,0max( 0

1

0 0

1

0 0

1

0

1

0
2

22

41 2 3

qjisp

p

rs

j

rjpn

jpsi

i

b

ir

d

j

t

jrs

q

tjb

p

qjrsd

p

tjipn

p
Atq

å å ÷÷
ø

ö
çç
è

æ -+
÷÷
ø

ö
çç
è

æ ---
÷÷
ø

ö
çç
è

æ
÷÷
ø

ö
çç
è

æ --
÷÷
ø

ö
çç
è

æ
-´

++

=

++

=

+++
1

0

1

0 1

21

1

43

2

11
)1(

pp

l

pp

l

qtdb

p
tjb

q
jrs

t
j

d
ir

b
i

÷÷
ø

ö
çç
è

æ ++++-
÷÷
ø

ö
çç
è

æ -+---
÷÷
ø

ö
çç
è

æ ----+
´

432

111
p

qjisp
p

tjipn
p

qjrsd

1
2

43

1

21

)1()1(
11 4231

+++---+

++

++÷÷
ø

ö
çç
è

æ ++
÷÷
ø

ö
çç
è

æ ++
´ iprdipnb

pppp

l
pp

l
pp

tq
tq

{ } { }dxdyeeyx qjisptjipnyqjrsdtjbxll

x

lk )1()()()(

0
21 ++++-++----+--++-+-+¥ ¥ +ò ò´ tqtq

åååå å å å å å å å å+
++

=

++

=

+++-

=

--

=

---

--= =

--

= =

---

=

-+

=

----+

=

+---

=

1

0

1

00

1

0

)1,min(

),0max( 0

1

0 0

1

0 0

1

0 0
3

4 43

2

21

141 2 3

pp

l

pp

l

qjisp

p

rs

j

rjpn

jpsi

i

b

ir

d

j

t

jrs

q

tjb

p

qjrsd

p

tjipn

p
At



 MAHESH KUMAR PANDA  [Vol. 18, No. 1 134 

  
 

  

  
                           (12) 
 
After simplifying equation (12) by evaluating the integrals using gamma function we 

get the required relation in equation (10).   
 
Next, we have evaluated the covariance using the product moments in equation (10) 

with n = 6,  and   with p = 0, 1, 2 and tabulated in Table 2 (Annexure). The results 

in Table 1 can be verified for the case p = 0 by using the well-known identity [see Arnold and 
Balakrishnan (1989), p.10] 

 

   
.    

 
From Table 2, we see that the covariance increases as h increases while it decreases with 

the increase in p values. For small r and s, the relative change in covariances is more with the 
increase in number of outliers from p = 1 to p = 2 for all values of h and p.  

 
4. Robustness of the L-Moments 

 
In this section, we discuss the issue of robustness by estimating the bias and mean square 

error (MSE) of sample L-moments of the population L-moments for the distribution in equation 
(1) under various choices of n.  

According to Hosking (1990), the L-moments are basically linear functions of the data 
and are more robust than the usual moments when outliers are present in the data. Also, 
sometimes these estimators produce efficient parameter estimators as compare to maximum 
likelihood estimates (MLEs).   

 Using the expression of the first four population L-moments , ,  and   [see 
Hosking (1990), p. 107] for the distribution in equation (1) and using equation (7) we compute 
the values of all the first population L-moments for p = 0, 1 and 2 which is  given in Table 3 
(Annexure). 

The expressions of the first four sample L-moments [see Hosking (1990), p. 113] are as 
follows:  

              (13) 
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                      (14)                                                                            

                                 (15)                                               

and      .                                          (16)           

Using equations (14), (15) and (16) and the population L-moments from the Table 3 we 
have estimated the Bias and MSE of sample L-moments in Table 4, Table 5 and Table 6 
(Annexure) for n = 10, 20 and 30 respectively. The random samples are simulated from Lindley 
distribution for  using the LindleyR package in R software. The bias and MSE are 
computed using R (based on 10,000 runs). The R code is not included but it is available upon 
request from the author.  

From Table 4, Table 5 and Table 6 we see that  

1) In general for most of the values of ‘p’ and ‘h’ the MSE decreases as ‘n’ increases. 
2) When p = 0,   has the smallest MSE among the three sample L-moments.    
3) The values of bias and MSE gradually decrease with the increase in the order of the 

values of ‘p’ and ‘h’ i.e. the bias and MSE are having inverse relation with the order of 
the sample L-moments. Again, the relative change in bias and MSE gradually decreases 
with the increase in the order of the sample L-moment for different values of ‘p’.    

5. Special Cases 

By substituting p = 0 in equation (7), it reduces to   

         

                                     (17) 
where 

 . 

 
Again, replacing p = 0 in equation (10), we get  

            

                    

                                                    (18) 
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. 

The results in equations (17) and (18) are the single and product moment of order 
statistics from one parameter Lindley distribution [see Sultan and AL-Thubyani (2016), p. 3 
and p. 4] respectively. 

 
6. Conclusion 

 
In this article, we obtain the explicit form of single and product moments of order 

statistics from one parameter Lindley distribution when multiple outliers are present in the data. 
These moment relations are generalized form of the moments of order statistics of the Lindley 
distribution obtained by Sultan and AL-Thubyani (2016) under the multiple-outliers model set 
up.  

 
The findings of the present study suggest that both the variances and covariances of order 

statistics of Lindley distribution decreases with the increase in the number of outliers present 
in the data. For small values of r (in case of single moment order statistics) and r and s (in case 
of product moment order statistics) the relative change in variances and covariances is 
comparatively more i.e. the smaller order statistics are more sensitive to the presence of 
outliers, as one would expect. While for higher values of r the variance is negatively correlated 
with h (scaling factor); the covariance remains positively correlated with h for all r and s, r < 
s. We also find that the bias and MSE of higher sample L-moments gradually reduced. The 
robustness feature of the sample L-moments is evident from the fact that the higher order 
sample L-moments provide more protection against the presence of pronounced outliers as the 
relative change in bias and MSE is reasonably less with the increase in number of outliers.  
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ANNEXURE 
 

Table 1: The means and variances in the presence of multiple outliers when n = 6 
r p Mean Var Mean Var Mean Var Mean Var Mean Var 
1 0 0.2997 0.0773         
2 0.6292 0.1637         
3 1.0116 0.2774         
4 1.4885 0.4568         
5 2.1597 0.8255         
6 3.4110 2.1743         
 h = 0.1 h = 0.2 h = 0.3 h = 0.4 h = 0.5 
1 1 0.0851 0.0070 0.1448 0.0198 0.1871 0.0322 0.2179 0.0428 0.2409 0.0516 
2 0.3740 0.0993 0.4132 0.0962 0.4549 0.1011 0.4930 0.1103 0.5260 0.1207 
3 0.7605 0.2303 0.7781 0.2209 0.8066 0.2155 0.8402 0.2169 0.8744 0.2234 
4 1.2507 0.4228 1.2567 0.4158 1.2721 0.4055 1.2961 0.3984 1.3259 0.3973 
5 1.9360 0.8025 1.9376 0.7992 1.9439 0.7900 1.9575 0.7775 1.9789 0.7670 
6 3.2025 2.1669 3.2027 2.1660 3.2043 2.1608 3.2093 2.1482 3.2202 2.1289 
1 2 0.0492 0.0023 0.0949 0.0087 0.1355 0.0173 0.1708 0.0270 0.2012 0.0367 
2 0.1338 0.0096 0.2376 0.0286 0.3196 0.0491 0.3864 0.0688 0.4425 0.0873 
3 0.4645 0.1431 0.5297 0.1320 0.6050 0.1363 0.6791 0.1507 0.7481 0.1699 
4 0.9590 0.3618 0.9848 0.3410 1.0322 0.3230 1.0932 0.3178 1.1606 0.3254 
5 1.6622 0.7626 1.6691 0.7500 1.6902 0.7249 1.7281 0.6990 1.7811 0.6832 
6 2.9492 2.1505 2.9502 2.1465 2.9557 2.1296 2.9706 2.0958 2.9995 2.0508 

* The results remain same for all values of h when p = 0.  

Table 2:  The covariances in the presence of multiple outliers when n = 6 
p = 0 

 

 

 

 

 

p = 1 p = 2 
r s h* h = 0.1 h = 0.2 h = 0.3 h = 0.4 h = 0.5 h = 0.1 h =0.2 h = 0.3 h = 0.4 h = 0.5 

1 2 0.0575 
 
 
 
 

0.0199 
 
 
 

0.0278 0.0331
5 

0.0377 0.0418 0.0035 0.0101 0.0172 0.0240 0.0303 
1 3 0.2005 0.0564 0.0877 0.1091 0.1266 0.1420 0.0194 0.0386 0.0590 0.0800 0.1012 
2 3 0.1483 0.1006 0.1043 0.1074 0.1112 0.1162 0.0386 0.0540 0.0649 0.0756 0.0868 
1 4 0.8749 0.1941 0.3036 0.3741 0.4308 0.4835 0.0465 0.0941 0.1473 0.2062 0.2695 
2 4 0.6203 0.3654 0.3910 0.4159 0.4413 0.4685 0.1159 0.1887 0.2426 0.2916 0.3411 
3 4 0.3949 0.3102 0.3120 0.3136 0.3165 0.3224 0.1996 0.2111 0.2208 0.2327 0.2490 
1 5 4.7651 0.9196 1.4366 1.7330 1.9385 2.1201 0.1625 0.3160 0.4725 0.6448 0.8379 
2 5 3.0990 1.6620 1.7596 1.8437 1.9184 1.9970 0.4198 0.6883 0.8702 1.0230 1.1769 
3 5 1.9092 1.3646 1.3849 1.4162 1.4560 1.5054 0.7706 0.8494 0.9366 1.0291 1.1322 
4 5 1.3947 1.1475 1.1493 1.1524 1.1577 1.1687 0.8573 0.8675 0.8815 0.9011 0.9323 
1 6 34.584

9 
6.1630 9.6334 11.450

8 
12.436

7 
13.080

2 
0.8723 1.6678 2.3711 3.0249 3.6854 

2 6 19.979
6 

10.217
9 

10.755
3 

11.149
0 

11.381
3 

11.536
3 

2.2758 3.7227 4.5735 5.1174 5.5537 
3 6 11.168

8 
7.5911 7.6829 7.8078 7.9318 8.0554 3.9772 4.3269 4.6847 5.0045 5.3116 

4 6 7.7404 6.0517 6.0717 6.1271 6.2207 6.3521 4.2195 4.3019 4.4670 4.6992 4.9895 
5 6 8.1472 6.9541 6.9568 6.9680 6.9931 7.0394 5.6128 5.6253 5.6636 5.7365 5.8549 

* The results remain same for all values of h when p = 0.  
 

 

 



2020] LINDLEY DISTRIBUTION IN PRESENCE OF MULTIPLE OUTLIERS  

 
 

139 

Table 3: First four Population L-Moments 
        

p = 0 h* 1.5000 0.6875 0.1921 0.0978 
p = 1 h = 0.1 0.1090 0.7013 0.2133 0.0856 
  h = 0.2 0.2333 0.6591 0.2243 0.0862 
  h = 0.3 0.3692 0.6268 0.2240 0.0911 
  h = 0.4 0.5142 0.6056 0.2172 0.0951 
  h = 0.5 0.6666 0.5956 0.2078 0.0971 
p = 2 h = 0.1   0.0543 0.4180 0.0213 
  h = 0.2   0.1152 0.3448 0.0716 
  h = 0.3   0.1806 0.2852 0.1741 
  h = 0.4   0.2489 0.2401 0.1027 
  h = 0.5   0.3194 0.2084 0.1018 

 

Table 4:  Bias and MSE of sample L-moments ,  and  for n = 10 

    
p h Bias MSE Bias MSE Bias MSE 

0 h* 0.0027 0.0528 0.0018 0.0252 0.0018 0.0187 

1 0.1 0.0099 0.0533 0.0135 0.0251 0.0069 0.0189 

1 0.2 0.0242 0.0550 0.0219 0.0267 0.0086 0.0193 

1 0.3 0.0503 0.0566 0.0209 0.0254 0.0043 0.0186 

1 0.4 0.0652 0.0570 0.0197 0.0251 0.0025 0.0185 

1 0.5 0.0738 0.0571 0.0101 0.0243 0.0001 0.0182 

2 0.1 0.6129 0.4279 0.1982 0.0637 0.0674 0.0228 

2 0.2 0.5510 0.3575 0.1272 0.0412 0.0157 0.0190 

2 0.3 0.4696 0.2725 0.0724 0.0299 0.0799 0.0248 

2 0.4 0.3982 0.2101 0.0349 0.0257 0.0081 0.0181 

2 0.5 0.3288 0.1591 0.0068 0.0250 0.0035 0.0250 
            * The results remain same for all values of h when p = 0.  
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Table 5:  Bias and MSE of sample L-moments ,  and  for n = 20 

    

p h Bias MSE Bias MSE Bias MSE 

0 h* 0.0015 0.0254 0.0012 0.0107 0.0013 0.0040 

1 0.1 0.0115 0.6898 0.0171 0.1965 0.0098 0.0041 

1 0.2 0.0269 0.0266 0.0250 0.0115 0.0114 0.0042 

1 0.3 0.0542 0.0282 0.0282 0.0113 0.0050 0.0041 

1 0.4 0.0749 0.0309 0.0206 0.0114 0.0033 0.0041 

1 0.5 0.0838 0.0325 0.0126 0.0109 0.0012 0.0040 

2 0.1 0.6329 0.4264 0.2164 0.0580 0.0702 0.0089 

2 0.2 0.5646 0.3443 0.1414 0.0310 0.0212 0.0044 

2 0.3 0.4924 0.2679 0.0840 0.0178 0.0788 0.0101 

2 0.4 0.4191 0.2011 0.0408 0.0122 0.0054 0.0041 

2 0.5 0.3494 0.1461 0.0107 0.0106 0.0028 0.0041 
                       * The results remain same for all values of h when p = 0.  

 

Table 6:  Bias and MSE of sample L-moments ,  and  for n = 30 

 
   

p h Bias MSE Bias MSE Bias MSE 

0 h* 0.0006 0.0167 0.0009 0.0067 0.0005 0.0040 

1 0.1 0.0147 0.0168 0.0197 0.0071 0.0106 0.0041 

1 0.2 0.0258 0.0171 0.0288 0.0076 0.0107 0.0042 

1 0.3 0.0552 0.0193 0.0294 0.0078 0.0054 0.0041 

1 0.4 0.0766 0.0223 0.0230 0.0074 0.0024 0.0040 

1 0.5 0.0851 0.0238 0.0139 0.0069 0.0011 0.0039 

2 0.1 0.6345 0.4192 0.2202 0.0553 0.0723 0.0091 

2 0.2 0.5647 0.3356 0.1467 0.0283 0.0227 0.0045 

2 0.3 0.4954 0.2621 0.0881 0.0144 0.0789 0.0101 

2 0.4 0.4261 0.1981 0.0425 0.0088 0.0947 0.0130 

2 0.5 0.3558 0.1432 0.0127 0.0070 0.0031 0.0041 
            * The results remain same for all values of h when p = 0.  
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Abstract 
 

The aim of this study is to analyse the distribution characteristics of four different test 
statistics, namely the Mean/Standard Error of Mean (Mean/SEmean), Median/Interquartile 
Range (Median/IQR), Trimmed Mean/Standard Error of Mean (TrMean/SEmean), and 
Trimmed Mean/Interquartile Range (TrMean/IQR), which can be used to test two measures 
of change, namely percent change (PC) and modified symmetrised percent change (MSPC). 
To ensure the selection of suitable test statistics using the two measures of change, the 
observed type-I errors and powers of the test statistics have been computed.  Results 
demonstrate that the sampling distributions of the four different test statistics by using PC 
values exhibit skewness. The Mean/SEmean statistic for the MSPC measure exhibits a two-
peak value and platykurtic distribution, while the TrMean/SEmean statistic shows a 
leptokurtic distribution. The Median/IQR test yields robust and powerful results, especially 
for large sample sizes. This new statistical measure is referred to as the HS test. 
 
Key words: Pre-post designs; Paired samples t-test; Change measures; Per cent change; 
Symmetrised per cent change; Trimmed mean. 
 
1.  Introduction 

 
A one-sample paired design is commonly used to assess treatment effects in clinical 

research. In this design, the measure of the change in continuous data is based on simple 
difference, relative change or the ratio of post-treatment to baseline. The appropriate measure 
of change is selected according to the ease of interpretation and ease of data analysis 
generally. In this process, it is necessary to take into account both in terms of clinical 
significance and statistical features. The clinical perspective is based on the ease of 
interpretation, while the statistical perspective comes from the ease of conducting data 
analysis based on the normal distribution. (Tornqvist et al., 1985; Zhang and Han, 2009; 
Yamabe et al., 2012). In some cases, it is not easy to decide which measure of change to use, 
as simple difference may not always identify the change correctly. For example, when the 
difference observed in an individual with a large initial value is the same as the difference 
observed in an individual with a small initial value, this difference does not have the same 
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meaning biologically. Suppose that a particular drug, which is being evaluated to determine 
its effectiveness at reducing facial acne, has lowered the number of acne sites from 10 to 0 in 
one person and from 20 to 10 in another person. If only the difference is taken into 
consideration, it could be concluded that the drug has the same effect on both persons; 
however, the clinician would explain that this numerical change does not reflect the actual 
biological change, and that a more clinically meaningful change has occurred in the first 
person. Moreover, Waleekhachonloet et al. (2007) stated in their study that diet effect is the 
difference in a person’s weight before and after the diet. In the work of these authors, 
treatment effect is generally expressed as simple difference. This is because the statistical 
properties of the distribution of simple difference are well known and can be tested using a t-
test, which produces strong results. For their part, in a dietary trial with similar content, Kim 
et al. (2009) expressed weight loss as a percent change. In similar clinical studies, researchers 
argue that percent change better reflects the treatment effect from a clinical perspective 
compared to simple difference and that its clinical meaning is more accurate. In addition, 
individuals having large initial values may have large differences, while individuals having 
very small initial values may have large post/pre ratios. In the literature, various measures of 
change have been proposed with the aim of eliminating the influence of these differences in 
individuals’ initial values on pre-post change values. There is no in-depth research or 
consensus on these measures of change (Berry and Ayers, 2006; Wilkinson, 1999). Therefore, 
it is necessary to examine the characteristics and performances of different measures of 
change in more detail. 

 
The percent change (PC) and ratio (R) measures are tested with non-parametric tests 

due to the fact that they often exhibit a highly skewed distribution (Vickers, 2001; Koti, 
2001). The other measure of change is symmetrised percent change (SPC) with good 
statistical properties (Berry and Ayers, 2006; Yamabe et al., 2012). However, due to the 
difficulty associated with interpreting SPC, a very limited amount of research on the matter 
has been carried out (Yamabe et al., 2012; Berry and Ayers, 2006; Koti, 2001). Another 
measure of change is modified symmetrised percent change (MSPC) with good statistical 
properties. MSPC is defined as the mean of two values for a numerator. When we regard the 
difference in denominator as an index of variation, the measure may be considered as a 
variation standardised by mean, such as a coefficient of variation (Yamabe et al., 2012). This 
measure is calculated by eliminating the effect of pre-post mean in the difference between the 
pre-post measures. This measure, which is similar to the coefficient of variation, is easy to 
interpret (Yamabe et al., 2012).  

 
The aims of this study are as follows:  
 

a) To test the significance of the two measures of change, PC and MSPC, with four test 
statistics; 

b) To obtain the sampling distributions and 95% confidence limits (critical tail values of 
the distributions) of these statistics; 

c) To calculate the observed type-I errors and power of four tests of each measure of 
change.  

 
  
  



2020] PROPERTIES OF SAMPLING DISTRIBUTIONS OF TEST STATISTICS  143 

2. Methods 
 
2.1.  Measures of Change used in the study 
 

The three most frequently used measures of change in medical research are investigated 
in this study. The formulas for these measures are provided below. 

 
I. Simple Difference (D) = (𝑃𝑟𝑒 − 𝑃𝑜𝑠𝑡)  

 
• This measure is commonly used and understood in the literature. It is used in this 

study for the validation of simulation data, as well as to compare the type I error and 
power of the t-test calculated for D with other measures’ results. 
 

II. Percent Change (PC) = (,-./,012)
,-.

× 100 or PC= (,012/,-.)
,-.

× 100  
 

• Although pre- and post- data have the same units, PC values are often unitless or 
expressed as percentages. This measure means “the proportion of increase (or 
decrease) for pre-value”, and is preferable from a clinical perspective due to its ease 
of interpretation. However, it exhibits a positive skew when post-data is much larger 
than pre-data, even if pre- and post-data are normal. 
 

III. Modified Symmetrised Percent Change (MSPC) = (,-./,012)(67896:;<)
=

× 100 

 
• Direct interpretation of the SPC value is difficult, but the distribution of SPC 

maintains symmetry without regard to shape, scale and correlation parameters of the 
distribution for pre- and post-data (Yamabe et al., 2012). The numerator of the 
MSPC measure is pre-post difference, while its denominator is a mean of the pre and 
post values such as a coefficient of variation. This measure is called variability (%) in 
the bioanalytical field and is used to evaluate the level of reproducibility of assay 
results using incurred samples (Mario et al., 2007; Douglas et al., 2009). When SPC 
or MSPC are used to analyse the data, the results can be interpreted after 
transforming to the robust percent change (RPC) proposed by Berry (1989). 

 
2.2.  Test statistics used in the study 
 

Four statistics are investigated in the hypothesis test for the two different measures of 
change (PC, MSPC) used in the present study. These statistics are as follows: 

 
• Mean/Standard Error of Mean (Mean/SEmean) 
• Median/Interquartile Range (Median/IQR) 
• Trimmed Mean/Standard Error of Mean (TrMean/SEmean) 
• Trimmed Mean/Interquartile Range (TrMean/IQR) 
 
The empirical sampling distributions of these statistics have been obtained and the 

statistical properties of these distributions determined. 
 
Trimmed mean is average of the remaining values after removing the smallest p% and 

the largest p% of the values. We have accepted p as equal to 10% in our calculations. 
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2.3.  Simulation study 
 

The present research employs a quasi-Monte Carlo simulation study. The data are 
generated from a bivariate standard normal distribution. The random variables 𝑋? (i =1,2) 
denote the response of pre- and post-data following a bivariate standard normal distribution; 
moreover, the variables satisfy (𝑋@	, 𝑋C)~𝐵𝑁(𝜇@, 𝜇C, 𝜎@, 𝜎C, 𝜌), where 𝜇? denotes the location 
parameters, 𝜎? the scale parameters, and ρ the correlation parameter between two random 
variables of pre- and post-data. For the observed type-I error, we generate (𝑋@	, 𝑋C) 
from~𝐵𝑁(0, 0, 1, 1, 𝜌), while for the power of the tests, we generate (𝑋@	, 𝑋C) 
from~𝐵𝑁(0, 𝜇C[0.5, 1.0, 1.5, 2.0], 1, 1, 𝜌). A total of 18 conditions are evaluated considering 
six different sample sizes (10, 30, 60, 120, 500, 10,000) and three different correlations 
between the variates named as pre- and post-measures (0.3, 0.6, 0.9). Each condition is 
repeated 60,000 times. 

 
In the first step, the results of the Mean/SEmean statistic for D are examined. The 

purpose of this step is to validate the results produced by the simulation data. The probability 
of type-I error and power values of the Mean/SEmean statistic are used for this. These values 
are calculated considering the critical values of the t-distribution at the 5% level (see: Table 
3). In the second step, empirical sampling distributions are obtained for the four statistics with 
regard to PC and MSCP, and the critical tail values of these distributions are determined at the 
5% level (see: Figure 2-3 and Table 1-2). In the third step, the observed probability of the 
type-I error and the power of the Mean/SEmean statistic for D are calculated according to the 
critical values of the t-distribution in Table 3. In addition, the type-I error and the power 
values of the Median/IQR and TrMean/IQR statistics selected for MSPC are calculated using 
the critical values of the empirical sampling distributions in Table 4-5. Subsequently, the 
results of the selected tests are compared with each other (see: Table 6). 

 
The histograms of the test values from 60,000 trials for each condition have plotted. The 

lower and upper limit values of the 95% confidence intervals of these distributions are 
presented in the tables below. In addition, the skewness and kurtosis coefficients are 
calculated. The dataset used in this phase is referred to as the learning sample. The observed 
probability of type-I error and the power values of the selected tests are calculated from 
40,000 trials by resampling from the bivariate distribution. This dataset is referred to as the 
test sample. To calculate the power of the tests, the standardised differences between the 
populations named as pre- and post- are accepted as 0.5SD, 1SD, 2SD and 2.5SD 
respectively. 

 
The FORTRAN programming language, along with Microsoft Power Station Developer 

Studio, IMSL Library and the Minitab program (version 16.0) are used in the simulations and 
to obtain the graphics.  
 
3.  Results 
 
3.1.  Validation of simulation 
 

In order to carry out the validation of the simulation program, samples (10,000 
observations) are taken from a population with a bivariate normal distribution. There is a 
correlation of 0.60 among them, and differences have been calculated for each sample. The 
Mean/SEmean test statistic has been used for the differences It has been determined that the 
distribution of this statistic exhibits a t-distribution; this has been done by calculating the 
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descriptive statistics and plotting the shape of the sampling distribution following 60,000 
trials. The mean of the simple difference is 0.0003±0.9911 and its first, second and third 
quartiles are -0.6733, -0.0011 and 0.6526 respectively. The mean of the test statistic is close 
to zero, while the standard deviation is close to one (-0.0042±1.0000), and its first, second and 
third quartiles are -0.6761, -0.0019 and 0.6753 respectively. Furthermore, when n = 10,000, 
the 95% confidence limits of this distribution are observed to be ±1.96 (Figure 1). All these 
results show that the simulation program produces reliable and accurate results. 

 
The PC and MSPC measures have been simultaneously calculated in the validated 

simulation. In the hypothesis test established for these measures, the sampling distributions at 
the end of 60,000 trials have been obtained for the four test statistics defined in the methods 
section. 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
Figure 1: Empirical sampling distributions of Mean/SEmean statistics when n=10,000, 
number of simulation is 60,000 and Rho=0.60 (Close to standard normal distribution) 
 
3.2.  Results of percent change (PC) 
 

The sampling distributions of the four statistics for PC in different conditions are 
presented in the Annexure A as Figure 2. Sampling distributions of Mean/SEmean statistics 
are skewed to the left and have two peak values (Figure 2a). The sampling distributions of the 
TrMean/SEmean statistics are skewed to the left but have only a single peak value (Figure 
2b). 

The sampling distributions of the Median/IQR and TrMean/IQR statistics have been 
found to have a single peak and to be approximately symmetrical for all correlation 
coefficients in large sample sizes. However, the sampling distributions obtained with small 
sample sizes exhibit a negative skew (Figures 2c and 2d). 

 
The 95% confidence intervals of the sampling distributions of the four test statistics 

are considered as critical values; these values are presented in Annexure B, Table 1 for all 
conditions. It has been determined that the sampling distributions of Mean/SEmean and 
TrMean/SEmean statistics do not have symmetrical distributions under any conditions, while 
the sampling distributions of the Median/IQR and TrMean/IQR statistics are approximately 
symmetrical in population (n = 10,000).  
 
3.3.  Results of modified percent change (MSPC) 
 

The difference between the pre-post measures has been expressed as MSPC. When the 
null hypothesis establishing that this difference is not significant has been tested with the 
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Mean/SEmean statistic, the lower and upper limit values of the test values calculated for the 
sampling distribution have found to be ±1.887 for n = 10 with 2.5% error probability for each 
tail (5% in total). These values have been determined to be ±1.710 when n = 10,000. The 
distribution of this statistic has been found to be symmetrical, but with two peaks. The 
distribution of the TrMean/SEmean statistic has been found to be symmetrical with a single 
peak value. The values of this distribution have been calculated as ±1.622 for n = 10 and 
±0.081 for n = 10,000 with 2.5% type-I errors. 

 
When compared with the first test statistic, it can be seen that the values of variance 

have a narrower range; in other words, the variance of the sampling distribution of this test is 
smaller. The shapes of the distributions of the Median/IQR and TrMean/IQR statistics have 
been also found to be perfectly symmetrical and single-peaked. It has been determined that as 
the sample size increases, the variances of the distributions decrease and the values of the 
ranges become narrower than is the case for the other two statistics. The upper and lower 
limits of the 95% confidence interval of the sampling distribution have been found to be 
±0.430 for n = 10, ±0.015 for n = 10,000 for the Median/IQR statistic and ±0.470 for n = 10 
and ±0.029 for n = 10,000 for the TrMean/IQR statistic. All these results demonstrate that the 
sampling distributions of the four test statistics are not t-distributions (Annexure B, Table 2). 
 

The skewness values of the four sampling distributions in all conditions are close to 
zero. The kurtosis values of the Mean/SEmean statistic range from –0.5 to –1, depending on 
the sample size, and it has a platykurtic distribution (Figure 3a). The kurtosis values of the 
TrMean/SEmean statistic are large and it has positive values between 2 and 6.5 with 
increasing sample size (Figure 3b). However, the kurtosis values of the Median/IQR and 
TrMean/IQR statistics are very close to zero. These two distributions are also symmetrical 
(Figure 3c and 3d). 
 
3.4.  Suitable test statistics, observed type-I error and power 
 

Since the Median/IQR and TrMean/IQR test statistics using MSPC exhibit a single peak 
and a perfectly symmetrical distribution, the critical values reported in Table 2 are used to 
calculate type-I errors and test powers.  

 
After the critical values have been obtained, 40,000 new samples for each condition in 

the simulation have produced; these samples are named the test samples.  Firstly, a t-test is 
used for D, and the type-I errors and powers of the test for each simulation condition are 
calculated as in Annexure B, Table 3. These calculations are made to validate the results of 
the simulated data. According to Table 3, the probabilities of the observed type-I error of the 
t-test are around 5%, and the deviation from 5% is not significant. When the sample size is 
around 10, it is found that the t-test has a low power, and it is also determined that this value 
increases slightly as the effect size increases. Furthermore, it is determined that the t-test 
yields fairly strong results in other sample sizes when the effect size is 0.5 standard 
deviations; moreover, when the effect size increases to 1 standard deviation and above, the 
power values become 100% or very close to that. Since all these results are known and 
expected results for the t-test, it can be determined that the simulation program produces valid 
data. 

 
The majority of the probabilities of making a type-I error for the Median/IQR test 

statistic calculated for 18 different conditions are found to be very close to 5%, with the 
lowest being 4.80% and the highest being 5.63% (Annexure A, Table 4). The results of the 
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TrMean/IQR statistic are also found to be similar: most of the values are close to 5%, with the 
lowest being 4.63% and the highest being 5.24% (Annexure A, Table 5). 
 

The Median/IQR and TrMean/IQR statistics are found to have high power only for very 
large sample sizes with an effect size of 0.5SD. While the Median/IQR statistic has 
sufficiently high power when the effect size is 1SD and n > 60, the TrMean/IQR statistic 
reaches an adequate level of power when the effect size is 1SD and n ≥ 500. Moreover, the 
Median/IQR statistic reaches the desired level of power with an effect size of 1.5SD when n ≥ 
30, while the TrMean/IQR statistic reaches the desired level of power with the same effect 
size when n ≥ 120. Finally, it is determined that the Median/IQR and TrMean/IQR statistics 
have the desired level of power with an effect size of 2SD when n ≥ 30, and that the 
Median/IQR statistic reaches 100% power level when n ≥ 30 (see Tables 4 and 5). In light of 
these results, the two new tests proposed using MSPC can be identified as robust tests like the 
well-known t-test. 

 
In particular, it can be concluded that the Median/IQR test yields powerful results when 

evaluating differences that show deviations of 1SD or larger, while the TrMean/IQR test 
produces powerful results in cases where the differences are 1.5SD or larger. Since, in many 
conditions, the Median/IQR test is more powerful than the TrMean/IQR test, it can be 
concluded that the Median/IQR test could be used as an alternative test to the paired samples 
t-test in some conditions (Annexure B, Table 6). The Median/IQR test statistic can be referred 
to as the HS test, as it has been used for the first time in this study. 
 
4. Discussion 
 

Ankarali and Ankarali (2009) applied only the Mean/SEmean statistic for PC values in 
their study and found that the test power was very low when they tested the results with t-
distribution. In light of these authors’ simulation results, Mean/SEmean, Median/IQR, 
TrMean/SEmean and TrMean/IQR test statistics have been investigated for some measures of 
change.  

 
It is known that the sampling distribution of Mean/SEmean statistic for D is the normal 

distribution. However, the sampling distributions of this statistic for PC and MSPC are not 
normal. In addition, it has been observed that the distribution of TrMean/SEmean statistics 
does not converge to a symmetrical or normal distribution under any conditions. Furthermore, 
the sampling distributions of the Median/IQR and TrMean/IQR statistics for PC have nearly 
symmetrical distributions at very large sample sizes, but exhibit a negatively skewed 
distribution under other conditions. For researchers, if it is more meaningful to use MSCP 
rather than D when defining a change, the HS test proposed in this study can be used when the 
sample size is large (n > 100) and the effect size is higher than 1.5. In other cases, however, 
Mean/SEmean statistics should be used for D (Table 6). In addition, no suitable statistics have 
been proposed for PC; this measure of change can be used to interpret the results 
descriptively. 
 

In many clinical studies, percent change is used to assess treatment efficacy (Curran-
Everett and Williams, 2015; Reuter et al., 2012). According to Tornqvist et al. (1985), the 
fact that percent change is independent of the unit of measurement represents an advantage. 
Unlike simple difference, moreover, percent change is also an effect size that can be easily 
understood and interpreted by everyone. However, the authors provided no information as to 
which measure should be used to determine treatment effect. Some researchers would suggest 
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computing the percent change for each observation, then descriptively reporting the median 
while reporting no inferential statistics for percent change (Vickers, 2001). 

The sampling distributions of the four statistics for the MSPC measure have been found 
to be symmetrical. However, the Mean/SEmean or TrMean/SEmean statistics are found to be 
unsuitable for testing the modified symmetrised percent change values; this is because the 
Mean/SEmean statistic has two peak values and a platykurtic distribution, as in Figure 3a, 
while the TrMean/SEmean statistic exhibits a leptokurtic distribution, as in Figure 3b. 
However, it has been concluded that the Median/IQR and Trmean/IQR statistics cannot be 
tested using a t-test, because while their distributions are symmetrical, they are not normal.  

 
When the literature on this subject is examined, it can be seen that the majority of 

research focuses on how to evaluate the pre-post difference in parallel designs. The most 
widely preferred model is the ANCOVA model, in which the pre-values are covariate 
variables and post-values are response variables. However, it is also stated that the power of 
the test will be low if PC, R and SPC are used as the treatment effect. The aim of such studies 
is to compare several independent treatment groups in terms of treatment effect (Vickers, 
2001; Curran-Everett and Williams, 2015). This study examined how the treatment effect 
should be expressed in the case of a comparison of dependent measure values obtained before 
and after treatment in an experimental design with only one group. 
 
5.  Conclusion 
 

PC, R, SPC and MSPC measures should be preferred when the variables being studied, 
such as seizure frequency or laboratory tests, exhibit large intra- and inter-subject variability 
and a skewed distribution for pre- and post- data. In particular, PC and R can be used for easy 
interpretation in a clinical context. Statistical analysis based on the parametric tests is not 
recommended for PC, because PC (or the ratio of two values) will not be normal even if the 
pre- and post-data are normal (Yamabe et al. 2012). For some examples of suitable clinical 
evaluation, PC can be applied to the treatment evaluation of patients with high-density 
lipoprotein cholesterol (Adachi et al., 2009), of patients with urge to urinate or urge 
incontinence based on the number of acraturesis (Homma et al. 2003), or of patients with 
climacteric disorder based on the number of hot flushes (Endrikat et al., 2007). 

 
Statistically, the properties of the SPC and MSPC measures are superior to PC and R. 

SPC and MSPC do not produce overly large values and show robustness to outliers on the 
same data analysis. Berry (1989) introduced SPC as the modified percent change with good 
statistical properties in the medical field. Brouwers and Mohr (1989) argued that the 
advantage of using SPC over PC is that the transformed variable does not depend on the 
denominator used in the transformation and the resultant distribution is symmetrical about its 
mean. However, the interpretation of SPC may not be intuitive for those accustomed to 
thinking in terms of PC. To improve the interpretability of analysis results, Berry (1989) 
suggested transforming SPC to the PC scale using the inverse transformation and then the 
obtained robust percent change (RPC) should be interpreted. SPC is applied to the treatment 
evaluation of patients with partial epilepsy based on the seizure frequency (Yamauchi et al., 
2006) and the evaluation of male patients with osteoporotic fracture based on physical activity 
(Janney et al., 2010). 

 
According to this study, the statistics TrMean/IQR and Median/IQR (HS test) perform 

well in terms of power for MSCP, especially for higher sample sizes. However, the choice 
between the change measures D and MSPC will be based on various factors, including the 
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measurement units, range of data, interpretation of the change measures, etc. The appropriate 
measure should be selected by striking a balance between both the clinical and statistical 
points of view. Accordingly, it is safe to conclude that the two test statistics work well using 
the MSPC measure. When MSPC serves as a more appropriate measure of changes to 
describe the effect, while the sample size (>120) and effect size (>1.5) are also high, the HS 
test for MSPC should be preffered over a t-test for D measure. 

 
It is suggested that similar studies should be carried out for designs involving more than 

two repeated measures in future studies. 
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ANNEXURE A 
 

 
 
Figure 2: Empirical sampling distributions of a) Mean/SEmean statistics, b) 
TrMean/SEmean statistics, c) Median/IQR statistics and d) TrMean/IQR statistics for 
using PC 
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          c                                                 d 

 
Figure 3: Empirical sampling distribution of (a) Mean/SEmean statistics, (b) 
TrMean/SEmean statistics, c) Median/IQR statistics and d) TrMean/IQR statistics for 
MSPC 
  

a b 



2020] PROPERTIES OF SAMPLING DISTRIBUTIONS OF TEST STATISTICS  153 

ANNEXURE B 
 

Table 1: Critical values for 95% confidence level of sampling distributions of four test 
statistics for PC 
 

n ρ 
Percent Change (𝑷𝑪 = R𝑷𝒐𝒔𝒕/𝑷𝒓𝒆

𝑷𝒓𝒆
X𝒙𝟏𝟎𝟎) 

Mean/SEmean TrMean/SEmean Median/IQR TrMean/IQR 
S1Lα S1Rα S2Lα S2Rα S3Lα S3Rα S4Lα S4Rα 

10 0.30 -3.376 1.207 -3.238 0.691 -0.952 0.112 -0.959 0.257 
0.60 -2.815 1.344 -2.657 0.911 -0.770 0.201 -0.784 0.309 
0.90 -2.232 1.593 -2.018 1.242 -0.568 0.317 -0.593 0.386 

20 0.30 -3.166 1.181 -2.981 0.596 -0.820 0.002 -1.176 0.455 
0.60 -2.615 1.314 -2.376 0.788 -0.653 0.092 -1.042 0.547 
0.90 -2.131 1.515 -1.844 1.086 -0.469 0.208 -0.892 0.666 

60 0.30 -3.011 1.168 -2.580 0.067 -0.622 -0.135 -0.788 0.063 
0.60 -2.517 1.287 -1.988 0.262 -0.479 -0.041 -0.653 0.167 
0.90 -2.050 1.480 -1.412 0.586 -0.320 0.081 -0.512 0.291 

120 0.30 -2.981 1.147 -2.396 -0.014 -0.548 -0.201 -0.655 -0.071 
0.60 -2.527 1.279 -1.816 0.033 -0.410 -0.101 -0.532 0.031 
0.90 -2.031 1.484 -1.173 0.335 -0.260 0.025 -0.388 0.162 

500 0.30 -2.960 1.146 -2.158 -0.028 -0.453 -0.284 -0.505 -0.226 
0.60 -2.495 1.289 -1.532 -0.017 -0.327 -0.174 -0.384 -0.113 
0.90 -2.034 1.489 -0.853 0.024 -0.185 -0.044 -0.246 0.019 

10000 0.30 -2.952 1.145 -2.068 -0.030 -0.386 -0.348 -0.398 -0.336 
0.60 -2.488 1.272 -1.421 -0.0183 -0.267 -0.233 -0.280 -0.220 
0.90 -2.015 1.473 -0.659 -0.0107 -0.130 -0.099 -0.144 -0.086 

n: Sample size; ρ: Correlation coefficient between pre-values and post-values, S1Lα and S1Rα: Left 
and Right tail critical values for Mean/SEmean; S2Lα and S2Rα: Left and Right tail critical tables 
value for TrMean/SEmean; S3Lα and S3Rα: Left and Right tail critical tables value for Median/IQR; 
S4Lα and S4Rα: Left and Right tail critical table values for TrMean/IQR 

 
  



                      HANDAN ANKARALİ, SENGUL CANGUR AND SEYİT ANKARALİ        [Vol. 18, No. 1 154 

Table 2: Critical values for 95% confidence level of sampling distributions of four test 
statistics for MSPC 

n ρ 
Modified Percent Change (MSPC= \𝑷𝒐𝒔𝒕/𝑷𝒓𝒆𝑷𝒓𝒆9𝑷𝒐𝒔𝒕

𝟐

^ 𝒙𝟏𝟎𝟎) 

Mean/SEmean TrMean/SEmean Median/IQR TrMean/IQR 
S1Lα S1Rα S2Lα S2Rα S3Lα S3Rα S4Lα S4Rα 

10 0.30 –1.887 1.877 –1.622 1.622 –0.430 0.430 –0.470 0.470 
0.60 –1.886 1.884 –1.609 1.602 –0.434 0.434 –0.473 0.473 
0.90 –1.884 1.864 –1.600 1.600 –0.435 0.435 –0.476 0.476 

30 0.30 –1.765 1.765 –1.180 1.180 –0.274 0.274 –0.470 0.470 
0.60 –1.760 1.760 –1.158 1.158 –0.273 0.273 –0.480 0.480 
0.90 –1.758 1.758 –1.170 1.170 –0.272 0.272 -0.482 0.482 

60 0.30 –1.737 1.736 –0.968 0.954 –0.195 0.195 –0.395 0.395 
0.60 –1.740 1.726 –0.978 0.961 –0.196 0.196 –0.398 0.398 
0.90 –1.733 1.725 –0.969 0.973 –0.196 0.196 –0.400 0.400 

120 0.30 –1.730 1.736 –0.698 0.693 –0.138 0.139 –0.271 0.271 
0.60 –1.736 1.728 –0.721 0.721 –0.139 0.139 –0.276 0.276 
0.90 –1.721 1.717 –0.715 0.717 –0.140 0.140 –0.277 0.277 

500 0.30 –1.704 1.735 –0.358 0.363 –0.068 0.068 –0.130 0.130 
0.60 –1.724 1.710 –0.355 0.357 –0.068 0.068 –0.129 0.129 
0.90 –1.727 1.728 –0.351 0.354 –0.068 0.068 –0.131 0.131 

10000 0.30 –1.710 1.711 –0.081 0.081 –0.015 0.015 –0.029 0.029 
0.60 –1.715 1.731 –0.081 0.081 –0.015 0.015 –0.029 0.029 
0.90 –1.718 1.701 –0.082 0.082 –0.015 0.015 –0.029 0.029 

n: Sample size; ρ: Correlation coefficient between pre-values and post-values, PC: Percent Change, R: 
Ratio, MSPC: Modified Percent Change, SD: Standard Deviation, SEmean: Standard Error of Mean, 
TrMean: Trimmed Mean, IQR: Interquartile Range, S1Lα and S1Rα: Left and Right tail critical values 
for Mean/SEmean; S2Lα and S2Rα: Left and Right tail critical tables value for TrMean/SEmean; S3Lα 
and S3Rα: Left and Right tail critical tables value for Median/IQR; S4Lα and S4Rα: Left and Right tail 
critical table values for TrMean/IQR 
 

Table 3: Observed type-I errors and power of t-test for difference in paired samples 

n ρ Type-I error 
(Observed alpha) 

Standardized effects size 
D=0.5 D=1.0 D=1.5 D=2.0 

10 
(tα=±2.262) 

0.30 5.13 22.23 66.43 94.48 99.74 
0.60 4.99 35.10 87.78 99.75 100 
0.90 4.81 87.86 100 100 100 

30 
(tα=±2.045) 

0.30 5.34 61.10 100 100 100 
0.60 4.88 84.00 100 100 100 
0.90 4.96 99.99 100 100 100 

60 
(tα=±2.000) 

0.30 4.99 89.73 100 100 100 
0.60 5.05 98.96 100 100 100 
0.90 5.02 100 100 100 100 

120 
(tα=±1.980) 

0.30 5.02 100 100 100 100 
0.60 5.13 100 100 100 100 
0.90 4.73 100 100 100 100 

500 
(tα=±1.965) 

0.30 5.12 100 100 100 100 
0.60 5.05 100 100 100 100 
0.90 5.23 100 100 100 100 

10000 
(tα=±1.960) 

0.30 5.06 100 100 100 100 
0.60 4.90 100 100 100 100 
0.90 4.81 100 100 100 100 
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   n: Sample size; ρ: Correlation coefficient between pre-values and post-values, D: Standardized effect size 
 
Table 4: Observed type-I errors and power of Median/IQR statistic (HS test) for MSPC 

n ρ Type-I error 
(Observed alpha) 

Standardized effects size 
D=0.5 D=1.0 D=1.5 D=2.0 

10 0.30 5.01 5.71 12.93 32.66 58.88 
0.60 4.99 5.95 14.39 34.17 57.51 
0.90 4.95 7.19 19.68 37.84 56.82 

30 0.30 5.05 7.12 31.10 81.31 100 
0.60 5.12 7.76 36.61 89.50 100 
0.90 4.82 12.5 47.86 80.53 100 

60 0.30 4.91 9.56 56.77 97.99 100 
0.60 4.80 10.86 64.72 97.90 100 
0.90 4.95 2130 82.82 98.53 100 

120 0.30 5.24 13.74 86.26 100 100 
0.60 4.97 17.36 92.06 100 100 
0.90 4.90 47.86 99.46 100 100 

500 0.30 5.28 43.70 100 100 100 
0.60 5.26 55.67 100 100 100 
0.90 5.31 93.80 100 100 100 

10000 0.30 5.50 100 100 100 100 
0.60 5.63 100 100 100 100 
0.90 5.55 100 100 100 100 

 n: Sample size; ρ: Correlation coefficient between pre-values and post-values, D: Standardized effect size 
 
Table 5: Observed type-I errors and power of TrMean/IQR test statistic for MSPC 

n ρ Type-I error (Observed 
alpha) 

Standardized effects size 
D=0.5 D=1.0 D=1.5 D=2.0 

10 0.30 5.15 5.86 14.56 38.59 68.42 
0.60 5.01 6.08 16.29 39.40 64.55 
0.90 4.96 7.23 21.16 40.32 60.06 

30 0.30 5.19 6.13 16.06 49.34 84.92 
0.60 4.99 5.78 16.85 49.10 82.10 
0.90 4.96 6.62 20.36 51.18 80.01 

60 0.30 5.24 6.16 20.30 67.44 94.32 
0.60 4.82 6.26 21.91 63.72 92.10 
0.90 4.75 6.85 22.27 62.11 90.30 

120 0.30 4.99 7.23 36.98 95.60 100 
0.60 4.70 7.64 37.30 96.81 100 
0.90 4.63 20.36 34.48 98.80 100 

500 0.30 5.23 15.53 90.24 100 100 
0.60 5.12 18.23 90.50 100 100 
0.90 4.83 27.77 89.67 100 100 

10000 0.30 5.09 100 100 100 100 
0.60 5.02 100 100 100 100 
0.90 4.92 100 100 100 100 

 n: Sample size; ρ: Correlation coefficient between pre-values and post-values, D: Standardized effect size 
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Table 6: Which test should be preferred? 

n ρ Type-I error 
(Observed alpha) 

Power of Tests 
Standardized effects size 

D = 0.5 D = 1.0 D = 1.5 D = 2.0 

10 0.30 

Paired Samples t-
test, Median/IQR 

statistic and 
TrMean/IQR 

statistic have same 
results in terms of 
observed type-I 

error 

In this conditions, Paired Samples t-test should be used for 
simple difference 0.60 

0.90 
30 0.30   

0.60 
0.90 

60 0.30   
0.60   
0.90  In these conditions, as the statistical 

properties of the t-test and HS test are 
similar, HS test (Median/IQR) used for 
MSPC is recommended.  
This is because MSPC considers the 
differences between individuals in pre-
treatment when computing the treatment 
effect. This makes it more accurate measure 
of change. 

120 0.30  
0.60  
0.90  

500 0.30  
0.60  

0.90  
10000 0.30 

0.60 
0.90 

n: Sample size; ρ: Correlation coefficient between pre-values and post-values 
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Abstract 

 

The primary objective of this paper is to predict the dynamics of COVID-19 epidemic in 

India while adjusting for the effects of various progressively implemented containment 

measures. Apart from forecasting the major turning points and parameters associated with the 

epidemic, we intend to provide an epidemiological assessment of the impact of these 

containment measures in India. This paper proposes a method based on time-series SIR 

(Susceptible, Infected, and Removed) model to estimate time-dependent modifiers for 

transmission rate of the infection. These modifiers are used in state-space SIR model to estimate 

the basic reproduction number R0 and expected total incidence, and to forecast the daily 

prevalence till the end of the epidemic. We consider four different scenarios, two based on 

current developments and two based on hypothetical situations for the purpose of comparison.  

 

Assuming gradual relaxation in lockdown post 17 May 2020, we expect the prevalence of 

infecteds to cross 9 million, with at least 1 million severe cases, around the end of October 2020. 

For the same case, estimates of R0 for the phases no-intervention, partial-lockdown and 

lockdown are 4.46 (7.1), 1.47 (2.33), and 0.817 (1.29) respectively, assuming 14-day (24-day) 

infectious period. 

 

Estimated modifiers give consistent estimates of unadjusted R0 across different scenarios, 

demonstrating precision. Results corroborate the effectiveness of lockdown measures in 

substantially reducing R0. Also, predictions are highly sensitive towards estimate of infectious 

period. 

 

Key words: State-space SIR; Lockdown; Reproduction number; Time-dependent transmission; 

Infectious period; COVID-19; SARS-CoV-2; Total incidence. 
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1. Introduction  

 

1.1. Context 

 

In the absence of vaccines or effective antiviral therapies for COVID-19, governments all 

over the world are turning to classical non-pharmaceutical public health measures to contain the 

epidemic, such as isolation, quarantine, social distancing and community containment. Rigorous 

implementation of these four traditional counter-measures helped in halting the earlier epidemic 

of SARS-CoV in 2002-2003 [Kundapur et al. (2020); Wilder-Smith and Freedman (2020)]. As 

of May 8, 2020, infections across India have surged past 53,000 cases with 1783 deaths reported. 

The government of India has implemented these containment and mitigating interventions along 

with travel restrictions and lockdown of the entire country to slow down the spread of the virus. 

Epidemiological assessment using infectious disease modelling is the key to evaluate the impact 

of these measures on transmission dynamics of COVID-19 in India, and thus provide crucial 

information to the policy makers in government organizations to plan ahead for an effective and 

sustained public health response to manage the epidemic.  

 

1.2. Review of epidemiological modeling of COVID-19 

 

Recent studies of COVID-19 have attempted to predict number of case counts, rate of 

transmission, basic reproduction rate/ number (R0), size of epidemic and end date of the 

epidemic. R0 is an important factor for risk assessment of any epidemic and is defined as the 

expected number of secondary cases that arise from a typical infectious index-case in a 

completely susceptible host population. A large proportion of these studies have used different 

extended forms of the standard Susceptible-Infected-Removed (SIR) compartment model. In the 

context of COVID-19, the removed compartment includes both recovered and deceased cases. 

Wang et al. (2020) have developed a health informatics toolbox with an R package called eSIR 

to understand epidemiological trend of COVID -19 in Hubei province and other regions of 

China. Their model considers a time varying quarantine factor to forecast future trend of COVID 

-19 spread in these regions. An earlier study by Chinazzi et al. (2020) assessed the impact of 

such restrictions based on data of over 3200 sub-populations in roughly 200 different countries 

and territories across the world. They have used a meta-population network approach, in which 

each sub-population is modelled using a Susceptible-Latent-Infectious-Removed (SLIR) model.  

 

COVID-19 in India 

 

Using a compartmental Susceptible-Exposed-Infected-Removed (SEIR) model, Chatterjee 

et al. (2020a) have concluded that effective implementation of quarantine and other non-

pharmacological interventions would bring down the epidemic spread of COVID-19 in India to a 

manageable level. Mandal et al. (2020) used a SEIR model with a quarantine component to 

predict an effective reduction in cumulative incidence in India. A SIR model is developed by 

Singh and Adhikari (2020) based on data up to the first phase of India’s total lockdown to 

illustrate the need of sustained lockdowns with periodic relaxations. Some other recent work on 

COVID-19 in India include Tiwari (2020) and  Gupta et al. (2020).  
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 All these studies on COVID-19 infection dynamics in India are based on the assumption 

of constant disease transmission rate. However, phase-wise imposition of travel restrictions, 

lockdown and other non-pharmaceutical preventive measures, as well as increasing community 

level awareness with time, are expected to induce time varying effects in the transmission rate.  

 

1.3. Our approach 

 

To account for variations in transmission rate of the infection due to the implementation of 

various containment protocols, we propose to implement a time-dependent state-space SIR 

model to the observed data from India. Instead of taking a pre-specified step function modifier 

like Ray et al. (2020), we propose a time-series SIR based approach to estimate the phase-wise 

transmission modifiers. Modifier functions, both step and exponential, are estimated using the 

daily prevalence data reported in India from 2 March 2020 to 30 April 2020.  

 

2. Methodology 

 

2.1. The extended state-space SIR model with time varying transmission rate  

 

The extended state-space SIR model proposed by Wang et al. (2020) is fitted to predict 

daily prevalence of susceptible, infected, and removed. This model is a time-dependent version 

of the state-space SIR model introduced by Osthus et al. (2017), and can be defined as follows.  

 

Model description 

 

  
             

   
         

                                                               (1) 

  
             

   
         

                                                            (2) 

where, 

  
  - Time series of proportion of infected cases 

  
  - Time series of proportion of removed cases (Recovered + Dead) 

  
  - Prevalence of infection at time t in terms of probability (probability of a person being 

infected at time t) 

  
  - Prevalence of removal at time t (probability of a person being removed from the 

infected compartment) 

Also, the constants    and    control the variances of the respective observed proportions.  

      
    

    
    represents the latent population prevalence. It is a three–state Markov 

process where   
  is the probability of a person being susceptible at time t. The Markov process 

(or the distribution of the transmissions of the Markov process) is defined as follows, 

 

                                )                                          (3) 

 

Thus the complete model is a Dirichlet-Beta state-space model. Here,            is the 

modified/ effective transmission rate. The unadjusted transmission rate β is defined as contact 

rate multiplied by the probability of transmission given a contact between a susceptible and an 

infectious individual. That is,      is a time-dependent modifier function of the transmission 

rate. The function f (.) in the argument of Dirichlet function is the SIR model given as follows. 
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                              (4) 

 

Solution of this set of differential equations is achieved using the Runge-Kutta 

approximation. 

 

Defining time-dependent modifier function of transmission rate 

 

Several containment measures have been implemented in India at different points in time 

creating phases of quarantine/ containment levels across the country. Such phases are expected to 

exhibit different rates of transmission of the disease, i.e., transmission rates become time-

dependent. If we assume that the change (or reduction) in the transmission rate is strictly because 

of macro level measures implemented by the authorities, we can define a specific transmission 

rate for each phase based on the level of containment. Wang et al. (2020) have proposed a step 

function approach to define such modifiers. However, it is also true that apart from the 

containment measures implemented by the government, rising awareness at micro community 

levels also contributes towards reducing the rate of transmission. To incorporate this idea, they 

have suggested defining the transmission modifier as a continuous function of time. 

 

Suppose there are three different phases, with two points of major changes in quarantine/ 

lockdown protocols. Let Pi denotes i-th phase, such that P1 represents the initial phase without 

any such protocol in place. Then, the step function for transmission rate modifier, π(t), can be 

expressed as follows. 

 

         

             
             
             

                                                        (5) 

 

where, π1 = 1 if P1 represents the phase without any intervention.  

As an alternative technique, following exponential modifier functions can be used to 

account for continuous changes in modifier values with time. 

 

                            
                                         (6) 

 

However, in this case the modifier value is assumed to decrease at a constant rate over 

time, irrespective of the phases of containment measures. We have applied both approaches to 

define modifiers for the base transmission rate β. The effective rate of transmission at time t is 

given as, βt = β.π(t).  

 

Overall success of this modelling structure depends heavily on the relevance of the 

modifier values specified for different phases. Using appropriate values of πi’s in (5), and of the 

constants    and   in (6) will be imperative towards achieving reliable predictions.  To avoid 

misleading predictions resulting from speculative pre-specified values of the modifiers, we 

propose methods based on time-series SIR (TSIR) model to estimate these values. The proposed 

method is described in the following section.  
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2.2. Proposed method for estimating modifiers of β for different phases of quarantine/ 

lockdown measures 

 

TSIR model [Bjørnstad et al. (2002); Finkenstadt, et al. (2002); Grenfell et al. (2002)] is 

used to estimate time-dependent modifier values. In the step function π(t), the steps (or phases) 

are defined according to different levels of preventive measures implemented by the government 

over the observed period of time. In TSIR model, the response, being a count variable, is 

assumed to follow certain discrete count process distribution like Poisson distribution or 

Negative Binomial distribution; refer Bjørnstad (2018). The basic structure of TSIR model can 

be defined as follows: 

 

                                                                        (7) 

       
  

 
  
                                                                (8) 

Or,                            
  
 
                           (9) 

 

where, St and It are the number of susceptibles and infecteds (or infectives) at time t, N is the 

population size, β0 is the transmission rate and      is the expected number of new infecteds at 

time t+1. New number of infecteds is assumed to follow Negative Binomial (or Poisson) 

distribution and a generalized Negative Binomial (or Poisson) linear model with log link is fitted 

with       as a covariate and     
  

 
  as an offset variable. The exponent α is expected to be just 

under 1 (i.e. close to 1) and is meant to account for discretizing the underlying continuous 

process. However, we can present an alternative interpretation of α based on the time-dependent 

SIR model given in (4). Using (4), the expression for expected number of new infecteds at time 

t+1 (taking α = 1) with a time-varying transmission rate can be written as follows.  

 

       
  

 
                                                                (10) 

 

Comparing equations (8) and (10), we can see that if α = 1 (or close to 1), βt = β0 (constant 

over time). However, if the value of α deviates considerably from 1, it has impact on the 

effective value of transmission rate, thus making the effective rate of transmission time-

dependent. That is, in such cases α assimilates the empirical changes in transmission rate over 

time. From equations (8) and (10), we can further write, 

 

        
                                                                 (11) 

 

Option 1: Defining step function for phase specific modifiers 

 

Fitting TSIR models to the observed phase-specific data, we estimate β0 and α separately 

for each phase. The effective transmission rate, βt, is then estimated at each time t using equation 

(11). Average of these estimates over the time range of a phase is taken as an estimate of the 

effective transmission rate for that phase. Suppose we have three time phases in our study, say 

P1, P2, and P3. Then, the estimate of phase specific transmission rate will be given as,  
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                                                 (12) 

 

And the estimated step function of modifiers will be, 

 

          

              
    

    
          

    

    
          

                                                        (13) 

 

 

Option 2: Defining continuous time-dependent exponential modifier function 

 

Instead of fitting phase-wise models, we fit a generalized linear model on the entire 

observed data and obtain estimates of effective transmission rates,    , using equation (11). We 

derive estimates of modifiers at each time point t for the entire observed period as, 

 

       
   

   
                                                                      (14) 

 

where,     is the estimate at t =1. However, if the first phase P1 is small, we can take          to 

avoid impact of extreme observation at t =1 (if present). As an alternative, we can take     as an 

average of first few values of    . We can fit any of the two exponential functions given in  

equation (6) to the estimated modifiers using least squares estimation. We have used only the 

first form in our study, i.e.,               . 
 

This continuous modifier function will not be phase specific and will describe steadily 

increasing awareness at community-level which encourages voluntary participation in quarantine 

and preventive measure. The steadily decreasing modifier function can also account for the 

learning curve of the organizational structure associated with implementation of proposed 

preventive measures like quarantine, travel ban, partial lockdown and complete lockdown. 

 

3. Implementation 

 

3.1. Data 

 

Since some states in India have not reported any cases and some have reported only few, 

we have considered populations of states with at least 10 confirmed cases reported till 20 April 

2020 for calculating total number of susceptibles. Baseline state-wise population data is obtained 

from the 2011 census of India (www.censusindia.gov.in). The estimated average growth rate 

based on the current total population of India and the total population of India in 2011 is 

estimated to be 1.23% per annum. This rate is used to estimate current total populations of the 25 

states which have been included in the calculation of total number of susceptibles. Data on the 

timeline of implementation of travel restrictions, isolation, lockdown, quarantine and other 

preventive measures taken by the central and state governments is compiled from various 
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notifications issued by the Ministry of Home Affairs and the Ministry of External Affairs 

available on their official websites. Time-series data on daily prevalence of total confirmed, total 

recovered and total deaths is sourced from the github repository of the Centre for Systems 

Science and Engineering, Johns Hopkins University (https://github.com/CSSEGISandData/ 

COVID-19). 

 

3.2. Defining longitudinal phases based on containment protocols  

 

While analyzing the effect of containment measures on rate of transmission of infection, it 

is important that we take into account the average incubation period. The mean incubation period 

of COVID-19, defined as the time from exposure to the onset of illness, is reported to be around 

5 days by many studies; refer Lauer et al. (2020); Chatterjee et al. (2020b) and Yuan et al. 

(2020) among others. This means that the impact of any intervention on the transmission rate can 

be expected to be visible only after 5 days, on an average. Given the fact that India has preferred 

focused group testing over random testing, it becomes important to address the expected lag in 

reporting of cases. So, for improving the analysis, cut-off dates for defining phases have been 

extended by 5 days to accommodate for the lag in effect induced by the incubation period. 

Complete lockdown in India came into effect on 25 March 2020. However, because of sudden 

loss of jobs and earnings of daily wagers, and the uncertainty looming over the extension of 

lockdown period, there were huge movements of migrant workers across India, with most of 

them trying to reach their homes. Overwhelming number of reports emerged about inter-state 

travels of large groups of people, with many even forced to travel hundreds of kilometers on 

foot. According to an article published in Business Standards, [Jha (2020)], on 31 March 2020 

the central government reported in the Supreme Court that 500,000-600,000 migrants reached 

their villages on foot during the lockdown. However, as per news reports, most of the state 

governments, assisted by various NGOs, had come up with adequate relief shelters and food 

arrangements for the stranded migrant laborers by 30 March 2020. Also, affected states started 

compulsory quarantine facilities for people migrating from other states. These measures helped 

in containing any significant movement and ensuring implementation of complete lockdown. 

Citing these developments, we have assumed the effective date of implementation of complete 

lockdown as 31 March 2020. Adding incubation period of 5 days, the cut-off date for the third 

phase for our analysis is taken as 04 April 2020. The actual and effective dates of 

implementation of preventive measures in India considered in the study are listed in Table 1. 

 

3.3. Modifier functions and hyper-parameters 

 

Based on the phases defined in section 3.2, step-function modifier, π(t), is estimated using 

equation (13). Negative Binomial TSIR models are chosen over Poisson TSIR models to find 

estimates of     (equation (11)). Poisson models showed inflated residual deviance and proved 

unfit for the data. Estimated step-function is given below. 

 

          

                                           
                                         
                                          

                        (15)   
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Hyper-parameters for Bayesian estimation 

 

Using data on COVID-19 patients in China, Verity et al. (2020) have estimated mean 

duration from onset of symptoms to death to be 17.8 days (95% credible interval 16.9–19.2) and 

to hospital discharge to be 24.7 days (22.9–28.1). Mean infectious period is calculated as 

weighted average of these durations using observed proportions of deaths and recoveries among 

the total removed cases till 30 April 2020 in India as weights. The estimated mean infectious 

period is: 0.113 x 17.8 + 0.887 x 24.7 ≈ 24 days. Thus, the estimate for hyper-parameter for γ is, 

γ0 = 1/24 = 0.042. However, since there is dearth of comprehensive reports confirming infectious 

period at this early stage of the epidemic, we have also performed analyses taking mean 

infectious period of 14 days (i.e. γ0 = 1/14 = 0.0714), as reported by the World Health 

Organisation; see WHO (2020). So, at this juncture it is safe to assume that the reality may lie 

somewhere between the projections based on our two assumed cases for γ0. The value for the 

hyper-parameter β is estimated as the average of effective transmission rates over the total 

observed period (02 March 2020- 30 April 2020). This is achieved by fitting the Negative 

Binomial TSIR model and using equation (12) for the entire observed period.  

 

Continuous modifier function 

 

The continuous modifier function obtained using the modifier values estimated from 

equation (14) is given below. 

                                                                         (16) 

 

3.4. Forecasting assumptions 

 

We have assumed four different scenarios for forecasting the trajectory of the COVID-19 

epidemic. The four cases are summarized in Table 2. Case 1 and case 3 are realistic scenarios 

based on current developments, while case 2 and case 4 are hypothetical scenarios strictly for the 

purpose of comparison. 

 

3.5. Data calibration 

 

In India, till now, testing strategy has been focused primarily on high risk individuals. 

However, to understand the community spread in the country, large scale random testing should 

be conducted among those who have no travel history [Rao et al. (2020)]. As reported recently 

by the Indian Council of Medical Research, around 80% of the total infected (confirmed) cases 

in India are asymptomatic; refer www.indiatoday.in (2020).  In the absence of rigorous testing, it 

is but natural that a large number of true cases are going undetected and hence unreported in 

India. This subsequently leads to concerns about the actual number of deaths due to COVID -19 

also going unreported [Shaikh (2020); Biswas (2020)].  

 

We have used a simple intuitive technique for data calibration to account for possible 

under-reporting. We divide the observed data on total confirmed, recovered and deaths by a 

constant ρ (where 0 < ρ ≤ 1). Proportion of under-reporting is 1- ρ, i.e., ρ = 1 implies zero under-

reporting. We have considered two levels of under-reporting, 75% (ρ =0.25) and 50% (ρ=0.5). It 

is not easy to estimate the proportion of under-reporting, especially at this stage of the epidemic. 
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However, we have based our assumptions on certain reports on scientific work in this regard; 

refer Jayan (2020).  

 

3.6. Plotting predicted prevalence 

 

 MCMC posterior realizations on the prevalence of infected and removed are obtained from 

the output of tvt.eSIR( ) function of the eSIR package. Posterior mean of predicted prevalence of 

infecteds is plotted against time along with daily estimated prevalence of mild to moderate, 

severe and critical cases among the total infecteds. To predict the cases belonging to the 

categories mild to moderate, severe and critical, we have considered the respective proportions, 

80.1%, 13.8%, and 6.1%, as  reported by the World Health Organisation; refer WHO (2020). To 

predict the number of deaths, we have used current proportion of deaths among the total removed 

cases in India, which is around 10%. Prevalence of removed is plotted against time along with 

estimated number of cases for the events recovered and death. Plots for case 3 of step-function 

modifier and for exponential modifier at two different values of γ are presented in Graphs 1-5. 

 

4. Results and Discussion 

  

 Estimated values of time-dependent transmission rate adjusted for modifier,     (for phase 

1,     =    ) , rate of removal,   , and reproduction number R0, along with their 95% credible 

intervals based on posterior realizations are reported for all models and all cases discussed in the 

implementation section. Expected total incidence (as % of total population), and forecasted dates 

for two crucial turning points of the epidemic are also reported for each case. The first turning 

point signifies the time at which the rate of increase in the number of infecteds starts decreasing 

(deceleration).  The second crucial turning point is the peak time of the infected curve beyond 

which the prevalence of infecteds starts decreasing. Table 3 and Table 4 present results for all 

four cases of step-function modifier based state-space SIR models, at the prior infectious period 

estimates of 24 days and 14 days respectively. Results from the exponential modifier function 

based state-space SIR models, for both observed and calibrated data, are presented in Table 5. 

Table 6 contains prediction results for calibrated data using case 3 of the step-function modifier.  

 

 At γ0 = 0.042 (24-day infectious period), estimated values of the production rate R0 

(unadjusted) consistently stays around 7 in all cases, and at γ0 = 0.0714 (14-day infectious 

period) its estimates cluster around 4 for all cases. Consistency of the estimate of R0 (unadjusted) 

and β (base value unadjusted for modifiers) under different hypothesized situations suggests that 

our estimates of modifiers are able to explain the changes in the transmission rate in their 

respective phases. Estimates of R0 are comparatively very small in the containment phases, with 

that for the complete lockdown being the minimum. For example, citing results of case 1 from 

Table 3, under the assumption of 24-day infectious period, R0 is estimated to be 1.29 for the 

lockdown period, and around 2.33 for the quarantine/ partial lockdown phase, as opposed to 7.1 

in the no-intervention phase. Similar results are obtained for the case 3, at both levels of γ0. R0 

values estimated from exponential modifier function based approach are slightly on the lower 

side as compared to those obtained from the step-function approach. This is expected as the use 

of exponential modifier function results in continuous decline in the transmission rates through 

time.  
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Estimate of (mean) total incidence is very sensitive to the choice of infectious period. Even 

under the assumption of complete lockdown till the end of epidemic, the estimated total 

incidence jumps from 0.35% to 7.7% of the population as we increase the infectious period from 

14 days to 24 days. Similar jumps are seen in all cases. Unfortunately, as discussed in section 

3.3, the existing reports on COVID-19 at this early stage of the epidemic are not conclusive 

about the duration of infectious period. In addition, current recovery/ death trends of different 

countries indicate that recovery rates and death rates can vary significantly between different 

regions.  

 

Although we obtained most optimistic results under the assumption of complete lockdown 

like situation throughout the course of the pandemic, it is not practical to believe that our 

economy can sustain such a drastic measure for a long duration. Among the situations assumed 

for prediction using step-function modifiers, future assumptions for case 3 are practically most 

achievable. Also, daily predictions of number of infecteds for the month of May based on case 3 

of step-function modifiers, with 24-day infectious period, are closest to the actual reported data 

as compared to those of any other scenario considered in this study; refer Graph 5. To restrict the 

COVID-19 spread within the limits predicted by case 3 results, we have to ensure that the post 

complete lockdown period should not let R0 to go beyond 1.32 (14-day infectious period) or 

beyond 2.14 (24-day infectious period). In that situation, depending on the actual recovery time 

of COVID-19 patients in India we can expect around 9.1% to 31.8% of the total population to 

get infected with SARS-CoV-2 by the time the epidemic ends. Assuming 75% under-reporting of 

infected and recovered/ deceased cases, the range of expected total incidence becomes 30.1% - 

67.2%, and for 50% under-reporting of cases, it is estimated as 16.4% - 49.7%. The rate of 

infection is expected to start decreasing around the end of August or start of September 2020, 

and the total number of active cases is expected to start declining towards the end of October 

2020. If there is under-reporting of cases, these dates of turning points are expected to shift 

earlier by around a week. 

 

It is also worth mentioning that if the lockdown measures had not been implemented and 

only quarantine and partial lockdown were continued (case 2), we would be expecting around 

22% to 53% of the population to be infected by the end of the epidemic. And if there was no 

containment measure in place since start (case 4), 88% to 95% of the population would have 

contracted the infection till the time epidemic lasted.  

 

Since the exponential modifier function assumes a continuous decline in the effective 

transmission rate, it may overlook some important real life factors while predicting the course of 

the epidemic, and hence it may result in underestimation of the overall impact of the epidemic. 

As expected, the results obtained using this approach is closer to those of case1 where complete 

lockdown is assumed beyond 17 May 2020. Use of exponential modifier function may not be the 

best way to describe the effects of sudden drastic measures like complete lockdown, travel ban 

etc.  

 

Even in the best case scenario as depicted by the results obtained using the exponential 

modifier function, the total incidence is predicted to be up to 1.2% (without data calibration) and 

up to 2% (with data calibration). That is, around 16 million to 27 million people are expected to 

end up getting infected with SARS-CoV-2 by the time the epidemic ends. According to the 
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predictions from the exponential modifier approach, when the prevalence of infected reaches its 

peak around mid to end of July 2020, there will be around 60,000 (14-day recovery period) to 

500,000 (24-day recovery period) severe cases who will need hospitalization, at once (Graph 3 

and Graph 4). The picture becomes even more unsettling when we study the graphs of the case 3 

predictions (Graph 1 and Graph 2). These figures range between 1 million to 8 million for the 

two cases, and the peak time is expected to be around the end of October 2020. 

 

5. Conclusion 

 

Substantial reduction in the reproduction rate R0 during the partial lockdown and complete 

lockdown phases corroborates the effectiveness of these interventions in containing the spread of 

SARS-CoV-2 infection. Assuming an average recovery (or infectious) period of 14 days, R0 is 

estimated to have reached below 1 in the complete lockdown phase. However, assuming a 24-

day recovery period, the estimate of R0 remained above 1 even during the complete lockdown. 

Under case 3, where we have considered existing situation of containment measures till 17 May 

2020, the daily predictions for May 2020 are much closer to the actual reported values (followed 

till 27 May 2020) at          (24-day infectious period)  as compared to those at           

(14-day infectious period). However, more clinical reports based on wider patient level data are 

imperative towards finding reliable estimates of recovery time for COVID-19 patients. 

 

The fact, that instead of using pre-specified modifier for each phase we have estimated 

phase-specific modifiers from the observed data, improves our chances of obtaining more 

reliable estimates of transmission rate and R0 as compared to other recent studies on India, like 

Ray et al. (2020). Use of lower than true values of modifiers may lead to over-estimation of 

transmission rate and vice-versa. Also, our procedure of defining cut-off dates for different 

phases of containment measures assimilates the effects of incubation period and initial lapses in 

the implementation of the lockdown. 

 

Even under the most optimistic scenario, the time for flattening of the COVID-19 

progression curve is still quite far. Number of infected cases is expected to increase at even a 

higher rate at the moment and by the time the peak is expected, we will need an extensive 

amount of medical and infrastructural preparedness. Quoting the results based on the 

assumptions of case 3, which we have repeatedly deemed as the most realistic case, we need to 

be prepared with enough health-care infrastructure to be able to handle between 1 million to 8 

million severe cases around the end of October 2020.  

 

Limitations 

 

We have considered same estimates of phase-specific modifier for the entire country 

assuming that the lockdown and other containment protocols have been homogeneously 

implemented across India. However, because of significant differences in various socio-

economic, demographic, cultural, and administrative level factors, actual transmission rates are 

bound to differ from region to region. Hence, the estimated parameters in our study are only 

valid for overall predictions of cases in India, on an average, and may fail to trace the dynamics 

of the epidemic in sub-regions, say districts or states. 
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Table 1: Cut-off dates of major preventive interventions implemented in India 

 

Preventive Measures 
Actual Dates of 

Implementation 

Cut-off Dates for 

Defining Phases in 

Our Study 

No strict screening, quarantine measures, or 

surveillance. 
2

 
March–12

 
March 2 March–17 March 

Various social distancing measures, restrictions 

on public gathering, shutting down of academic 

institutions, international travel ban, and 

restriction on public transport. 

13 March–24 March 18 March–3 April 

Complete lockdown 1 25 March–14 April 4 April–30 April 

Complete lockdown 2- lockdown continues 

along with certain exemption for selected 

activities. 

20 April–3 May 4 May– 17 May 

 

Table 2: Cases assumed for forecasting 

 

Case Phases Modifiers Assumption 

Case1 

P1 : 02 March-17 March 

P2: 18 March-03 April 

P3: 04 April onwards 

1 

0.33 

0.182 

After 30 April 2020, the effect of containment 

measures will remain more or less the same 

with the modifier value equal to that of the third 

phase, P3. 

Case2 
P1: 02 March-17 March 

P2: 18 March onwards 

1 

0.33 

Assuming that instead of complete lockdown 

only quarantine and partial lockdown measures 

were extended throughout after 12 March 2020. 

Case3 

P1: 02 March-17 March 

P2: 18 March-03 April 

P3: 04 April-03 May 

P4: 04 May-17 May 

P5: 18 May onwards 

1 

0.33 

0.182 

0.2* 

0.3* 

Because of slight relaxations in green and 

orange zones, modifier value is assumed to 

increase a bit till 17 May. After that it is 

assumed that more economic and industrial 

work will start, bringing the modifier value 

closer to that of second phase, but will remain 

less than that as red zones will be strictly 

contained. 

Case4 
Basic Case- No phase 

modifiers assumed 
--- 

If no containment measures were taken through 

the entire epidemic period. 

* Value assumed according to the assumptions of the case, based on the estimates of prior phases 
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Table 3: Predictions using step-function modifiers (24-day infectious period) 

 

Hyper-parameters: 
β0 = 0.296, γ0 = 0.042, 

 R0 = 7.05 

Posterior Mean Estimates 

(with 95% Credible Intervals) 

Expected dates of important turning 

points 

Assumed 

Scenario 
       R0 

Expected 

Total 

Incidence 
( % of popn.) 

Rate of 

infections start 

decreasing 

(deceleration) 

Total number of 

infected start 

decreasing 

Case 1: Intervention 

effects similar to that 

of lockdown 

protocols to continue 

after 30 April 2020. 

0.374 
(0.205-0.601) 

0.0528 
(0.0302-0.0815) 

7.1 
(5.41-9.16) 

 

7.7% 

 

 

12 November 

2020 
20 March 2021 

Adjusted for 

Quarantine & partial 

lockdown 

0.123 
(0.068-0.198) 

2.33 

Adjusted for 

Lockdown  
0.068 

(0.037-0.109) 
1.29 

Case 2: If only 

partial lockdown 

protocols were 

extended (no 

complete lockdown) 

0.369 
(0.204-0.592) 

0.0525 
(0.0308-0.0803) 

7.05 
(5.31-9.01) 

53% 08 August 2020 
24 September 

2020 

Adjusted for 

Quarantine & partial 

lockdown 

0.122 
(0.067-0.195) 

2.32 

Case 3: If lockdown 

is slightly relaxed 

(only for green and 

orange zones) after 

17 May 2020. 

0.36 
(0.191-0.594) 

0.0505 
(0.0293-0.0802) 

7.14 
(5.36-9.34) 

31.8% 24 August 2020 30 October 2020 

Adjusted for 

Quarantine & partial 

lockdown adjusted 

0.119 
(0.063-0.196) 

2.36 

Adjusted for 

Lockdown 
0.066 

(0.035-0.108) 
1.31 

Adjusted for Zone-

wise protocols 

(Green/Orange/Red) 

(assumed) 

0.072 
(0.038-0.119) 

1.43 

Adjusted for some 

more degree of 

relaxation in 

lockdown protocols 

for Green and 

Orange  zones post 

17 May 2020 

(assumed) 

0.108 
(0.057-0.178) 

2.14 

Case 4: If no 

quarantine/ lockdown 

measures were 

implemented from 

the beginning 

0.252 
(0.158-0.371) 

0.0388 
(0.0244-0.0578) 

6.57 
(5.03-8.46) 

95% 10 June 2020 03 July 2020 
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Table 4: Predictions using step-function modifiers (14-day infectious period) 

 

Hyper-parameters: 
β0 = 0.296, γ0 = 0.0714, 

 R0 = 4.15 

Posterior Mean Estimates 

(with 95% Credible Intervals) 

Expected dates of important turning 

points 

Assumed 

Scenario 
       R0 

Expected 

Total 

Incidence 
( % of popn.) 

Rate of 

infections start 

decreasing 

(deceleration) 

Total number of 

infected start 

decreasing 

Case 1: Intervention 

effects similar to that 

of lockdown 

protocols to continue 

after 30 April 2020. 

0.349 
(0.196-0.565) 

0.0783 
(0.056-0.1054) 

4.46 
(2.79-6.7)  

 

0.35% 

 

 

18 December 

2020 
15 February 2021 

Adjusted for 

Quarantine & partial 

lockdown 

0.115 
(0.065-0.186) 

1.47 

Adjusted for 

Lockdown  
0.064 

(0.036-0.103) 
0.817 

Case 2: If only 

partial lockdown 

protocols were 

extended (no 

complete lockdown) 

0.339 
(0.193-0.532) 

0.0776 
(0.0567-0.104) 

4.38 
(2.78-6.41) 

21.8% 15 August 2020 11 October 2020 

Adjusted for 

Quarantine & partial 

lockdown 

0.112 
(0.064-0.176) 

1.44 

Case 3: If lockdown 

is slightly relaxed 

(only for green and 

orange zones) after 

17 May 2020. 

0.343 
(0.194-0.54) 

0.078 
(0.0568-0.1042) 

4.42 
(2.79-6.57) 

9.1% 
06 September 

2020 
30 October 2020 

Adjusted for 

Quarantine & partial 

lockdown adjusted 

0.113 
(0.064-0.178) 

1.45 

Adjusted for 

Lockdown 
0.062 

(0.035-0.098) 
0.79 

Adjusted for Zone-

wise protocols 

(Green/Orange/Red) 

(assumed) 

0.069 
(0.039-0.108) 

0.88 

Adjusted for some 

more degree of 

relaxation in 

lockdown protocols 

for Green and 

Orange  zones post 

17 May 2020 

(assumed) 

0.103 
(0.058-0.162) 

1.32 

Case 4: If no 

quarantine/ lockdown 

measures were 

implemented from 

the beginning 

0.254 
(0.162-0.367) 

0.0741 
(0.0542-0.0995) 

3.46 
(2.35-4.91) 

88.2% 13 June 2020 03 July 2020 
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Table 5: Predictons using exponential modifier function 

 

λ0 = 0.0131 
 

Posterior Mean Estimates 

(with 95% Credible Intervals) 

Expected dates of important turning 

points 

Case       R0 

Expected 

Total 

Incidence 
( % of popn.) 

Rate of 

infections start 

decreasing 

(deceleration) 

Total number of 

infected start 

decreasing 

Without data calibration (assuming scale of under-reporting is not significant) 

Hyper-parameters: 
β0 = 0.296, γ0 = 0.042, 

 R0 = 7.05 

0.329 

(0.19-0.509) 

0.0473 

(0.0287-

0.0767) 

7.01 

(5.24-8.94) 
1.2% 26 June 2020 31 July 2020 

Hyper-parameters: 
β0 = 0.296, γ0 = 0.0714, 

 R0 = 4.15 

0.326 

(0.19-0.504) 

0.0788 

(0.0566-

0.1046) 

4.16 

(2.65-6.07) 
0.22% 08 June 2020 12 July 2020 

With data calibration for under-reporting (assuming 75% under-reporting) 

Hyper-parameters: 
β0 = 0.296, γ0 = 0.042, 

 R0 = 7.05 

0.312 

(0.196-0.458) 

0.0466 

(0.0293-

0.0694) 

6.76 

(5.2-8.71) 
2% 22 June 2020 29 July 2020 

Hyper-parameters: 
β0 = 0.296, γ0 = 0.0714, 

 R0 = 4.15 

0.307 

(0.187-0.443) 

0.0751 

(0.0564-

0.0981) 

4.11 

(2.78-5.73) 
0.38% 30 May 2020 02 July 2020 

With data calibration for under-reporting (assuming 50% under-reporting) 

Hyper-parameters: 
β0 = 0.296, γ0 = 0.042, 

 R0 = 7.05 

0.326 

(0.192-0.491) 

0.0481 

(0.0292-

0.0727) 

6.83 

(5.22-8.86) 
1.65% 24 June 2020 30 July 2020 

Hyper-parameters: 
β0 = 0.296, γ0  = 

0.0714, R0 = 4.15 

0.322 

(0.192-0.475) 

0.0774 

(0.0566-

0.1050) 

4.18 

(2.67-5.9) 
0.28% 04 June 2020 08 July 2020 
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Table 6: Predictions using step-function modifiers and calibrated data 

 

Case 3: If lockdown 

is slightly relaxed 

(only for green and 

orange zones) after 

17 May 2020 

Posterior Mean Estimates 

(with 95% Credible Intervals) 

Expected dates of important turning 

points 

      R0 

Expected 

Total 

Incidence 
( % of popn.) 

Rate of 

infections start 

decreasing 

(deceleration) 

Total number of 

infected start 

decreasing 

With data calibration for under-reporting (assuming 75% under-reporting) 

Hyper-parameters: 
β0 = 0.296, γ0 = 0.042, 

 R0 = 7.05 

0.39 

(0.216-0.622) 

0.054 

(0.0319-

0.0818) 

7.24 

(5.41-9.31) 
67.2% 15 August 2020 04 October 2020 

Hyper-parameters: 
β0 = 0.296, γ0 = 0.0714, 

 R0 = 4.15 

0.366 

(0.206-0.59) 

0.0759 

(0.0559-

0.0994) 

4.82 

(2.99-7.35) 
30.1% 13 August 2020 14 October 2020 

With data calibration for under-reporting (assuming 50% under-reporting) 

Hyper-parameters: 
β0 = 0.296, γ0 = 0.042, 

 R0 = 7.05 

0.389 

(0.212-0.622) 

0.0545 

(0.0313-0.086) 

7.17 

(5.43-9.29) 
49.7% 14 August 2020 12 October 2020 

Hyper-parameters: 
β0 = 0.296, γ0 = 0.0714, 

 R0 = 4.15 

0.357 

(0.198-0.568) 

0.0782 

(0.0575-

0.1045) 

4.57 

(2.86-6.87) 
16.4% 23 August 2020 22 October 2020 
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Graph 1: Predictions from case 3 of step-function modifier- (at    = 0.0714)- Panel A- 

Number of infecteds predicted till the last day of the epidemic; vertical black line is the expected 

date for second turning point. Panel B- Number of infecteds shown till the end of June 2020. 

Panel C- Number of removed cases predicted till the last day of the epidemic. Panel D- Number 

of removed cases shown till the end of June 2020. 
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Graph 2: Predictions from case 3 of step-function modifier- (at    = 0.042)- Panel A- Number 

of infecteds predicted till the last day of the epidemic; vertical black line is the expected date for 

second turning point. Panel B- Number of infecteds shown till the end of June 2020. Panel C- 

Number of removed cases predicted till the last day of the epidemic. Panel D- Number of 

removed cases shown till the end of June 2020. 
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Graph 3: Predictions from exponential modifier function- (at    = 0.0714)- Panel A- Number 

of infecteds predicted till the last day of the epidemic; vertical black line is the expected date for 

second turning point. Panel B- Number of infecteds shown till the end of June 2020. Panel C- 

Number of removed cases predicted till the last day of the epidemic. Panel D- Number of 

removed cases shown till the end of June 2020. 
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Graph 4: Predictions from exponential modifier function- (at    = 0.042)- Panel A- Number 

of infecteds predicted till the last day of the epidemic; vertical black line is the expected date for 

second turning point. Panel B- Number of infecteds shown till the end of June 2020. Panel C- 

Number of removed cases predicted till the last day of the epidemic. Panel D- Number of 

removed cases shown till the end of June 2020. 
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Graph 5: Predictions of number of infecteds for May 2020- Panel A- Predictions using step-

function modifiers (case 3) with 24-day infectious period; Panel B- Predictions using step-

function modifiers (case 3) with 14-day infectious period; Panel C- Predictions using exponential 

modifier function with 24-day infectious period; Panel D- Predictions using exponential modifier 

function with 14-day infectious period.  
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Appendix-A 

 

Detailed time-line of containment measures implemented in India 

 

18 Jan 2020: Thermal screening of all passengers coming from China and Hong Kong started at 

three international airports. 

 

30 Jan 2020: First Covid-19 case reported in India with travel history from Wuhan, China 

 

04 Mar 2020: By this date thermal screening was initiated in a progressive manner for all 

international passengers (depending on the status of COVID-19 in the countries of 

origin) at all ports of entry (land, sea and air-ports) through various travel 

advisories. 

 

13 Mar 2020 – 22 Mar 2020: During this period various state governments brought out notices 

for restricting social contacts -  ban on public gatherings of any kind, shutting 

down of academic institutes, restrictions on public transportation, screening of 

interstate passengers at airports and complete lockdown of some states from 23 

Mar 2020 till 31 Mar 2020. 

 

15 Mar 2020 – 21 Mar 2020: Minimum 14-day quarantine made mandatory for all incoming 

travelers from Covid-19 infected countries (in progressive manner).                                        

Also, all Visa suspended till 15 Apr 2020 

 

22 Mar 2020: Ban on all incoming international flights, except those already on transit.                                                                   

Suspension of all public transportation services, like metro, rail, domestic air, till 

31 Mar 2020, except those that had started their journey before 22 Mar 2020. 

 

25 Mar 2020: Complete lockdown till 14 Apr 2020. However, large-scale movements of migrant 

workers across various states started from 26 Mar 2020. 

 

29 Mar 2020:  Order issued to all state governments on this date to stop the migrants’ movements 

and setting up of relief camps for those already in transit.  

 

30 Mar 2020:  Effective date of starting of measures to stop migrant movements across various 

states during complete lockdown till 14 Apr 2020. 

 

15 Apr 2020:  Complete lockdown extended till 03 May 2020 with new containment measures 

for hotspot areas. 

 

20 Apr 2020:  Apart from complete lockdown till 03 May 2020, new containment measures for 

hotspot areas, certain exemption for selected activities and limited movements of 

migrant workers with states/ UT . 
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Among the U.S. cities hit by the 1918 Spanish flu, social distancing played a pivotal

role in flattening the pandemic curve. Similarly, to fight against COVID-19, restrictive mass
quarantine or lockdown has been implemented as the most important controlling measure.
India has already enforced a lockdown of 10 weeks and is extending the period depending
on the current disease scenario. However, the idea that, if the susceptible population drops
below certain threshold, the infection would naturally die out in small communities after
a fixed time (following the outbreak), unless the disease is reintroduced from outside, was
proposed by M. S. Bartlett in 1957. This threshold was termed as Critical Community Size
(CCS).

We propose an Susceptible-Exposed-Infected-Recovered (SEIR) model that explains
COVID-19 disease dynamics. Using our model, we have calculated state-specific Temporary
Eradication of Spread Time (TEST) and CCS that would essentially determine the ideal
number of lockdown days required and the size of quarantined population. With the given
state-wise rates of death, recovery and other parameters, we have identified that, if at a
place the total number of susceptible population drops below CCS, infection will cease to
exist after a period of expected time to extinction (TTE), unless it is re-introduced from
outside. The expected TTE suggests that the disease might take a long time to fade away
from the human population in absence of pharmaceutical interventions. But we find that
the disease might subside substantially after TEST. This would imply lockdown phases as
much as TEST could be sufficient to contain COVID-19.
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1. Introduction

In the face of COVID-19 pandemic, many countries have implemented restrictive mass
quarantines or lockdown as the primary controlling measure to confine the number of sec-
ondary transmissions of the disease within countries. In absence of any specific medical
treatment to treat the disease, patients are generally given only supportive care. Given the
rapid Phase 3 transmission of the disease, health care systems of even developed countries
are starting to face challenges within a week or two. Therefore, to prevent stage 4 trans-
mission of the disease, along with many other countries India, which is densely populated,
has resorted to complete lockdown already for more than 10 weeks and it is still counting.
Available data confirms that the pandemic has already affected more than five million peo-
ple in around 215 countries till date and already claimed more than 0.3 million lives across
the world within approximately three months. After World Health Organisation (WHO)
declared the outbreak as a pandemic, many countries initiated partial to complete lockdown
as was done in some provinces of China after the outbreak started. By the end of March,
one-third of the global population was under some form of lockdown.

Many countries implemented variable number of lockdown days, but none has come up
with any magic figure for the ideal period of lockdown. No clear-cut guideline or rationale
behind the number of lockdown days has been announced by any country or WHO till date
to the best our knowledge. The initial phase of lockdown of 2-4 weeks was determined mostly
on trial and error basis. The prediction on the number of trial lockdown days was possibly
and partially based on the fact that an affected individual could be contagious in the first 14
days of contracting the disease and also on the information of the number of known positive
cases at the time of taking decision.

The idea of quarantining a small group of people after an epidemic outbreak to arrest
the disease dates back to 1950s when English statistician M.S. Bartlett introduced the term
‘critical community size’. Probably the idea of such mathematical development was driven
by the lessons of social distancing taught by the 1918 flu pandemic or Spanish flu. The
cities with strong social distancing measures, successfully delayed its peak in deaths and
maintained lower death rate (Markel et al., 2007). The flattening of 1918 flu pandemic curve
that took approximately 24 weeks, was disrupted and the cities witnessed sharp increase in
deaths when restrictions were temporarily relaxed after 8-10 weeks.

Bartlett (1957, 1960) proposed the idea that if the susceptible population is below
some threshold, the infection is as likely as not to die out after a period of time (after the
epidemic outbreak) in small communities, unless the disease is reintroduced from outside.
Bartlett termed this threshold as Critical Community Size (CCS). Otherwise speaking, in
absence of pharmaceutical interventions if the susceptible population that is quarantined
together falls below CCS, the infection would die out from the population after a period of
time unless the disease is re-introduced from outside. In the present context, CCS could
guide government/health policy makers with an objective strategy of lockdown period as
opposed to subjective trial and error phases of lockdown.

After an epidemic outbreak in a community, the infection persists long enough to engulf
the entire susceptible population. Local extinction of the disease could be possible if the
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susceptible population gets depleted. In large communities, the tendency of eventual damp
down of the recurrent epidemics is balanced by random variability. But in small communities
the infection would die out when the number of susceptible falls below a certain threshold,
which is the CCS. Only a limited number of works (N̊asell, 2005; Anderson and Britton,
2000) including our work (under review) are available on CCS, may be because it involves
complicated calculations even for simplest mathematical model viz. SI (S: Susceptible, I:
Infected) model. However, since the actual extent of an epidemic can be assessed only
retrospectively, it is essential to calculate the CCS for COVID-19 based on a realistic model
that depends on the parameters which could be determined for a specific locality.

We propose an SEIR (S: Susceptible, E: Exposed, I: Infected, R: Recovered) model
to explain the disease dynamics of COVID-19. We have derived with evidence the ratio-
nale behind the importance and extent of the lockdown period and also the number of
people who could safely stay together in this lockdown phase. In absence of much prior
knowledge on the disease, we have to rely on the mathematical predictions to combat the
virus. In this article, we provide a cautionary note from the mathematical deductions, that
this pandemic might take a very long time to fade away, in absence of any pharmaceu-
tical interventions. Our work resonates the latest updates from WHO executive director
stating “this virus may never go away”. WHO also mentions that it may remain in the
community as another endemic virus like human immunodeficiency virus (HIV). To have
less disease transmission, WHO also stresses on enforcing withdrawal of the lockdown only
when the day-to-day number of COVID-19 cases reaches the lowest possible level; other-
wise, the transmission may accelerate (https://www.aninews.in/news/world/europe/who-
executive-director-says-coronavirus-may-never-go-away20200514012424/).

But there is always a ray of hope. Apart from the fact that, we may learn much from
Spanish flu, SARS, and MERS outbreaks, our deduction suggests that there should be no
reason to panic as the lockdown, if properly followed, could contain the disease. Although
we have to bear the burden of slow economic recovery or even a recession, the COVID-19
epidemic could be controlled and hopefully it would not cause a more severe public health
emergency in the near future.

2. Methods

We propose an SEIR model to explain the dynamics of COVID-19 infection. The entire
population is divided into four compartments. These compartments are mutually exclusive
in the sense that no person can belong to more than one compartment at any time point. The
four compartments are: susceptible individuals (S), individuals with and without symptoms
of the disease but not yet tested positive for COVID-19 (E), infected individuals who are
clinically tested positive (I), and individuals who are known to have recovered from the
disease (R). Note that an individual belonging to class E may transmit the disease during
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the incubation period. Under this situation, we consider the model as:

dS

dt
= Λ− β (I(t) + φE(t)) S(t)

N
− µS(t) (1)

dE

dt
= β (I(t) + φE(t)) S(t)

N
− (γ + µ)E(t) (2)

dI

dt
= γE(t)− (δ + µ+ d)I(t) (3)

dR

dt
= δI(t)− µR(t) (4)

Here β (or βφ) represents the contact rate for COVID-19 transmission from infected (or
exposed) to susceptible individuals, an individual in E moves to I at the rate γ, δ is the
recovery rate, d is death rate due to the disease and µ is the natural death rate in the
population. Moreover, Λ = µN(t) where N(t) is the population size at time t.

Next we calculate the basic reproduction number (R0) defined as the expected num-
ber of secondary cases produced by a single infection in a completely susceptible popu-
lation. We calculate R0 for the above model using next generation matrix G = FV −1,
where, F =

[
∂Fi(x0)
∂xj

]
and V −1 =

[
∂Vi(x0)
∂xj

]
. Here, Fis are the new infections in the sys-

tem, while Vi denotes the transfer of infections from one compartment to another and x0

is the disease-free equilibrium state (section 2.2). In our model, F =
[
βφ S

N
β S
N

0 0

]
and

V −1 =
[
γ + µ 0
−γ δ + µ+ d

]
. R0 is defined as the maximum eigen value of the matrix G.

Based on the above model R0 will be:

R0 = β(φ(δ + µ+ d) + γ)
(γ + µ)(δ + µ+ d) (5)

2.1. Stochastic model and quasi-stationarity

First we note the nature of transition and the respective transition rates from one
compartment to another (Table 1).

We construct the fully stochastic version of the model in (1)-(4) using the transition
rates in Table 1. Denoting s = S/N , e = E/N , i = I/N , r = R/N , the Kolmogorov forward
equations for this process can be written as follows:

p′s,e,i,r(t) =λ1ps−1,e,i,r + λ2ps+1,e,i,r + λ3ps+1,e−1,i,r + λ4ps+1,e,i−1,r

+ λ5ps,e+1,i,r + λ6ps,e+1,i−1,r + λ7ps,e,i+1,r−1 + λ8ps,e,i+1,r

+ λ9ps,e,i,r+1 − κ(s, e, i, r)ps,e,i,r (6)

where κ(s, e, i, r) =
9∑
j=1

λj(s, e, i, r).

We use Kolmogorov forward equations in order to find the expected time to extinction
(TTE) and evaluate CCS based on our model. Now, conditioning on non-extinction, we
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Table 1: Chart of transition rates
Event Transition Transition rate
Immigration of Susceptibles (s, e, i, r)→ (s+ 1, e, i, r) λ1 = λ1(s, e, i, r) = µN
Death of Susceptibles (s, e, i, r)→ (s− 1, e, i, r) λ2 = λ2(s, e, i, r) = µs
Susceptible (S) to Exposed (E) (s, e, i, r)→ (s− 1, e+ 1, i, r) λ3 = λ3(s, e, i, r) = βφse/N
Susceptible (S) to Infected (I) (s, e, i, r)→ (s− 1, e, i+ 1, r) λ4 = λ4(s, e, i, r) = βsi/N
Death of Exposed (s, e, i, r)→ (s, e− 1, i, r) λ5 = λ5(s, e, i, r) = µe
Exposed (E) to Infected (I) (s, e, i, r)→ (s, e− 1, i+ 1, r) λ6 = λ6(s, e, i, r) = γe
Infected (I) to Recovered (R) (s, e, i, r)→ (s, e, i− 1, r + 1) λ7 = λ7(s, e, i, r) = δi
Death of Infected (s, e, i, r)→ (s, e, i− 1, r) λ8 = λ8(s, e, i, r) = (µ+ d)i
Death of Recovered (s, e, i, r)→ (s, e, i, r − 1) λ9 = λ9(s, e, i, r) = µr

have,

qs,e,i,r(t) = P [S(t) = s, E(t) = e, I(t) = i, R(t) = r|E(t) 6= 0, I(t) 6= 0] = ps,e,i,r(t)
1− p•00•(t)

where p•00•(t) =
∞∑
s=0

∞∑
r=0

P [S(t) = s, E(t) = e, I(t) = i, R(t) = r] =
∞∑
s=0

∞∑
r=0

ps,0,0,r(t).
Now, differentiating qs,i,c,a(t) with respect to t, we have,

q′s,e,i,r(t) =
p′s,e,i,r(t)

1− p•00•(t)
+ ps,e,i,r(t)

(1− p•00•(t))2 .p
′
•00•(t). (7)

Now, from (6), we have, after simplification,

p•00•(t) = µp•1 0 •(t) + (δ + µ+ d)p•0 1 •(t) = p(d,µ,δ)
• (t) (say). (8)

From (7-8) we have,

q′s,e,i,r(t) =
p′s,e,i,r(t)

1− p•00•(t)
+ ps,e,i,r(t)

(1− p•00•(t))
.q(d,µ,δ)
• (t) where q(d,µ)

• (t) = p(d,µ,δ)
• (t)

1− p•0 0 0(t) (9)

Now, q′s,e,i,r(t) = 0

=⇒ p′s,e,i,r(t) = − ps,e,i,r(t)
(1− p•0 0 •(t))

.q(d,µ,δ)
• (t)(1− p•0 0 •(t)) = −q(d,µ,δ)

• (t)ps,e,i,r(t)

=⇒ ps,e,i,r(t) = ce−q
(d,µ,δ)
• (t).t = q(d,µ,δ)

• (0)e−q
(d,µ,δ)
• (t).t (10)

Let τQ be the TTE when the initial distribution equals the quasi-stationarity distribu-
tion [N̊asell, 2005]. Hence for stationary distribution,

E(τQ) = 1
q

(d,µ,δ)
•

. (11)
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2.2. Equilibrium points

The disease-free equilibrium is obtained as: Σ0 = (S0, I0, C0, A0) =
(

Λ
µ
, 0, 0, 0

)
.

To find the other endemic equilibrium, if exists, we put N = N(0), x1(t) = S(t)/N ,
x2(t) = E(t)/N , x3(t) = I(t)/N , and x4(t) = R(t)/N . Then equilibrium point is obtained
by equating the first differentiation to zero, i.e.

x′1(t) = µ− β
(
x3(t) + φx2(t)

)
x1(t)− µx1(t) = 0 (12)

x′2(t) = β
(
x3(t) + φx2(t)

)
x1(t)− (γ + µ)x2(t) = 0 (13)

x′3(t) = γx2(t)− (δ + µ+ d)x3(t) = 0 (14)
x′4(t) = δx3(t)− µx4(t) = 0 (15)

For simplicity we use the notations: xj(t) = xj for j = 1, . . . , 4.

Then solving (12) - (15), we have the endemic equilibrium as:

x̂1 = (γ + µ)(δ + µ+ d)
β(γ + φ(δ + µ+ d)) = 1

R0
(16)

x̂2 = µ(1− x̂1)
γ + µ

= µ

γ + µ
(1− 1

R0
) (17)

x̂3 = γµ(1− x̂1)
(γ + µ)(δ + µ+ d) = γµ

(γ + µ)(δ + µ+ d)(1− 1
R0

) (18)

x̂4 = γδ(1− x̂1)
(γ + µ)(δ + µ+ d) = γδ

(γ + µ)(δ + µ+ d)(1− 1
R0

) (19)

2.3. Diffusion approximation

Stationary distribution of an epidemic process may be approximated with a specified
multivariate normal distribution using Ornstein-Uhlenbeck process when the population size
N is very large and R0 ≥ 1. This approximation is valid only in absence of any infection. We
derive an approximate distribution of the quasi-stationarity by limiting Ornstein-Uhlenbeck
process (N̊asell, 2005). We consider a diffusion approximation to the stochastic version of
SEIR model.

Let the changes in the scaled state variables x1, x2, x3, and x4 during the time interval
be denoted by δx1, δx2, δx3, and δx4 respectively, where δxi(t) = xi(t + δt) − xi(t), i =
1, 2, 3, 4.

Under the assumptions of the original process on sequence of transitions, we evaluate
the mean vector and variance-covariance matrix for δxi (i = 1, 2, 3, 4) during the time interval
(t, t+ δt) as follows.

First assume that we are in the state (S,E, I, R). Then the possible transitions from
this state are:
(a) S increases by 1 at the rate µ
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(b) S decreases by 1 at the rate µS
(c) S decreases by 1 and E increases by 1 at the rate βφSE/N + βSI/N
(d) E decreases by 1 and I increases by 1 at the rate γE
(e) E decreases by 1 at the rate µE
(f) I decreases by 1 at the rate (µ+ d)I
(g) I decreases by 1 and R increases by 1 at the rate δI
(h) R decrease by 1 at the rate µR.

The random variable δx1 equals 1
N

in case (1), − 1
N

in cases (2), (3), and 0 in other
cases. Similarly, δx2 equals 1

N
in case (3), − 1

N
in cases (4), (5), and 0 in other cases. δx3

equals 1
N

in case (4), − 1
N

in cases (6), (7), and 0 in other cases. δx4 equals 1
N

in case (7),
− 1
N

in case (8), and 0 in other cases.
Then, E(δx) = b(x)δt+ o(δt)

where b(x) =


µ− β(x3 + φx2)x1 − µx1
β(x3 + φx2)x1 − (γ + µ)x2

γx2 − (δ + µ+ d)x3
δx3 − µx4

 (20)

Now to derive the variance-covariance matrix we find the Jacobian matrix of b(x) at
point x,

B(x) = ∂b(x)
∂x

=


−β(x3 + φx2)− µ −βφx1 −βx1 0

β(x3 + φx2) βφx1 − (γ + µ) βx1 0
0 γ −(δ + µ+ d) 0
0 0 δ −µ


Approximating B(x) at equilibrium point x̂ = (x̂1, x̂2, x̂3, x̂4) by B(x̂), we get,

B(x̂) =


−µR0 −βφx1 −βx1 0

µ(R0 − 1) βφx1 − (γ + µ) βx1 0
0 γ −(δ + µ+ d) 0
0 0 δ −µ


Therefore, variance-covariance matrix of δx = (δx1, δx2, δx3, δx4)′ is,
V (δx) = 1

N
S(x)δt+ o(δt) where,

S(x) = 1
N


β(x3 + φx2)x1 −β(x3 + φx2)x1 0 0

+ µ
N

+ µx1
−β(x3 + φx2)x1 (γ + µ)x2 + β(x3 + φx2)x1 −γx2 0

0 −γx2 (δ + µ+ d)x3 + γx2 −δx3
0 0 −δx3 δx3 + µx4


Again approximating S(x) by S(x̂), where x̂ is the equilibrium point, we obtain,

S(x̂) = 1
N


µ
N

+ µ −µ(1− 1
R0

) 0 0
−µ(1− 1

R0
) 2µ(1− 1

R0
) −µγ

γ+µ(1− 1
R0

) 0
0 −µγ

γ+µ(1− 1
R0

) 2 µγ
γ+µ(1− 1

R0
) −δµγ

(γ+µ)(δ+µ+d)(1−
1
R0

)
0 0 −δµγ

(γ+µ)(δ+µ+d)(1−
1
R0

) 2 −δµγ
(γ+µ)(δ+µ+d)(1−

1
R0

)





188 S. DAS, P. GHOSH, B. SEN, S. PYNE AND I. MUKHOPADHYAY [Vol. 18, No. 1

For large N , the process
√
N(x(t) − x̂) is approximated by a multivariate Ornstein-

Uhlenbeck (O-U) process with a local drift matrix B(x̂) and local variance-covariance matrix
S(x̂).

The stationary distribution of this O-U process approximates the quasi stationary
distribution. It is approximately normal with mean zero and variance-covariance matrix Σ,
where Σ is obtained by solving

B(x̂)Σ + ΣB′(x̂) = −S(x̂). (21)

Exact analytical solution for Σ is not straightforward (Anderson and Britton, 2000). Since
we are interested in calculating the CCS, we can easily solve the equation (21) numerically
given the parameter values and the equilibrium point.

Let σij be the solution for the (i, j)th element of Σ, where i, j = 1, . . . , 4. Diffusion
approximation guides us to consider the joint distribution of x1(t), x2(t), x3(t), x4(t) as four-
variate normal distribution with appropriate mean and variance-covariance matrix i.e.
√
N(x(t)− x̂) ∼ N4(0,Σ), with x(t) = (x1(t), x2(t), x3(t), x4(t))′, x̂ = (x̂1, x̂2, x̂3, x̂4),

and Σ =


σ11 σ12 σ13 σ14
σ21 σ22 σ23 σ24
σ31 σ32 σ33 σ34
σ41 σ42 σ43 σ44

 (22)

An approximation for quasi-stationary distribution is obtained from truncated multivariate
normal distribution. Thus in order to evaluate expected time to extinction and subsequently
the CCS, we use results from conditional truncated multivariate normal distribution. Now
define µ∗2 = x̂2 + σ23

σ33
(x3 − x̂3), σ∗22 = σ22 − σ2

23
σ2

33
.

To calculate p•10• (or p•01• or p•00•) first note that for largeN ,
√
N(x−x̂) approximately

follows a four-variate multivariate normal distribution with mean zero and covariate matrix
Σ, as obtained form equation (22). Now, we shall show that these terms contain product of
φ(ν)
Φ(ν) terms. Since N is unknown, we cannot evaluate its values exactly. Thus we use another
approximation to φ(ν)

Φ(ν) based on a logistic function only to make the calculation relatively
simple. Using the idea that |σ(βx) − Φ(x)| is minimum when β = 16x

15 (Birnbaum, 1963;
Haley, 1952)) and putting σ(z) = 1

1+e−z and β = 16
15

π√
3 , we approximate φ(.)

Φ(.) as,

φ(ν)
Φ(ν) = φ(ν)∫ ν

−∞ φ(x)dx = βφ(ν)∫ βν
−∞ φ( y

β
)dy
≈ βφ(ν)
σ(βν) (Williams, 2005)

= βφ(ν)(1 + e−βν) ≈ β
[1 + cos(ν)

2π
]
(1 + e−βν) (Raab, 1961)

≈ β
1 + cos(ν)

2π as, ν →∞ as, N →∞
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Therefore, for y > 0, Φ(y + h)− Φ(y) ≈ h.φ(y), we obtain

p•10• =
∞∑
s=0

∞∑
r=0

P (S = s, E = 1, I = 0, R = r) = P (E = 1, I = 0)

≈P (0.5 < Nx2(t) ≤ 1, 0 ≤ Nx3(t) ≤ 0.5)
≈P (0.5 < Nx2(t) ≤ 1|0 ≤ Nx3(t) ≤ 0.5).P (0 ≤ Nx3(t) ≤ 0.5)

=
Φ(
√
N( 1

N
−µ∗

2)√
σ∗

22
)− Φ(

√
N( 1

2N−µ
∗
2)√

σ∗
22

)

1− Φ(
√
N(0−µ∗

2)√
σ∗

22
)

.
Φ(
√
N( 1

2N−x̂3)
√
σ33

)− Φ(
√
N(0−x̂3)√
σ33

)

1− Φ(
√
N(0−x̂3)√
σ33

)

≈
0.5
N√
σ∗

22√
N

φ(
√
N( 1

2N−µ
∗
2)√

σ∗
22

)

Φ(
√
Nµ∗

2√
σ∗

22
)

.
0.5
N√
σ33√
N

φ(
√
Nx̂3√
σ33

)

Φ(
√
Nx̂3√
σ33

)

≈ 1
2
√
N

1√
σ∗22

β
1 + cos(

√
Nµ∗

2√
σ∗

22
)

2π .
1

2
√
N

1
√
σ33

β
1 + cos(

√
Nx̂3√
σ33

)
2π

Thus we have,

p•10• = 1√
σ∗22

1
2
√
N
β

1 + cos(
√
Nµ∗

2√
σ∗

22
)

2π
1
√
σ33

1
2
√
N
β

1 + cos(
√
Nx̂3√
σ33

)
2π when x3 = 0

p•01• = 1√
σ∗22

1
2
√
N
β

1 + cos(
√
Nµ∗

2√
σ∗

22
)

2π
1
√
σ33

1
2
√
N
β

1 + cos(
√
Nx̂3√
σ33

)
2π when x3 = 1

p•00• = 1√
σ∗22

1
2
√
N
β

1 + cos(
√
Nµ∗

2√
σ∗

22
)

2π
1
√
σ33

1
2
√
N
β

1 + cos(
√
Nx̂3√
σ33

)
2π when x3 = 0

Once we find q(d,µ,δ)
• , we have an expression for expected time to extinction Ê(τQ) using (11).

Clearly, Ê(τQ) will be a function of N. However, N is unknown. To obtain this N which is
nothing but CCS, we equate median time to extinction with the quasi-period (T̂0) (N̊asell,
2005). The quasi-period is obtained as T̂0 = 2π

θ
where θ is the angular frequency. The

angular frequency is determined by linearisation about the critical point that corresponds to
the endemic infection level (Dietz, 1975). The value of N from E(τQ)log2 = T̂0 will be the
CCS value (N̊asell, 2005).

We find the quasi-period of the oscillation about the critical point using linearisation
method (Dietz, 1975). Note that for our model, the linearised system about the equilibrium
point x̂ = (x̂1, x̂2, x̂3, x̂4)′ can be written as:

dx∗

dt
=


−
βµ(1− 1

R0
)

γ+µ (φ+ γ
δ+µ+d) −βφ

R0
− β
R0

0
βµ(1− 1

R0
)

γ+µ (φ+ γ
δ+µ+d) βφ

R0
− (γ + µ) β

R0
0

0 γ −(δ + µ+ d) 0
0 0 δ −µ

x∗ (23)
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where x∗ = x− x̂.

Now we can find the eigen values of the matrix in (23) and find the angular frequency,
provided there are imaginary roots. Putting the values of the parameters, we can find the
angular frequency (θ). The quasi-period is obtained as T̂0 = 2π

θ
, which is independent of N .

From the relation Ê(τQ) log 2 = T̂0 (N̊asell, 2005), we can solve for N , which is the CCS.
Since we are dealing with a system consisting of more than two equations, the calculations
become very complicated. Hence we find an approximate value of CCS numerically.

In a nutshell, our method at first develops a fully stochastic model corresponding
to the deterministic model (1)-(4); then assuming quasi-stationarity and non-extinction of
infection, expected time to extinction TTE (≡ E(τQ)) of the disease is derived. E(τQ)
involves some probability terms that we evaluate using diffusion approximation of the scaled
state variables (S, E, I, R). τQ is a function of the CCS. We derive quasi-period T̂0 in terms
of angular frequency that is obtained using linearised system at equilibrium points. Then
using the relation E(τQ) log 2 = T̂0 (N̊asell, 2005), we could finally evaluate the CCS for the
disease dynamics of COVID-19.

3. Results

For COVID-19 transmission, we have calculated the CCS and TTE of the disease based
on our proposed SEIR model. We note that the value of the CCS is approximate as we have
applied some mathematical approximation while applying diffusion approximation to find
the quasi-stationary distribution. The value of CCS for a community or a country, depends
on its parameters which we deduce from the available information on COVID-19 till date.

We apply our method to different states in India. However, this is a general method and
can be applied to any country or locality provided the values of the parameters are available.
Actual fatality rate due to any epidemic could only be calculated after the epidemic gets
over. But in the middle of the pandemic, it is difficult to assess. So we determine the state-
specific death rate (d) at four time points at an interval of seven days based on the number
of deaths in the duration of May 15− 21, May 8− 14, May 1− 7, and April 24− 30 and the
total number of newly infected individuals during 7 days prior to these dates respectively.
From hereon, we denote the four time points as T1, T2, T3, and T4 respectively.

Different countries have implemented varying criteria of discharging COVID-19 patients
from hospitals making the actual recovery rate very difficult to calculate amid the pandemic.
It is yet unknown whether all the discharged patients have fully recovered from the disease or
some of them would get sick again, shortly afterwards. So we have assumed the recovery rate
(δ) again at four time points at an interval of seven days based on the number of recovered
patients during May 15−21, May 8−14, May 1−7, and April 24−30 and the total number
of newly infected individuals during dates April 24-May 7, April 17 − 30, April 10 − 23,
and April 3− 16 respectively. These Indian state-specific numbers for newly infected cases,
death, and recovery at four time points are obtained from https://api.covid19india.org/.

Another very tricky and state dependent parameter is the rate of detection of positive
cases from among the exposed pool of people, i.e. percentage of exposed people that are
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actually tested to be COVID-19 positive. In absence of enough manpower and testing
kits in this dire situation, we will not be able to know the actual proportion (γ) of the
exposed who could later on become a COVID-19 patient. For calculating γ, we obtained
daily state-wise test positivity rate (TPR) (https://api.covid19india.org/) that is the rate
at which the exposed individuals are tested and reported to be infected daily. We calculate
7-day average TPR (using geometric mean) for each state at three time points mentioned
above. Next we calculated at each time point the geometric mean of 7-day average TPRs
from all states and took the maximum value as γ. We obtain, γ ≈ 0.04. The rationale
behind taking maximum value is due to the fact that, in India the number of tests done
per million is 1823 (as on May 21, 2020), which is much less than many other countries
(https://www.worldometers.info/coronavirus/). It is possible that if we had enough tests,
the actual TPR could be different, rather higher. The per day rate of natural death that
stabilises the population under normal scenario is µ = 1

70
1

365 = 0.0000391 (assuming average
longevity of an Indian is 70 years). In absence of actual contact rate (β), we have assumed
β = 1.1 (Senapati et al., 2020). Another difficult parameter to obtain is the contact rate
for COVID-19 transmission from exposed to susceptible individuals (βφ ). We calculated a
range of βφ values for all Indian states at all time points and assumed the most common
rate. We obtained βφ ≈ 0.0011.

Table 2: CCS and TEST for Indian states at different time points

T4 T3 T2 T1
State CCS R0 TEST CCS R0 TEST CCS R0 TEST CCS R0 TEST
DL 230 5.081 19-23 350 2.186 16-19 380 1.836 15-19 720 1.563 18-21
GJ 170 2.389 13-16 350 2.121 16-19 280 1.782 14-17 70 2.575 9-13
JK 490 2.140 17-20 160 2.320 13-16 240 2.201 14-17 170 1.926 12-15
KA 40 2.416 6-10 460 1.908 17-20 380 2.808 17-20 140 2.518 12-16
MP 320 3.615 17-19 190 1.785 12-15 180 1.664 11-15 70 2.475 9-12
MH 190 2.992 14-17 170 3.317 14-17 60 2.733 9-12 260 2.166 14-18
RJ 590 2.401 19-22 670 1.616 18-21 260 2.088 14-18 310 1.913 15-18
TN 410 2.076 16-19 260 3.168 16-18 550 1.682 17-20 3380 1.037 23-26
TG 270 3.131 16-19 30 2.199 1-7 740 1.402 17-21 270 1.916 14-18
UP 570 2.124 18-21 470 1.715 16-20 450 1.855 17-20 950 1.483 19-23
WB 50 3.644 9-12 400 1.573 15-19 2510 1.179 22-26 70 2.667 10-13
PB 60 4.053 11-13 180 3.436 14-17 160 4.183 15-17
HR 260 2.764 15-18 230 4.035 16-18 360 1.625 15-18
BR 160 2.072 12-15 470 2.632 18-21
CH 400 3.147 17-20 270 3.457 16-19
OR 160 2.124 12-16
UT 140 3.690 14-16
AP 90 2.340 10-13 970 1.285 18-22
KL 80 1.784 7-11
AS 950 1.278 18-22
HP 2330 1.178 15-19

TEST (in weeks) gives a range of lockdown period across different Indian states at all time points; DL:
Delhi, GJ: Gujarat, HR: Haryana, JK: Jammu and Kashmir, KA: Karnataka, MP: Madhya Pradesh, MH:
Maharastra, PB: Punjab, RJ: Rajasthan, TN: Tamil Nadu, TG: Telangana, UP: Uttar Pradesh, WB: West
Bengal, AP: Andhra Pradesh, BR: Bihar, CH: Chandigarh, OR: Odisha, UT: Uttarakhand, KL: Kerala
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Table 3: TEST with minimum CCS across different time points for Indian states

States min CCS T4lower T3lower T2lower T1lower T4upper T3upper T2upper T1upper
DL 230 16 14 13 12 19 17 16 15
GJ 170 13 13 12 9 16 16 15 13
JK 160 12 13 13 12 15 16 16 15
KA 40 6 3 7 6 10 8 10 10
MP 180 14 12 11 9 17 15 15 12
MH 60 9 10 9 7 12 13 12 11
RJ 260 15 13 14 14 18 17 18 17
TN 260 14 16 13 9 17 18 17 13
TG 30 6 1 1 1 9 7 3 6
UP 450 17 16 17 15 20 19 20 19
WB 50 9 2 1 8 12 8 5 11
PB 60 11 10 11 1 13 13 13 4
HR 230 15 16 6 12 18 18 10 16
BR 160 6 12 13 9 15 16
CH 270 16 16 19 19
OR 160 12 6 2 16 10 6
UT 140 14 16
AP 90 10 5 13 9
KL 160 7 11

T1lower (or T2lower or T3lower): minimum TEST (in weeks) required at time point T1 (or T2 or T3), T1upper

(or T2upper or T3upper): maximum TEST (in weeks) required at time point T1 (or T2 or T3); DL: Delhi, GJ:
Gujarat, HR: Haryana, JK: Jammu and Kashmir, KA: Karnataka, MP: Madhya Pradesh, MH: Maharastra,
PB: Punjab, RJ: Rajasthan, TN: Tamil Nadu, TG: Telangana, UP: Uttar Pradesh, WB: West Bengal, AP:
Andhra Pradesh, BR: Bihar, CH: Chandigarh, OR: Odisha, UT: Uttarakhand, KL: Kerala

Table 4: CCS and TEST for India at different time points

δ d CCS R0 TEST
T4 0.4799 0.0327 620 2.1793 23-27
T3 0.4502 0.0321 470 2.3142 21-25
T2 0.4717 0.0305 690 2.2243 23-28
T1 0.5203 0.0270 380 2.0439 19-24

We have computed state-wise CCS at time points T1, T2, T3, and T4 (Table 2). For a
few states, data were missing at some or all time points and so, CCS could not be obtained.
While calculating CCS we observed that the expected TTE in absence of specific treatment
or vaccine, is very large. But the most interesting observation from our study is that complete
lockdowns or restrictive quarantines for a definite period might eradicate the disease almost
completely. We term this period as Temporary Eradication of Spread Time (TEST) for
the disease, which is immensely less than the expected TTE for the disease. Although the
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disease might continue to exist for a very long time on the planet in absence of pharmaceutical
interventions, soothing part from our deduction is that the virus might not be able to create
any havoc on its return. Our study thus provides a rationale behind the determination of
the lockdown period in different Indian states going through the catastrophic effect of the
pandemic. This work may aid public health workers to strategise lockdown policies.

For example, we find in Table 2, CCS of Delhi (DL) at time T2 is 380 and TEST is
15 − 19. This would mean that based on the demographic figures corresponding to time
T2, if the susceptible population (or community size of quarantined people) of DL is below
380, the infection will subside substantially after around 15− 19 weeks of mass quarantine/
restrictive lockdown, unless it is re-introduced from outside. TEST for DL across time points
T1, T2, T3, and T4 suggests that R0 is decreasing. But to understand whether DL or the
other states are improving from the lockdown or not, we need to note Table 3. In Table 3, we
find for DL if the susceptible population is below minimum CCS value among all time points,
both lower and upper limit of TEST decreases over time. This suggests DL is improving in
the sense that the number of lockdown period is decreasing over time. If we observe that
TEST is increasing over time, it would suggest apart from the fact that lockdown should be
increased in those states, the level of infection is increasing.

Using the demographic data for India (https://github.com/CSSEGISandData/COVID-
19/tree/master/csse_covid_19_data/csse_covid_19_time_series), we find the overall
CCS and TEST for India at time points T1, T2, T3, and T4 (Table 4). To compare the in-
fection status of India, we obtained TEST at all time points with minimum CCS. We observe
that if the susceptible population is below minimum CCS value (which is 380) among T1,
T2, T3, and T4, TEST is almost 19−24 weeks at all time points. So, it suggests India might
have to wait at least another 5-6 months for the pandemic curve to flatten while maintaining
maximum possible social distancing norms and in some situations complete lockdown, in
absence of specific treatment.

4. Discussion

As things stand at present, the number of COVID-19 cases from many developed
countries have surpassed those of China, from where this infection had originated. In such
a dire situation, it is very difficult to propose any quintessential lockdown period specific to
any country or state. The whole world is struggling to obtain unbiased data to predict on the
pandemic. At the same time many questions arise in our minds as “Will the implemented
number of lockdown days eradicate the virus?” or “Will it come soon again after the lockdown
is over?” or like “How long should the lockdown be continued for the pandemic curve to
flatten?” In this scenario of utter dilemma, with the available world-wide data, we provide
state-wise estimates of the ideal lockdown phases using our proposed mathematical model for
the Indian states. To the best of our knowledge, any guideline for country-wise mathematical
prediction of lockdown days is not available till date. So, as the famous British statistician
George E. P. Box pointed out, “All models are wrong but some are useful”, we only hope
that our deductions will provide some helpful suggestions to the policy-makers and public
health practitioners, while we are all affected in the pandemic to varying degrees.

Our work suggests that if people are quarantined in limited groups presented by state-
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specific CCS, the disease might become contained after the corresponding expected TTE,
unless the disease is re-introduced from outside. We observe that although TTE in this case
is a very long time (in absence of pharmaceutical interventions), the infection would subside
almost completely after TEST. WHO also predicts that COVID-19 virus might continue
to stay among us like the HIV. This fact matches with our observation. The TEST that
we observed for Indian states or India as a whole shows a trajectory similar to Spanish flu
virus. Markel et al. (2007) observed that during the 1918 Spanish flu, the overall deaths
in the US cities roughly occurs over a period of 24 weeks. COVID-19 appears to have
roughly a similar timeline as that of the Spanish flu. We also observe that as the contact
rate (β) of infected with the susceptible increases, R0 increases steeply. This would mean
that if the lockdown is withdrawn before the infection level becomes substantially low, a
second wave of infection may hit the society. During the Spanish flu, the cities that had
terminated lockdown before the infection was substantially contained, witnessed another
abruptly increasing death peak after a short while. In this direction, our work suggests that
a lockdown should be taken very seriously to fight against COVID-19 pandemic. This paper
provides evidence of the fact that even after the lockdown phase, the disease may recur but it
is not expected to create a comparable pandemic situation. Presently, where contact tracing
of the infected individuals can lead to tracing down of the exposed individuals, we suggest
their quarantining in different feasible groups of sizes not exceeding the state-specific CCS, so
that after TEST (as specified for each state) the disease may subside substantially unless any
infection is re-introduced from outside. We understand that there could be some flexibility
in the lockdown implementation strategies owing to the mathematical approximations made
in our calculation of CCS and TEST of the disease. We note here that our model is robust
to these approximations.

Another undeniable consequence of the current pandemic is the great negative impact
on the economy. This is further magnified by the near paralysed state of transactions in
many sectors due to lockdown. Moreover, there is a fear among the general population that
if any infection recurs, it might lead to another round of spread of the disease. This fear,
which is not unrealistic, may extend the lockdown further. However, after the scheduled
lockdown period, if any individual gets infected and a few others get exposed to that person,
we need to check whether the total number of such individuals is less than the CCS. If
so, the group needs to be quarantined in smaller feasible groups to protect the rest of the
population. A newly exposed group, if larger than the CCS, may be quarantined in separate,
local subgroups of size no larger than CCS. Moreover, such localised lockdown or quarantine
should help in preserving somewhat the daily flow of life and livelihood, and might thereby
prevent, at least to some extent, the economy from being further weakened.

However, lockdown in its truest sense may not be feasible in a vast and diverse country
like India. Therefore, a strategy of localised and limited lockdowns of objectively identi-
fied selected high risk population might be a cost-effective option compared to a generalised
“blanket” lockdown. This would imply comprehensive screening for cases and thorough trac-
ing of contacts. So, our take-home message during the still unfolding COVID-19 pandemic
is that, till the end of TEST, we must be vigilant and careful. With any further onset of
COVID-19 cases in the future, we should follow the quarantine guideline as objectively and



2020] MODELING STRATEGIC LOCKDOWN POLICY FOR COVID 195

humanely as possible. Like any other epidemic, COVID-19 has the tendency to recur but
it might not create any alarming pandemic in the future provided we keep a vigilant eye on
our hygiene and have vaccinations and/or treatments. Surely, the realities on the ground −
involving human life and death − are much more complex than any model can possibly ever
capture. We humbly present the findings of our model as possible instruments of guidance
in order to supplement relevant public policies based on ethics and ground realities.
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APPENDIX

Table 5 gives the values of δ and d for four time points considered in our calculation.
‘NA’ indicates that these parameters cannot be calculated based on the available data. As
for example, if there is no death during the period under consideration, the value of d would
be zero, as in case of Orissa. For such cases we did not provide CCS and TEST.

Table 5: δ and d values for different time pints

T4 T3 T2 T1
State δ d δ d δ d δ d
DL 0.212 0.005 0.505 0.004 0.594 0.014 0.700 0.016
GJ 0.422 0.043 0.464 0.061 0.59 0.037 0.395 0.036
JK 0.508 0.012 0.476 0.003 0.5 0.006 0.554 0.024
KA 0.44 0.02 0.552 0.032 0.376 0.019 0.427 0.014
MP 0.264 0.042 0.587 0.038 0.643 0.028 0.430 0.019
MH 0.336 0.035 0.302 0.032 0.378 0.028 0.488 0.025
RJ 0.443 0.02 0.664 0.028 0.515 0.018 0.569 0.013
TN 0.528 0.008 0.34 0.009 0.656 0.008 1.085 0.004
TG 0.348 0.006 0.503 0.003 0.766 0.033 0.553 0.029
UP 0.51 0.015 0.635 0.016 0.585 0.017 0.725 0.029
WB 0.253 0.051 0.487 0.224 0.896 0.059 0.389 0.027
PB 0.253 0.02 0.294 0.028 0.261 0.003 NA NA
HR 0.392 0.01 0.25 0.024 NA NA 0.682 0.006
BR NA NA NA NA 0.532 0.005 0.418 0.003
CH NA NA 0.333 0.019 0.302 0.019 NA NA
OR NA NA 0.512 0.012 NA NA NA NA
UT NA NA 0.25 0.05 NA NA NA NA
AP 0.468 0.008 0.866 0.008 NA NA NA NA
KL 0.615 0.011 NA NA NA NA NA NA
AS NA NA NA NA NA NA 0.833 0.045
HP NA NA NA NA NA NA 3.333 0.029
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Abstract 
  

The COVID-19 pandemic has revealed systemic deficiencies in preparing and planning for 
disasters, with profound health, economic, social, political, and humanitarian consequences. When 
preparing for pandemics, social vulnerability needs to be assessed using vulnerability indices to 
identify which populations are at greater risk. In this context, we examined the possible association 
of social vulnerabilities in U.S. cities with COVID-19 case fatality ratios. Post-pandemic return to 
normalcy is fraught with uncertainty over the ability of different communities to recover with 
varying degrees of resilience. Towards this, we recommend use of a community resiliency 
planning framework, along with modeling and evaluation of the required measures, which may be 
useful for the Indian scenario.  
 
Key words: Social vulnerability; Case fatality ratio; Community resilience; COVID-19; Pandemic; 
Socio-economic covariates. 
 

1. Introduction 
 

The COVID-19 pandemic, which had its first reported case in Wuhan, China on 17 
November 2019, has subsequently had profound global consequences on health, economic, social, 
political, and almost every major aspect of human life. It is unlike any other single phenomenon 
that has occurred in modern history since the end of World War II. The effects of the COVID-19 
pandemic have spanned over a range that is so vast over space, and yet so condensed over time, 
that the dual blows of intensity and rapidity have exposed myriad systemic vulnerabilities in many 
societies around the world. Many countries with apparently robust systems have come under 
severe stress, and now expect to trudge a slow and painful path to recovery. 

 
Evidently, such systemic deficiencies serve as a reminder of the complex interplay of 

anthropogenic factors that unfold daily in the form of a vast range of human activities that shape 
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the world around us. By 2050, the average urbanization rate is expected to reach 86% in developed 
countries, and 64% in developing countries (Liu et al., 2019). At the 2002 biennial meeting of the 
International Society for Ecosystem Health at Washington DC, a report titled, “Unhealthy 
Landscapes: How Land Use Changes Affect Health” was published (Patz et al., 2004). We 
understand now how rapid and extensive land-use changes may activate cascades of risk factors 
involving deforestation, pollution, poverty, migration, and an alarming rise in new human-animal 
interfaces, which exacerbate the risk of emergence of novel communicable diseases, especially 
through zoonotic pathogens such as bat-borne coronaviruses (Pyne et al., 2015). 

 
A century after the 1918 “Spanish flu” pandemic, at a 2018 meeting in Geneva, the World 

Health Organization (WHO) warned us about the possibility of a zoonotic pandemic caused by a 
novel pathogen, which was enigmatically called, “Disease X” (WHO 2018 Annual review of 
diseases). In fact, Disease X was included in its “2018 list of diseases to be prioritized under the 
R&D Blueprint”. Yet, as the COVID-19 crisis has clearly demonstrated, we have no choice but to 
identify, assess and address the systemic vulnerabilities not just at the level of select organizations, 
but indeed of entire societies.  
 

2. Social Vulnerability: The Place to Begin 
 

There is a lack of consensus on the definition of vulnerability in scientific literature. In the 
context of a pandemic and other disease outbreaks, we assume that vulnerability is a property of a 
system, which upon interaction with a given hazard produces an outcome, including a disaster. A 
stress to the system that has a high potential to harm people and places is termed as a hazard. A 
disaster refers to a singular large-scale event to which a local community finds it difficult to 
effectively adapt or cope with. Risk is defined as the likelihood that certain loss or damage could 
result from a disaster (National Research Council, 2006). 

 
In recent years, the field of vulnerability assessment has shifted from qualitative 

conceptualization to precise quantitative measures of vulnerability (Cutter SL, et al., 2009). Index 
based measurement provides objectivity to analysis and allows assessment by integrating various 
indicators to represent different vulnerability scenarios. Known examples of vulnerability indices 
include the Environmental Sustainability Index (Esty et al., 2005), and the Human Development 
Index (Burd-Sharps et al., 2008). Vulnerability assessments need not aim for quantification of any 
absolute level of potential damage but rather attempt to assess objectively which populations, and 
the corresponding systems, are more vulnerable to a particular hazard. 

 
While different frameworks of vulnerability assessment appear in literature, here we extend 

an earlier classification (Karmakar et al., 2010) of human vulnerability with respect to pandemics 
to include the following types: (1) individual (age, education, nutrition, immune health, 
comorbidities, exposures, behavioral factors), (2) social (housing, household composition, 
minority status, community network), (3) economic (income and employment, health insurance, 
food security, ready government programs, monetary relief instruments designed for a lockdown), 
(4) infrastructure (regional level secure essential supply chains, energy and communication access, 
means of essential transport during a crisis, reserved medical stocks), (5) technological (platforms 
to monitor physical, cognitive and psychological well-being, dynamic information on available 
medical facilities, optimized diagnostic and vaccination strategies, protected healthcare personnel, 
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interactive apps and round-the-clock helplines, real-time data collection and visualization, digital 
connectivity), and (6) administrative (see below). The above list is, of course, not exhaustive. 

 
In the context of a pandemic, useful administrative modes of action may consist of an 

assiduously data-driven apolitical style of leadership, dynamic and flexible decision-making, 
mandatory daily clear and accurate media updates on unfolding situations, active ongoing 
surveillance on the ground for both stationary and mobile populations, meticulous contact tracing 
with ethical protocols, recognizing sensitivity to key local needs, using empathy as a core criterion 
when dealing with minorities and vulnerable groups, taking swift steps to mitigate rumors and 
misinformation, meaningful engagement of communities to obtain regular feedback and respond 
accordingly and accountably, enact schemes of local and limited economic activity as equitably 
and cautiously as possible, and coordinate across a well-practiced disaster management plan.  

 
To aid planning, comprehensive social vulnerability maps have been developed in many 

countries in North America and Europe, and also China. Recent studies have produced 
vulnerability indices for health risk (NITI Aayog, 2019) and hydro-climatic risk in India (Vittal H, 
et al, 2020). However, to the best of our knowledge, India lacks a comprehensive health risk atlas 
based on district-wise vulnerability indices that can lay out the key socioeconomic and 
environmental determinants of community-specific health. The recently published Vulnerability 
Atlas of India, Third Edition, 2019 includes hazard scenarios for natural disasters, should also be 
extended to address future epidemics or pandemics (Vulnerability Atlas of India, 2019). Such 
lacuna could undermine the capacity of an administration to confront a sudden pandemic situation 
as it might render any breakdown of its systemic responses unpredictable, and thus, result in 
confounding of priorities. 

 
On quantitative assessment of vulnerability, we take the example of Social Vulnerability 

Index (SVI) developed by the Geospatial Research, Analysis, and Services Program (GRASP) 
within the United States Centers for Disease Control and Prevention (CDC) to help flag areas 
where residents will be in greatest need of support and recovery assistance in the case of a disaster 
or extreme weather event (CDC’s Social Vulnerability Index). SVI provides four categories of 
vulnerability: socioeconomic status, household composition and disability, minority status and 
language, and housing and transportation based on data from the 2012-2016 American Community 
Survey. These four SVI indices along with an overall SVI score are available for different 
geographical units (e.g., all U.S. counties) at a national scale (CDC’s Social Vulnerability Index).  
 

3. Does Social Vulnerability Impact COVID-19 Fatality? 
 
Since the first reported case of COVID-19 in the U.S. in Washington State on January 31, 

2020, there have been in the U.S. over 1.7 million cases as of May 27, 2020, when the number of 
related deaths crossed the mark of 100,000 (Coronavirus in the U.S., New York Times, 2020). In 
this study, we take a look at the early stages of the pandemic, from 29 February to 15 March, in 
the COVID-19 affected U.S. cities for possible association between their socioeconomic 
vulnerabilities and their case fatality ratio (CFR), which is given by the number of deaths by the 
disease divided by the number of confirmed cases of the same.  
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It is generally agreed that CFR of COVID-19 has varied between 4.5% and 16% globally, 

with the U.S. experiencing an overall 6% CFR. However, some U.S. cities have experienced a 
disproportionate number of deaths compared to others. Since precise calculation of CFR can be 
made only after an outbreak is over, which is not yet the case, we computed a crude version of 
CFR as the ratio of the cumulative number of deaths to the cumulative number of cases at a given 
city on a given date. This dynamic CFR value over a time-period starting from 29 February up to 
15 March 2020, for 110 U.S. cities that had at least 500 cases of COVID-19 by that end date, are 
shown as a heatmap in Figure 1 (Annexure). 

 
To identify the different common temporal patterns of CFR in an unsupervised manner, we 

used agglomerative hierarchical clustering with linkage by Ward’s distance. It revealed 4 clusters 
of cities having (1) early and prolonged, (2) intermediate, (3) mild, and (4) weak CFR profiles. 
The names of the cities in the clusters (1) through (4) are depicted in Figure 1 in brown, red, orange, 
and yellow, respectively. Given the generally weak profiles in cluster 4, we exclude it from further 
analysis.  

 
CFR is probably better suited than either absolute mortality figures or the COVID-19-

specific mortality rate to provide insights into systemic deficiencies that may affect a community’s 
response to the health and other challenges presented by the outbreak it faces. Upon grouping the 
cities according to the clustered CFR profiles, we compared the social vulnerability indices of 
these groups. We used SVI for Socioeconomic Status (SES), SVI for households, and overall SVI 
as computed by the U.S. CDC. Further, we also included some basic social and economic 
indicators from the latest U.S. Census Bureau data such as the percentages of black population 
(considered a minority group) and poor population of a city, and its Gini index as a known measure 
of overall wealth inequality. Figure 2 (Annexure) shows the boxplots for each of these indicators 
for the cities belonging to clusters 1 (brown), 2 (red) and 3 (orange).  

 
We note that the 3 clusters, as well as their respective medians, differ significantly for each 

of these variables as per Kruskal-Wallis 3-group test (p-value < 0.1). Notably, cluster 1 with its 
early and prolonged CFR profile has higher median social vulnerability values compared to the 
other two clusters, on each of the stated indicators. While we want to avoid making any ecological 
fallacy in drawing inferences about individual disease outcomes based on city level socioeconomic 
conditions, it is nonetheless difficult to ignore the common pattern – of higher median vulnerability 
in cluster 1 – across the various indicators shown in Figure 2.  

 
It is possible that pre-existing or chronic socioeconomic vulnerabilities could directly or 

indirectly contribute to the increased health risk in many of these cities when faced with the 
additional burden of a sudden and severe pandemic. The underlying pathways starting from one’s 
exposure to death are often diverse, e.g., many of the young black casualties had little choice but 
to go out to work on jobs that could not be done remotely from the safety of home. According to 
the U.S. Bureau of Labor Statistics 2017-2018 report on job flexibilities, while more than 60% of 
the top quarter of salaried employees could work from home, that figure is less than 10% of those 
in the bottom quarter (Economic News Release, 2019). Intense research to shed light on this 
complex topic will no doubt be conducted over the coming years. 
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4. Developing Community Resiliency to Pandemics 
 

Post-pandemic return to normalcy is fraught with uncertainty over the ability of different 
communities to recover with varying degrees of resilience. Above, we discussed social 
vulnerability in the context of populations to determine who would be more impacted by a 
pandemic than others. Resiliency is a term related to vulnerability. While vulnerability focuses 
more on chronic stressors such as existing exposures and sensitivities, resiliency, by contrast, is a 
dynamic property of a population that involves transformative concepts such as learning, critical 
reflection, adaptation, and reorganization (Cimellaro et al., 2016). Rather than assessing the state 
of a system prior to a disaster, action-oriented questions such as how long it would take to respond, 
organize, incorporate the lessons learned, and resume normal activities, are asked to assess 
resiliency of a community. 

 
To illustrate how to approach a community resilience planning process, we could take the 

example of the U.S. National Institute of Standards and Technology (NIST) Community 
Resilience Planning Guide (NIST Special Publication, 2016). It defines resilience as “the ability 
of a community to prepare for anticipated hazards, adapt to changing conditions, withstand, and 
recover rapidly from disruptions”. Often, such ability relies on key components such as 
infrastructure, utilities, administration, and governance – each of which requires significant time 
and resources to re-build. Towards this, the NIST guide offers a template of community resilience 
measurement framework based on estimates of expected recovery times, especially for different 
communities and infrastructure sectors, which could now be adapted for pandemic resiliency. The 
expression of resiliency in terms of recovery of system functionality over time following disruption 
by a disaster event can be seen in the concept diagram [Figure 3 (Annexure)] adapted from NIST 
Community Resilience Planning Guide, 2016. 
 

Community resiliency planning for a pandemic would require a population to adapt to the 
post-pandemic realities on the ground, allow backup measures and redundancies in the system, 
even at the cost of some efficiency, to halt cascades of avoidable losses and despair, restore supply 
chains for food and energy security, include built-in safety nets such as insurance plans, easy 
access to loans, medical reserves to limit avoidable losses of life and livelihood, activating new 
projects to generate economic vitality, resist various sources of rumors and misinformation, and 
support socializing activities as well as a variety of community-specific and locally relevant 
constructive measures. 

 
While the technical experts and policy makers may want to develop such resiliency measures 

by proposing interventions, it is, however, challenging to conduct real-life testing and 
benchmarking of their impact, particularly among high-density urban populations. In this regard, 
agent-based modeling (ABM) offers a promising solution based on a computational simulation 
approach. (Willensky and Rand, 2015) ABM is modeled as a collection of autonomous, decision-
making, and interacting entities called agents. An agent could represent an individual, an 
organization or, for that matter, any entity that can follow certain rules of behavior, and thus, 
interact with other agents and also the environment. As a result, we can observe macroscopic 
systemic behaviors – resulting from a large number of micro-level interactions among the agents 
– as bottom-up “emergent” properties. In an ABM, the stochastic behavior of each agent introduces 
a certain degree of randomness, which is compensated by conducting a large number of 
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simulations and aggregating the system responses at the end. By altering an input intervention for 
a fixed population that is subject to a fixed environment and disease conditions, and running over 
a given time-period, ABM can help in evaluating the impacts of different interventions. 

 
Despite its ability to allow uncertainty in the model, the micro-level design of an ABM 

makes it difficult to include in model specification the large degree of detail required to accurately 
reproduce real-world phenomena. However, an investigation of underlying principles and basic 
mechanisms is still quite possible, and indeed, most valuable (Brudermann et al., 2016). For 
example, measles outbreaks were modeled with FRED, an ABM platform, under different rates of 
vaccine coverage vis-à-vis anti-vaccination stigma among selected communities (Sinclair et al., 
2019). An ABM was combined with the application of optimal control theories in order to assess 
resilience of complex systems during extreme events (Cimellaro et al., 2016). A post-epidemic 
(Ebola) society was modeled with ABM to show how the original structure of the social network, 
severity of the disaster, and individual beliefs may affect the resilience of the community (Michel 
S, et al 2015). The emBRACE project used interdisciplinary, socially inclusive, and collaborative 
methods to develop an ABM based resiliency framework for Europe (Deeming et al., 2019). 
Another ABM study observed that relationship among the individuals of a community is so vital 
that a community with less population and more empathy may be more resilient to a disaster than 
one with more population and less empathy (Valinejad et al., 2020). 

 
Land use and land cover change often exhibit specific community dynamics, which have 

been modeled by several ABMs. (Guzy et al., 2008; Robinson, et al. 2007; Schwarz et al., 2012). 
This includes modeling of a cooperative approach to mitigate severe risk trade-offs resulting from 
increase in forest land at the cost of agricultural land (Guzy et al., 2008). The scenario closely 
resembles real-life in which trade-offs are negotiated between competing risks. Cooperation 
setting and establishing common grounds demonstrated better outcomes in the model. Such 
strategies need to be modeled to compare the faced risks and benefits during pandemics to 
determine policies that ultimately build resilience among the affected communities.  

 
Finally, we arrive at the problem of how to calibrate a model with community-specific 

characteristics. This is important as conditions prior to a disaster determine the degree of damage 
and lost functionality, which, in turn, impact resiliency of a community to withstand and recover. 
Therefore, when assessing resiliency, an ABM should be calibrated with pre-disaster conditions 
with community-specific real or estimated data and vulnerability indicators. For instance, a model 
for earthquake evacuation of pedestrians was based on the behavioral rules of the agents derived 
from real earthquake evacuations (Bernardini et al., 2014). Since local level estimates are not often 
available, small-area estimates may be used to quantify community-specific health outcomes (Das 
et al., 2019; Kong et al., 2020). For instance, such estimates for 500 U.S. cities were computed 
using 27 chronic health and behavioral risk factors (COVID-19 Pandemic Vulnerability Index, 
NIEHS of NIH). In India, data from national scale surveys such as the National Family Health 
Survey, Annual Health Survey, Comprehensive National Nutrition Survey, etc., (Dandona et al., 
2016) may be harnessed to compute suitable small area estimates for calibrating reliable models 
of community resiliency.  

 
We believe that the full potential of ABMs for modeling resiliency to disasters is yet to be 

realized. ABMs could be used for modeling complex administrative cascades, including obstacles, 
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trade-offs, dogmas, etc. Human emotions such as stigma or empathy can provide us key insights 
in testing of resilience. Examples of different ABM models were demonstrated in India at 2016 
and 2018 ‘Health Analytics and Disease Modeling’ workshops conducted by Health Analytics 
Network, and the Public Health Dynamics Laboratory of University of Pittsburgh (International 
Symposium on Health Analytics & Disease Modeling, 2016, 2018; Raghav and Verma, 2018). 
 

5. The Post-Pandemic Way Forward for India  
 

Incidentally, when a super cyclone named Amphan hit parts of the eastern coast of India and 
Bangladesh on 20 May 2020, right in the midst of the pandemic, despite the significant damage to 
local infrastructure, a relatively small number of human lives were lost thanks to administrative 
preparedness and efficient action (Cyclone Amphan bears down on India and Bangladesh – New 
York Times, 2020) that had to balance the competing risks of mass evacuation against the ongoing 
lockdown. With climate change and various recurring and seasonal disasters, new multi-hazard 
indices may prove to be useful for assessing possible vulnerability to the emerging reality of 
multiple concurrent disasters of different types (Locusts, COVID-19, Flooding pose “Triple 
Threat” in Africa – New York Times, 2020).  

 
As a model of a system that could be designed to perform like “well-oiled machinery” 

during a massive disaster, let us take the example of the 2004 tsunami in the Indian Ocean. WHO 
observed that despite the magnitude of the disaster that killed around 18,000 people in India, there 
was no significant disease outbreak. We can give credit for this to the state of Tamil Nadu (TN), 
which has, since 1922, legislated for an independent Directorate of Public Health with an 
administrative authority board and its own budget. Unlike other Indian states, TN keeps the 
delivery of public health and medical services distinct (Gupta et al., 2010). Importantly, it 
maintains a dedicated cadre of professionals who are trained in different public health activities, 
allowing TN to conduct annual “anticipatory planning” to prepare for recurring disasters such as 
floods, endemic diseases, and other public health emergencies (Krishnan and Patnaik, 2020). Thus, 
even if badly affected by the pandemic, TN is likely to rebound with its resilient system. 

 
Indeed, the central importance of the human component in the design of any critical system, 

however technologically enhanced, cannot be over-emphasized, especially if such a system is 
expected to have its “ear on the ground”. The Global Public Health Intelligence Network (GPHIN), 
developed by Health Canada in collaboration with WHO, is a secure Internet-based multilingual 
early-warning digital tool that continuously searches global media sources to identify information 
about disease outbreaks and other events of potential international public health concern. 
Interestingly, more than 60% of the initial outbreak reports in GPHIN come from unofficial 
informal sources, including non-electronic media, which are then verified by human experts 
(WHO Epidemic Intelligence). 

 
We conclude with mentioning the “Sendai Framework for Disaster Risk Reduction 2015-

2030” (Sendai Framework for Disaster Reduction, 2015), which was adopted at the Third UN 
World Conference in Sendai, Japan, on 18 March 2015, and is supported by the United Nations 
Office for Disaster Risk Reduction. This framework aims to reduce disaster risk and losses over 
the next 15 years based on its 4 priorities: (1) understanding disaster risk, (2) strengthening disaster 
risk governance to manage disaster risk, (3) investing in disaster risk reduction for resilience, and 



204    S. PYNE, S. RAY, R. GUREWITSCH AND M. ARURU [Vol. 18, No. 1 
 

 
(4) enhancing disaster preparedness for effective response and to “Build Back Better” in recovery, 
rehabilitation and reconstruction. However, in its current form, it does not explicitly address the 
disaster of a pandemic. In India, the National Health Mission publishes the Indian Public Health 
Standards that incorporate many disasters but also lack explicit planning for pandemics (Krishnan 
and Patnaik, 2018). Likewise, the National Disaster Management Authority formed in 2005 
addresses most natural and human-made disasters except for pandemics (Krishnan and Patnaik, 
2020). Clearly, this is a gap that India needs to fill in its national planning efforts in the wake of 
COVID-19 pandemic. 

 
It is not commonly known that during the 1918 Spanish flu pandemic, more than half of all 

deaths worldwide took place in (then British) India – as many as 17 million deaths from the disease 
(Schoenbaum, 2001). The high risks of zoonotic and other emerging infectious disease outbreaks 
for this region is well understood (Jones et al., 2008; Allen et al., 2017). Yet, at the same time, 
India has the advantage of having many strong institutions including its civilian services, research 
labs, vibrant media, and well-knit communities. We believe that by adopting the formal structure 
and priorities (such as those of the Sendai framework) to fortify its systems, India can emerge as 
a global leader in setting response and recovery standards that are specific to pandemic disasters 
and cognizant of the strengths and vulnerabilities of its unique and diverse communities, and thus, 
become more resilient to the complex crises of the future. 
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ANNEXURE 
 
 
 

 

Figure 1: Clusters of COVID-19 affected U.S. cities. Unsupervised hierarchical clustering of 
dynamic CFR time series, shown in heatmap, of 110 U.S. cities (x-axis) revealed 4 clusters of 
cities, as named in 4 different colors. The dashed lines mark 15-day intervals over the time-period 
(y-axis) of February 29 to April 15, 2020. On top is a dendrogram showing the linkage among the 
clusters based on Ward’s distance. 
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Figure 2: Comparison of socioeconomic covariates. For clusters 1, 2, and 3 of U.S. cities, the 
boxplots show (a) the percentage of black population, (b) the percentage of poor population, (c) 
Gini index, (d) SVI for SES, (e) SVI for households, and (f) overall SVI. 
 
 
 
 

 
 
Figure 3: A Functional Concept of Resiliency. Resiliency can be expressed in terms of recovery 
of system functionality over time following disruption by a disaster event (adapted from NIST 
Community Resilience Planning Guide, 2016). 
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Abstract
Throughout the world everyday, thousands of people are getting infected and hundreds

are dying in each country due to an pandemic caused by the outbreak of COVID-19. Start-
ing from Wuhan, this virus has almost travelled each and every country infecting millions
of people. In the absence of any vaccine till date and no confirmation of herd immunity
(D’Souza and Dowdy (2020) ), if any, the world is depending on some non-pharmaceutical
interventions (NPIs) to curb the spread of COVID-19. India is no exception. After three
consecutive lockdown spells, India has entered into lockdown 4.0 from May 18, 2020, with
some relaxations. Lockdown has a huge negative impact on the economy. This study aims
to predict the future in few districts of two selected states (Maharashtra and Gujarat) of
India if lockdown is removed or partially implemented. A statistical model based on renewal
process has been used for prediction. A hierarchical Bayesian method has been used for
this data. Predictions have been made till June 30, 2020, for each district of the two states
(Maharashtra and Gujarat) under this study.

Key words: Average reproduction number; Renewal process; Hierarchical Bayes; Infections.

AMS Subject Classifications: 62M20, 62F15

1. Introduction

After ages, the world is experiencing something so lethal and frightening. Starting
from a fish market in Wuhan, a novel coronavirus named SARS-CoV-2 or COVID-19 has
travelled the globe within a short span of time. Over 45 lacs people are already infected and
the death toll crossed 3 lacs throughout the world. In comparison with other deadly viruses
like Ebola, SARS or MERS, this virus is less fatal but is more contagious in nature (Mahase
(2020), Fox (2020)). A recent discovery of a particular mutation, found in India, claimed
that this virus has become more contagious (See Korber et al. (2020)).

Till date, no vaccine is available for SARS-CoV-2. A lot of clinical trials are going
on throughout the world to discover some “effective” vaccines. From previous experience,
we have observed that it took years to find any “effective” vaccine. In this situation, the
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world is relying more on non-pharmaceutical interventions (NPIs) to curb the spread of this
virus. Closing of educational institutions, ban on travel, maintaining physical distance were
taken as NPIs by different countries at different point of time. However, these NPIs were
not sufficient enough to tackle the spread. Knowing most of the adverse consequences, many
countries were compelled to impose lockdown as the last resort to battle against COVID-19.
Unlike most of the European countries, in India, the lockdown was not maintained properly
in most of the parts. As a consequence, infection spread throughout the country.

It is always a challenge to epidemiologists to predict the progress of infection caused
by an unknown virus. A lot of people are working in this direction individually as well as in
groups. Commonly used SER, SEIR, adaptive SEIR are more common among epidemiolo-
gists which are basically based on differential equations. As an alternative, statisticians are
using some probabilistic models to capture the uncertainty. It is imperative to use Bayesian
inference in all models as we have little or no experience in this SARS-CoV-2. The data
available from Wuhan gives us some idea of the spread. However, it is to be noted that, fa-
tality or attack rate depend on several factors like genetic profile, particular mutation of the
virus and on many confounding factors. It is well known that, even if in Bayesian inference,
we borrow prior information from some other virus. As an example for SARS-CoV-2, priors
are chosen on the basis of data on SARS infection which happened a few years ago. This
sort of assumptions always put any prediction model under severe threat of reliability. In
a recent paper published by Luo (2020) claimed that 97% of active cases would have been
solved by May 27, 2020, which received strong criticism.

Specific to the Indian scenario, the first work that got some acclamation was done by
a group of biostatisticians and epidemiologists at the University of Michigan (The Covid-
19 India Group, 2020). They have used adaptive SEIR model and predictions have been
made on the basis of this model. Gompertz model has been considered by Lee, Lei and
Mullick (2020). A lot of work has been done by the researchers from Imperial College of
London (ICL) (Seth et al. (2020), Walker et al. (2020)). The effects of non-pharmaceutical
interventions have been studied for European countries. Another impressive model has been
developed by the researchers belonging to IHME, University of Washington, Seattle (UW)
(IHME, 2020). In a recent work done by Chatterjee (2020), it has been shown that the
models developed by ICL and UW are so far giving good results in terms of prediction. In
this work, we have implemented a model induced from ICL model. A question that people
are interested in is that when this pandemic will come to an end. From previous studies,
we have some idea about the disease progression of several viruses like SARS or MERS.
Researchers are looking forward to the time point where asymptote will be achieved. It may
be noted that the Government is trying to implement restrictions, if any, in micro levels
to minimize economic loss. For the policymakers, it becomes necessary to have an idea in
micro-level. The model that we are using in the present work is quite general and can be
implemented at any region provided sufficient data is available.

The paper is structured as follows. In Section 2, we describe the methods briefly. Re-
sults of the districts are mentioned in Section 3. It is followed by a discussion section.
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2. Methods

To predict the time-varying reproduction number (Rt) under various levels of lockdown,
the reproduction number at time t is taken as a scale multiple of the baseline reproduction
number. The multiplicity factor is a constant function of the lockdown levels. Note that
we insert four dummy variables for the above four lockdown levels. The number of infected
cases at any day can be predicted using the reproduction number and the weighted average
of previous days’ affected figures with the discretized serial interval distribution probability
of secondary infection as weights (See Fraser (2007), Cori et al. (2013), Nouvellete (2018),
Cauchemez et al. (2008)). The mortality at any day can similarly be predicted using the case
fatality ratio (CFR) and the weighted average of previously affected figures with the chance
of mortality as weights. Mathematically speaking, there are three models working together.
These are models for infections, deaths and average reproduction rate. Let Is,t, Ds,t and Rs,t

be, at time t, number of new infections, number of new deaths and average reproduction
number for the state s. Moreover, let g(t) be the serial interval distribution. As explained
above, we then express the infection on t th day as

Is,t = Rs,t

t−1∑
τ=0

Is,τgt−τ (1)

We discretize the serial interval as:

gu =
∫ u+.5

u−.5
g(τ)dτ ;u = 2, 3, 4, ... (2)

with g1 =
∫ 1.5

0 g(τ)dτ where from the past experience, g(t) is assumed to be a gamma
distribution with mean 6.5 (average time from onset in a primary infection to onset in a
secondary infection) and a relatively small coefficient of variation 0.62 (Seth et al. (2020)).

For mortality, the observed number of deaths may be assumed to follow a Negative
Binomial law where the expected deaths are assumed to be the weighted average of the
daily infection, weights being a mixture of two gamma distributions that account for the
incubation period and time between the onset of symptoms and death. In case of Rd,t (the
average reproduction number for a state d), we use levels of lockdown as covariates. Let Rd,0
be the baseline reproduction number for dth district. Then Rd,t is modelled as

Rd,t = AFd ∗Rd,0 ∗ (2 ∗ φ−1(−α ∗ δ)), (3)

where AFd is the adjustment factor considered for district d based on its population, δ indi-
cates the level of lockdown: 0 (no lockdown), 1 (partial lockdown) or 2 (complete lockdown)
and φ−1 is the inverse logit or Sigmoid function. It may be noted that partial lockdown is a
policy decision which can be quantified. The Government or the local administration may
decide the extent of lockdown which may qualify as ”partial”. We further assume

α ∼ N(0, 0.5)

To model the baseline reproduction number for a district d, we assume

Rd,0 ∼ N(3.28, κ)
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where κ ∼ N+(0, 0.5), N+ denotes a half normal distribution with positive support.

To fit the model we use 6 sequential days of an equal number of infections: I1,d = .. =
I6,d ∼ Exponential(1/τ), where τ ∼ Exponential(0.03).

MCMC samples are drawn from posterior distributions using Stan software and con-
vergence criteria have been studied in details.

3. Results

Here we apply the proposed methodology for all the districts of Maharashtra and
Gujarat. Daily infection and death data have been considered. In this study, for each
district, data on 83 time points (from 2nd March, 2020 to 23rd May, 2020) are used. A few
districts with no death or very few cases have been excluded from the study.

We have tried to predict the number of daily infections and daily deaths till 30th
June, 2020 for each district under different levels of lockdown. Base reproduction rate and
reproduction rate on 30th June, 2020 under different levels of lockdown, have also been
reported.

In Figure 1 the values of reproduction rate Rt for different districts are given. Figure
1(a) depicts the baseline reproduction number R0 values for each district belonging to Ma-
harashtra. Aurangabad has the highest R0 closely followed by Solapur. For Mumbai and
Pune, R0 values are over 3.3, which is also high.

As expected it is found that lockdown for a prolonged period has a positive effect in
controlling Rt. After 31st May 2020 even if lockdown is completely removed, Rt values are
less than 1.2 (Figure 1(b)) for all the districts of Maharashtra. Our purpose is to see which
stage of lockdown pushes the value of Rt to smaller than 1. This may not be achieved, as
in Figure 1(d), even if we impose complete lockdown for the entire month of June 2020. For
districts like Pune and Mumbai, the situation remains almost identical even if lockdown is
extended to its highest level from partial restrictions (Figure 1(c)). It may be noted that for
a densely populated district like Mumbai, a reduction of a decimal place in Rt value may
result in the reduction of a large number of infections.

In Figures 2(a)-2(l), predictions for four important districts (Mumbai, Nagpur, Pune
and Thane) have been considered. Results for other districts are also available. Three
different levels of lockdown have been considered for each of these four districts.

In the case of Mumbai, a surge may be observed if lockdown is withdrawn totally. Daily
infection may cross 1000 marks within the first week of June and there will be exponential
growth (Figure 2(a)). This may put the existing healthcare system into tremendous pressure.
On the other hand, complete lockdown may reduce the rate of daily infection but may result
in severe economic depression to this financial capital of India. In this tricky situation,
the Government may opt for some intermediate solution where partial lockdown may be
imposed. From Figure 2(c) it can be seen that the daily infection rate may increase slowly if
partial lockdown is imposed. Similar features may be observed for the other three districts.
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Pune may observe daily infected counts just over 100 if partial lockdown is maintained
(Figure 2(h)). Removing lockdown may create a similar situation like Mumbai, where daily
count may exceed 10,000 (Figure 2(g)). For Thane, it may take end of June to reach the
daily count to be 10,000 if lockdown is removed completely (Figure 2(j)). On the contrary,
complete lockdown may bring the rate of daily infection down to a great extent (Figure 2(l)).
In the case of Nagpur, similar sort of inferences may be made (Figures 2(d)-2(f)).

In Figures 3(a)-3(l), we have plotted the predictions for a few districts (Aurangabad,
Nashik, Akola and Palghar) which are less affected, compared to the districts we have already
considered, till date. Here also it is seen that removal of complete lockdown may bring the less
affected districts to highly affected districts. A partial lockdown may help the administration
to maintain the situation which may be controlled with existing health care set up.

In terms of fatality, so far, COVID-19 is less fatal compared to MERS or SARS. A few
probable confounding factors like the effect of malaria or BCG vaccine or any other factor
or combination of factors may have contributed to this cause. For most of the districts, an
increasing trend in the daily number of deaths may be seen. Unlike regions of Europe or
states of the US, the death toll is relatively very low for the districts of India.

For Mumbai, the removal of lockdown may result in more than 100 daily deaths at
the end of June (Figure 4(a)). A complete lockdown may bring the rate down significantly
(Figure 4(c)), whereas a partial lockdown may result in less than 10 deaths per day.

Among all states in India, Gujarat has the highest baseline reproduction number for
which the number of infected people will be higher. From Figure 5(a), it can be seen that
for districts like Ahmedabad and Surat this value is above 3.5. Lockdown for more than
two months has done something significant in reducing values to a great extent. Figure 5(c)
shows that the expected reproduction number on 30th June will be less than 1 for most of
the districts if partial lockdown is imposed. For the two effected districts Ahmedabad and
Surat, the Rt may cross the threshold of 1. Further stringent intervention i.e. complete
lockdown may further reduce Rt values.

Like Mumbai, Ahmedabad is also severely affected due to high population density.
Removing lockdown completely would be very fatal and it is evident from Figure 6(a). A
partial lockdown may help in curbing the spread (Figure 6(b)) whereas complete lockdown
may contain the spread (Figure 6(c)). However, districts like Ahmedabad and Surat (Figures
6(d)-6(f)) complete lockdown may have a huge negative impact on economy. Some mitigation
policies may be adopted. Vadodara, another important district shows a similar pattern
(Figures 6(g)-6(i)). Daily death predictions for two districts, Ahmedabad and Surat are
given in Figures 7(a)-7(f). If lockdown is removed completely, the daily death toll may cross
10 from 1st June 2020 and then an exponential growth may be anticipated. However, in a
partial lockdown situation death rate will increase in a more constant manner. In the case
of Surat, a similar trend is found.

It is to be mentioned here that in reality, the death figures may be much higher. We
are assuming that the fatality rate is the same for all the age groups. From Wuhan data, it
is found that the death rate for individuals above 60 is much higher compared to other age
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groups. Moreover, patients with complex diseases like COPD, CVD, diabetes, hypertension
have a higher probability of dying.

4. Discussion

In this study, we have considered different levels of lockdown. The proposed model is
very general in nature and hence may incorporate several other covariates. For example, the
effect of another important NPI viz. the role of intensive testing may also contribute to a
reduction of Rt values which eventually reduce the number of infections. This study is under
investigation and we plan to communicate it soon. While predicting, we have assumed that
if there is any non-pharmaceutical intervention (NPI), it needs to be adhered to completely.

It may be noted that, after lockdown 4.0, complete lockdown may not be applicable
any more. Relaxing lockdown norms will help the economy but at the same time will increase
the chance of infection with increased mobility. We feel that this work may give an idea to
the policymakers to chalk out future plan district-wise. As mentioned earlier, this can be
done for subdivision, block or even a small region provided sufficient data is at our disposal.

The model we have used is based on a renewal process. A comparison may be of interest
to see the change in inferences if models are changed. Another important issue in modelling
the spread of any viral disease is the reproduction rate model. A comparison can also be
made using some other types of modelling strategies like using Weibull model.

Another interesting and challenging job is to take care of asymptomatic cases which
are very crucial in the spread of COVID-19. In recent times it has been observed that
due to repeated mutations of this SARS-CoV-2 virus more infected people are becoming
asymptomatic. This puts a lot of people at risk as the spreader does not know about his/her
infection. More and more tests are desirable in this scenario. Pool testing may be a good
option for the regions which are designated as containment zones. Pool testing will decrease
the use of test kits and results may be available much sooner.

Getting good quality data is always a big challenge. Out of approximately 150000
individuals around 8% data do not contain district information. Same is true for data
related deaths. This may result in biased estimates of the parameters involved and may
hamper predictions.

Whatsoever mitigation policies the Government may take, it is essentially the duty of
each and every citizen to abide by all the interventions with utmost sincerity. Regulations
given by Ministry of Health and Family Welfare or Ministry of Home Affairs or local admin-
istrator may be followed religiously. Trace, test and quarantine (TTQ) is the need of the
hour.

5. Data and Software

For this work we have used the data available in https://github.com/covid19india/api.
All computations have been done using RStudio and Stan.



2020] STATUS OF MAHARASTHRA AND GUJARAT AFTER REMOVAL OF LOCKDOWN 215

(a) Baseline reproduction number
(R0)

(b) Predicted Rt on 30th June,
2020 under no lockdown

(c) Predicted Rt on 30th June, 2020 un-
der partial lockdown

(d) Predicted Rt on 30th June, 2020 un-
der complete lockdown

Figure 1: Average reproduction number for Maharashtra
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(a) Mumbai: under no
further lockdown

(b) Mumbai: under par-
tial lockdown

(c) Mumbai: under com-
plete lockdown

(d) Nagpur:Under no fur-
ther lockdown

(e) Nagpur:Under partial
lockdown

(f) Nagpur:Under com-
plete lockdown

(g) Pune: under no fur-
ther lockdown

(h) Pune: under partial
lockdown

(i) Pune: under complete
lockdown

(j) Thane: under no further
lockdown

(k) Thane: under partial
lockdown

(l) Thane: under partial
lockdown

Figure 2: Prediction for different districts of Maharashtra
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(a) Aurangabad: under
no further lockdown

(b) Aurangabad: under
partial lockdown

(c) Aurangabad: under
complete lockdown

(d) Nashik:Under no fur-
ther lockdown

(e) Nashik:Under partial
lockdown

(f) Nashik:Under com-
plete lockdown

(g) Akola: under no fur-
ther lockdown

(h) Akola: under partial
lockdown

(i) Akola: under complete
lockdown

(j) Palghar: under no fur-
ther lockdown

(k) Palghar: under par-
tial lockdown

(l) Palghar: under partial
lockdown

Figure 3: Prediction for different districts of Maharashtra

(a) Mumbai: under no
further lockdown

(b) Mumbai: under par-
tial lockdown

(c) Mumbai: under com-
plete lockdown

(d) Pune: under no fur-
ther lockdown

(e) Pune: under partial
lockdown

(f) Pune: under complete
lockdown

Figure 4: Daily death prediction for different districts of Maharashtra
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(a) Baseline reproduction
number(R0)

(b) Predicted Rt on 30th June,
2020 under no lockdown

(c) Predicted Rt on 30th June, 2020
under partial lockdown

(d) Predicted Rt on 30th June, 2020
under complete lockdown

Figure 5: Average reproduction number for Maharashtra
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(a) Ahmedabad: under
no further lockdown (b) Ahmedabad: under

partial lockdown
(c) Ahmedabad: under
complete lockdown

(d) Surat: under no fur-
ther lockdown (e) Surat: under partial

lockdown
(f) Surat: under complete
lockdown

(g) Vadodora: under no
further lockdown (h) Vadodora: under par-

tial lockdown
(i) Vadodora: under com-
plete lockdown

Figure 6: Daily infection prediction for different districts of Gujarat

(a) Ahmedabad: under
no lockdown

(b) Ahmedabad: under
partial lockdown

(c) Ahmedabad: under
complete lockdown

(d) Surat: under no lock-
down

(e) Surat: under partial
lockdown

(f) Surat: under complete
lockdown

Figure 7: Daily death prediction for different districts of Gujarat
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Abstract 
 

This paper attempts to develop a model to predict Novel Coronavirus affected cases in 
India. The virus is officially named as SARS-CoV-2 and was declared as a pandemic by WHO 
on 11th March 2020. This pandemic erupted in the Wuhan city of the People’s Republic of 
China in December 2019. By now the whole world is in the grip of this virus. The first case of 
the COVID-19 in India was reported on 30th January 2020 in the state of Kerala. In India, the 
Ministry of Health and Family Welfare (MOHFW) keeps the track of COVID-19 cases daily. 
As of 14th June 2020, the total number of confirmed, recovered, and death cases in India are 
332424, 169798 and 9520 respectively. The corresponding world statistics are 7900924, 
3769712 and 433065 respectively. The disease is infectious and contagious and is affecting the 
health of people at large. The government and administration are trying hard to control the 
disease, and trying to find an effective treatment. This research aims to forecast the number of 
confirmed cases, recoveries and deaths of India and its six hotspot states (Maharashtra, Delhi, 
Tamil Nadu, Madhya Pradesh, Rajasthan, and Gujarat). To check the accuracy of the model, 
the first round of forecast is done from 15/4/2020 to 25/04/2020 based on the data available 
from 30th January 2020 to 14th April 2020. The second round of forecast is done from 
16/05/2020 to 30/06/2020 based on the actual data from 30/01/2020 to 15/05/2020. Auto-
Regressive Integrated Moving Average (ARIMA) model has been used to forecast the trend of 
COVID-19 cases in R programming. 

 
Key words: COVID-19; Coronavirus; ARIMA; Forecast; Pandemic; Epidemic. 
 
1.  Introduction 
 

Coronaviruses are commonly found in humans and animals. COVID-19 is an acronym 
that stands for the coronavirus disease of 2019. Common symptoms include fever, body ache, 
tiredness, and difficulty in breathing. Many affected people do not show any symptoms. The 
virus spreads within populations via respiratory droplets and close contact. Symptoms usually 
start 4 days after a person is infected with the virus. But in some people, it can take even longer 
for symptoms to appear or an infected person gets recovered without the appearance of any 
symptoms. The death rate of patients affected with COVID-19 is very less. The risk of 
becoming severely sick from COVID-19 increases with age. People who are critically ill are 
more prone to death if affected by COVID-19. The medicine for the treatment of COVID-19 
is not found and the vaccine for COVID-19 is not available till 14th April 2020. However, the 
studies are being conducted by different countries. Since this is a statistical modeling-based 
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study, we deliberately avoid any detailed descriptions about the virus and its genesis. But to 
understand the inference part of this analysis, we need to supplement some information 
regarding its transmission and spread. The COVID-19 has four stages of transmission in line 
with other infectious diseases. In stage-1 the first appearance of the disease is through people 
with travel history, with everyone contained, their sources can be traced, and no local spread 
from those affected. The number of those infected would be quite low at this stage. Stage-2 is 
the local transmission when those who were infected and have a travel history spread the virus 
to close friends or family. At this stage, every person who comes in contact with the infected 
can be traced and isolated. Stage-3 is the community transmission when infections happen in 
public and a source for the virus cannot be traced. At this stage, large geographical lockdowns 
become important as random members of the community start developing the disease. Stage-4 
is when the disease becomes an epidemic in a country, such as it was in China, with large 
numbers of infected people and the growing number of deaths with no end in sight. The World 
Health Organization declared it a pandemic. In the absence of a vaccine, social distancing has 
emerged as the most widely adopted strategy for mitigating and control of the virus. In India, 
the first novel coronavirus infection was reported on January 30 at Kerala. The cases increased 
to three by February 3. After this, no new cases were reported until March 1. On March 2, India 
reported two more positive cases, one each from Delhi and Hyderabad. By March 15, the total 
number of confirmed patients reached 107, most of which were linked to people with the travel 
history to affected countries and since then, the number of positive cases is continuously 
increasing. India observed a 14-hour voluntary public curfew on 22nd March 2020. This was 
followed by a nationwide lockdown for 21 days starting from 24 March 2020 and later extended 
to 3 May 2020, as the cases affected and deaths are increasing. The Indian Government feels 
that in the absence of lockdown this contagious disease may spread to a greater number of 
people and the number of hospitals may turn to be insufficient with limited equipment for the 
treatment of Covid-19 cases. However, understanding the seriousness of the issue, we feel that, 
constructing a good statistical model for inference and forecasting is the best we can contribute 
to this current subject. If the model fits well, then an estimate of the need for healthcare 
infrastructure, investment, and manpower can be anticipated. 

 
In this paper, based on the data from January 30, 2020, till April 14, 2020, the first round 

of forecast was done day-wise for 11 days: 15/04/2020 till 25/04/2020 and the accuracy of the 
model was checked. The second round of forecast is done for 46 days: 16/05/2020 till 
30/06/2020 based on actual data from January 30, 2020, till May 15, 2020. Since the forecasts 
for the number of days in the second round are more, we have presented only the weekly figures 
in the table. Auto-Regressive Integrated Moving Average (ARIMA) model has been used to 
predict the trend of COVID-19 cases using R programming. 

 
2.  Review of Literature 
 

Petropoulos and Makridakis (March 2020) published the research article on forecasting 
the novel coronavirus COVID-19. Their paper describes the timeline of a live forecasting 
exercise with massive potential implications for planning and decision making and provides 
forecasts for the confirmed cases of COVID-19. Their study focuses on the cumulative daily 
figures aggregated globally of the three main variables like confirmed cases, deaths and 
recoveries. In their forecast, they predicted the cases for three variables in the period of 5 
rounds. Kai Liu et al. (March 2020) studied that the mortality of elderly patients with COVID-
19 is higher than that of young and middle-aged patients and elderly patients with COVID-19 
are more likely to progress to severe disease. Khot and Nadkar (March 2020) published a 
valuable research paper on “The 2019 Novel Coronavirus Outbreak-A Global Threat’. They 
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had shown new insights into the pathophysiology, transmission dynamics, clinical features and 
management of this virus are developing. They said it is a highly transmissible infection but 
mortality is less compared to SARS and MERS. National and International health care agencies 
have shown appropriate co-ordination in the handling of this outbreak up till now and further 
international cooperation is the need of the hour. Lina et al. (March 2020) published a research 
paper on “A conceptual model for the coronavirus disease 2019 outbreak in Wuhan, China with 
individual reaction and governmental action”. In this paper, their main purpose was to propose 
a conceptual model to address the individual reaction and governmental action, as well as the 
time-varying reporting rate. Schueller et al. (April 2020) had done research on COVID-19 in 
India on the potential impact of the 21-day Lockdown which was announced with effect from 
25 March 2020 and other long-term policies. This lockdown is expected to avert a sudden and 
large increase in the number of infections in the short term. Additionally, interventions such as 
social distancing and isolation of infected individuals over several months could reduce peak 
infections and also interventions such as frequent hand washing, reduced mass gatherings, 
contact tracing, and quarantines could slow transmission and reduce overall infections. Read et 
al. (January 2020) studied and show the important information for the crisis management 
against the novel Coronavirus, early estimation of epidemiological parameters and epidemic 
predictions. Also, researchers proved that the SIR-family models at different complex levels 
can well capture the basic mechanism of the epidemic transmission.   Liu et al. (February 2020) 
discussed on the reproductive number of COVID-19 is higher compared to SARS Coronavirus. 
They reviewed the basic reproduction number of the COVID-19 virus. Reproduction number 
is an indication of the transmissibility of a virus, representing the average number of new 
infections generated by an infectious person in a population. Khrapov and Loginova (2020) 
presented a research paper on mathematical modeling of coronavirus COVID-19, the authors 
used a modified system of differential equations constructed according to the SIR 
compartmental model. The optimal values of the model parameters, that describe the statistical 
data precisely, were found. Miller et al. (2020) published their study with an emphasis on the 
correlation between universal BCG vaccination policy and how it reduced morbidity and 
mortality of COVID-19 patients. They also found that countries without universal policies of 
BCG vaccination (Italy, Nederland, USA are some of them) have been more severely affected 
compared to countries with universal and long-standing BCG policies. BCG vaccination is a 
potential new tool in the fight against COVID-19. Probably a detailed statistical and 
mathematical treatment of modeling on this virus was done by Lin et al. (2019). For 
mathematical treatment, they used infectious disease prediction models based on differential 
equation prediction models and time series prediction models based on statistics and random 
processes. They also used the internet-based infectious disease prediction model and machine 
learning methods to substantiate the findings. Tania et al. (2020) published the research paper 
on “Forecasting of COVID-19 confirmed cases in different countries with ARIMA models”. 
The aim of this study was first to find the best prediction models for daily confirmed cases in 
countries with a high number of confirmed cases in the world and second to predict confirmed 
cases with these models in order to have more readiness in healthcare systems. Ribeiro et 
al. (2020) developed efficient short-term forecasting models for forecasting the number of 
future cases. In their paper, they are using an autoregressive integrated moving average 
(ARIMA), cubist regression (CUBIST), random forest (RF), ridge regression (RIDGE), 
support vector regression (SVR) and stacking-ensemble learning models for evaluating in the 
task of time series forecasting with one, three, and six-days ahead the COVID-19 cumulative 
confirmed cases in ten Brazilian states with a high daily incidence. The models’ effectiveness 
is evaluated based on the improvement index, mean absolute error, and symmetric mean 
absolute percentage error criteria. The ranking of models, from the best to the worst regarding 
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the accuracy, in all scenarios, is SVR, stacking-ensemble learning, ARIMA, CUBIST, RIDGE, 
and RF models. 

 
3.  Objectives 
 

Forecast the number of COVID-19 confirmed cases for India as well as across the six 
hotspot states of India. Also, predict the number of deaths and recoveries amongst the number 
of cases of COVID-19 of India and across the hotspot states of India. 
 
4.  Data Source 
 

This study has been conducted based on daily confirmed cases, deaths and recoveries of 
COVID-19 of India and only those states that are considered as hotspots of India. The data was 
collected from the official Indian website of COVID-19: https://www.mohfw.gov.in/ from 30 
January 2020 to 15 May 2020.  
 
5.  Data Visualization 
 
Table 1: Mortality rate and Recovery rate of six hotspots states of India for the period 

30/01/2020 to 25/04/2020 

 
From the above table, it is observed that the mortality rate in Madhya Pradesh is highest when 
compared with other hotspots states of India. While the recovery rate in Tamil Nadu is highest 
and on other side mortality rate is minimal compared to other hotspot states of India. 
 
6.  Analysis and Forecasting  

 
6.1.  ARIMA Model 
 

Autoregressive Integrated Moving Average (ARIMA) is a stochastic approach of 
modeling which can be used for calculating the probability of a future value lying in a specified 
interval of limits. It consists of two models Autoregressive Process (AR) and Moving Average 
Process (MA) bind together by (I) the integration part. ARIMA models are generally used to 
analyze time series data for better understanding and forecasting. The ARIMA model is 
denoted as ARIMA (p, d, q), where the parameter p refers to the order of the AR process, q 
refers to the order of the MA process, and d refers to the order of differencing it takes to make 
the series stationary. In this study, the ARIMA model has been developed to forecast the 
confirmed cases, death cases and recovered cases of India cumulatively and its six hotspot 
states. 
 

Hotspots States of 
India 

Confirmed    
cases 

Death 
cases 

Recovered 
cases 

Mortality 
Rate per 
thousand 

Recovery     
Rate per 
thousand 

Maharashtra 7628 322 1076 42.2129 141.0593 
Gujarat 3071 133 282 43.3083 91.82677 
Delhi 2625 54 869 20.5714 331.0476 

Rajasthan 2083 34 513 16.3226 246.2794 
Madhya Pradesh 1945 100 281 51.4138 144.473 

Tamil Nadu 1821 23 960 12.6304 527.1829 
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The ARIMA model for Confirmed cases is given as: 
 
𝑋" = 𝛬 + 𝛼'𝑋"(' + 𝛼)𝑋"()+. . . . . +𝛼+𝑋"(+ + 𝜀" + 𝛷'𝜀"(' + 𝛷)𝜀"()+. . . . . . +𝛷.𝜀"(.          (1)                    
 
where, 𝑋" shows the forecasted values of confirmed cases,	𝛬 is the intercept term, also 
estimated by the model, 𝑋"(0 is the lag variable at the time 𝑡 − 𝑖 of the series, i=1, 2, …, p, 
𝛼0  is the coefficient of AR process that the model estimates,	𝜀"	is the error term and	𝛷4 is 
the coefficient of MA process where, j=1, 2, …, q. 
 
The ARIMA model for Death cases is given as: 
 
𝛶" = 𝜓 + 𝛽'𝛶"(' + 𝛽)𝛶"()+. . . . . +𝛽+𝛶"(+ + 𝜀" + 𝛩'𝜀"(' + 𝛩)𝜀"()+. . . . . . +𝛩.𝜀"(.            (2)                   
 
where, 𝛶" shows the forecasted values of death cases, 𝜓 is the intercept term, also 
estimated by the model, 𝛶"(0 is the lag variable at the time 𝑡 − 𝑖 of the series, i=1, 2, …, p, 
𝛽0  is the coefficient of AR process that the model estimates, 𝜀" is the error term and 𝛩4 is 
the coefficient of MA process where, j = 1, 2, …, q. 
 
The ARIMA model for Recovered cases is given as: 
 
𝛧" = 𝜁 + 𝛾'𝛧"(' + 𝛾)𝛧"()+. . . . . +𝛾+𝛧"(+ + 𝜀" + 𝜙'𝜀"(' + 𝜙)𝜀"()+. . . . . . +𝜙.𝜀"(.                   (3)       
 
where, 𝑍" shows the forecasted values of recovered cases, 𝜁 is the intercept term, also 
estimated by the model, 𝑍"(0 is the lag variable at the time 𝑡 − 𝑖 of the series, i=1, 2, …, p,  
𝛾0  is the coefficient of AR process that the model estimates, 𝜀" is the error term and 𝜙4 is 
the coefficient of MA process where, j =1, 2, …, q. 
 

The first step to build an ARIMA model is to make the time series stationary. So, to make 
a series stationary, the most common approach is to difference it. Augmented Dickey Fuller 
test (ADF test) is a common statistical test used to test whether a given time series is stationary 
or not. The null hypothesis assumes that the series is non-stationary. ADF test is fundamentally 
a statistical significance test. That means, there is a hypothesis testing involved with a null and 
alternative hypothesis and as a result, a test statistic is computed and p-values get reported. It 
is from the test statistic and the p-value, we can make an inference as to whether a given series 
is stationary or not. For the identification of the model, the task is to find out the appropriate 
values of p and q with the help of autocorrelation function (ACF) and partial autocorrelation 
function (PACF) graph values. The initial number of the ARIMA model was guessed through 
the autocorrelation function (ACF) graph and partial autocorrelation (PACF) graph. ACF plot 
is merely a bar chart of the coefficients of correlation between a time series and lags of itself. 
The PACF plot is a plot of the partial correlation coefficients between the series and lags of 
itself. According to these plots, the p and q parameters of ARIMA models were guessed. Then 
the guess models were compared according to Akaike Information Criterion (AIC) value, 
treating minimum as the best. The reason for choosing AIC is because of its wide acceptance 
as a statistical measure model selection. It is used to quantify the goodness of fit of the model. 
When comparing two or more models, the one with the lowest AIC is generally considered to 
be closer to real data. The appropriate ARIMA model then identified for the particular datasets 
and the parameters are estimated accordingly. 

 
 

https://www.machinelearningplus.com/statistics/p-value/
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Having chosen the specific ARIMA model and its parameters estimated, the next step is 
to carry out a diagnostic check to see whether the model fits the data completely well. That is 
done by checking the residuals estimated from this model which are termed as white noise error 
or pure random error. This will decide if the chosen model fits the data well or not. For this, 
we use the Ljung-Box test introduced in (1978) which as a diagnostic tool to test the lack of fit 
of a time series model. The null hypothesis of the Ljung-Box test is given by H0: The model 
does not show a lack of fit and the alternative hypothesis is H1: the model does show a lack of 
fit. For a time series Y of length n, the Ljung-Box test statistic is defined as: 

 
𝑄 = 𝑛(𝑛 + 2)∑ D̂F

G(H
I
HJ'                                                                                                            (4) 

 
where �̂�H is the estimated autocorrelation of the series at lag k, and m is the number of lags 
being tested with a significant level α. We reject the null hypothesis and say that the model has 
significant lack of fit if 𝑄 > 𝜒)'(N,P where 𝜒)'(N,P is the chi-square distribution table value 
with h degrees of freedom and significant level α. Because the test is applied to residuals, the 
degrees of freedom must account for the estimated model parameters so that h = m–p–q, where 
p and q indicate the number of parameters from the ARIMA (p, d, q) model fit to the data. In 
Statistical package R, the Ljung-Box test can be run with the help of Box.test function. 
 

After prediction, the accuracy is measured in percentage. We have used the Mean 
Absolute Error (MAE) method to compute the accuracy. Firstly, the predicted values and the 
actual values are stored in a single matrix with two columns, namely predicted value and actual 
value respectively. Then the error between the 2 columns is computed where, error =|actual 
value –predicted value|. The accuracy is calculated by,  
 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − WDDXD

(YZ"[Y\	]Y\[W)
                                                                                               (5)   

                                                                           
which is generally reported in percentages.   
 
6.2.  First round of forecasts for the period: 15/04/2020 to 25/04/2020  
 

Our focus is on the cumulative daily figures aggregated for India over the period from 
January 30, 2020 till April 14, 2020. While the data patterns show an exponential increase, the 
trend of confirmed cases comes to hold after it first entered India on 30th January 2020 until 
February 2020. From March beginning there was a sudden increase in cases, while deaths 
started to happen frequently only after 11th March onwards. The recovery of patients started to 
happen simultaneously from mid-February onwards. We have aimed our research to forecast 
the number of confirmed cases, recoveries and deaths of India and its six hotspot states 
(Maharashtra, Delhi, Tamil Nadu, Madhya Pradesh, Rajasthan and Gujarat). Based on the data 
from January 30, 2020, till April 14, 2020, the first round of forecast was done day-wise for 
the period of 11 days: 15/04/2020 to 25/04/2020 and the accuracy of the model was checked. 
The analysis is done in R programming and the necessary packages: library(hrbrthemes), 
library(dplyr), library(ggplot2), library(tseries), library(forecast) are loaded. 

 
Now before we analyze the time series data for actual forecast, we use the Augmented 

Dickey Fuller test to check the stationary of the time series observations. The null hypothesis 
(H0) for the test is that the data is not stationary whereas the alternative hypothesis (H1) is that 
the data is stationary. The level of significance is taken to be 0.05. The output is obtained for 
confirmed cases using adf.test function in R programming. Here, the p-value turns out to be 
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0.99. We thus fail to reject our H0 and conclude that the data is not stationary. We now have to 
work on the stationarity of the data. After differencing the time series for consecutively for two 
times, the p-value is obtained as 0.01, which is less than 0.05, and hence we reject the null 
hypothesis and conclude that the time series for confirmed cases is stationary. Since the order 
of differencing is 2, d = 2. Similarly, we have found that stationary time series for deaths and 
recoveries cases.   
 

Figures 1 and 2 show the ACF and PACF plots for confirmed cases. These plots are used 
for choosing the model parameters for confirmed cases. Similarly, we have found model 
parameters for deaths and recoveries using ACF and PACF plots.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1: Plot of ACF for confirmed cases 
 

 
                      
 
 
 
 
 
 

 
 
 
 
 

 
Figure 2: Plot of PACF for confirmed cases 

 
According to ACF and PACF plots, the p and q parameters of ARIMA models are guessed. 
These guess models are compared according to AIC value. Table 2 presents all those ARIMA 
models with corresponding AIC values for all three types of cases. 
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Table 2: ARIMA models with all possible values of AIC for India 
 

Confirmed AIC Deaths AIC Recovered AIC 
ARIMA(0,2,0) 853.724 ARIMA(0,2,0) 473.335 ARIMA(1,2,0) 627.8381 
ARIMA(2,2,0) 848.897 ARIMA(1,2,2) 399.478 ARIMA(5,2,0) 599.7987 
ARIMA(3,2,0) 850.859 ARIMA(1,2,1) 423.039 ARIMA(1,2,2) 617.8326 
ARIMA(1,2,0) 849.184 ARIMA(1,2,0) 425.797 ARIMA(2,2,0) 606.2791 
ARIMA(0,2,1) 850.707 ARIMA(0,2,1) 439.349 ARIMA(0,2,0) 627.6912 
ARIMA(0,2,0) 853.724 ARIMA(0,2,0) 473.335 ARIMA(1,2,0) 627.8381 

 
The model which has the least AIC is selected as the best model. Accordingly, the best ARIMA 
models for forecasting the number of daily confirmed, deaths and recovered cases for India are 
ARIMA(2,2,0), ARIMA(1,2,2), ARIMA(5,2,0) respectively for India. The first round of 
forecast is shown in figure 3. The same in actual numbers are presented in Table 3.  

The equation corresponding to the best ARIMA(2,2,0) model for confirmed cases is given by 
 
𝑋" = 15.3463 − 0.3524𝑋"(' + 50.1764𝑋"() + 𝜀"                                                        (6) 
 
The equation corresponding to the best ARIMA(1,2,2) model for death cases is given by 
 
𝛶" = 0.4077− 0.2613𝛶"(' + 𝜀" − 0.7937𝜀"(' + 0.7014𝜀"()                                                  (7) 
 
The equation corresponding to the best ARIMA(5,2,0) model for recovery cases is given by,  
 
𝛧" = 4.860 + 0.085𝛧"(' + 0.261𝛧"() + 0.444𝛧"(f + 0.632𝛧"(g + 0.622𝛧"(h + 𝜀"           (8) 
 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 3:  Plot of actual and forecasts of COVID-19 cases in India 
 
The blue dots represent the actual confirmed cases, yellow dots represent recovered cases and 
green dots represent the actual deaths. The extended red dots represent forecasted COVID-19 
cases. 
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Table 3: Actual and forecast values of COVID-19 with 95% CI for India 
 

Date Actual values Forecast values 
Confirmed Death Recovered Confirmed Death Recovered 

15-04-20 12370 422 1509 12707 
(12564, 12850) 

427 
(420, 433) 

1538 
(1512, 1563) 

16-04-20 13431 448 1767 13817 
(13534, 14100) 

456 
(446, 465) 

1664 
(1613, 1715) 

17-04-20 14353 486 2040 15012 
(14525, 15498) 

485 
(469, 500) 

1793 
(1719, 1866) 

18-04-20 15724 521 2466 16152 
(15438, 16865) 

514 
(490, 537) 

1965 
(1861, 2069) 

19-04-20 17304 559 2854 17330 
(16352, 18308) 

543 
(510, 576) 

2130 
(1983, 2278) 

20-04-20 18543 592 3273 18482 
(17217, 19748) 

572 
(528, 615) 

2261 
(2065, 2458) 

21-04-20 20080 645 3976 19653 
(18072, 21234) 

601 
(546, 656) 

2404 
(2158, 2649) 

22-04-20 21372 681 4370 20811 
(18894, 22728) 

630 
(562, 698) 

2575 
(2273, 2877) 

23-04-20 23039 721 5012 21978 
(19702, 24253) 

659 
(578, 740) 

2735 
(2367, 3102) 

24-04-20 24447 780 5496 23138 
(20485, 25792) 

688 
(593, 783) 

2871 
(2434, 3308) 

25-04-20 26282 824 5939 24303 
(21253, 27354) 

717 
(607, 827) 

3021 
(2512, 3530) 

 
From the above table, it is noted that the day-wise estimated figures for confirmed cases from 
15 April 2020 to 25 April 2020 are nearly the same. However, the day-wise estimated 
recoveries are less than the actual values. To estimate model adequacy, the Ljung-Box test 
which is a diagnostic tool is used to test the lack of fit of a time series model. The output is 
obtained by using the Box.test function in R programming. The null hypothesis, H0: The model 
does not show a lack of fit. The alternative hypothesis, H1: The model does show a lack of fit. 
Here, for confirmed cases p-value is 0.7315, for deaths p-value is 0.49863 and for recoveries, 
the p-value is 0.9585. As for all the cases, p-value is greater than 0.05, hence we do not reject 
the null hypothesis and conclude that our model does not show a lack of fit. The accuracy of 
prediction for India is computed by averaging the accuracies obtained by the algorithm of 
ARIMA modeling. As per this modeling, the accuracy for confirmed cases is 98%, for the 
deaths 97% and for the recoveries is 78%.  

 
Now we will forecast the figures for the highly affected states in India assuring that the 

data is stationary and reliable to forecast. The final models that are reported in table 4 have the 
lowest AIC values for all hotspot states of India. The equations of best ARIMA model can be 
mentioned for all the hotspots states of India in the same way as we mentioned for India. To 
estimate model adequacy, the Ljung-Box test which is a diagnostic tool is used to test the lack 
of fit of a time series model. The outputs for all six hotspot states of India are given in table 4. 
The null hypothesis, H0: The model does not show a lack of fit. The alternative hypothesis, H1: 
The model does show a lack of fit. The p-value for state Rajasthan is less than 0.05 for deaths 
and recoveries, hence we reject the null hypothesis and conclude that model does show lack of 
fit whereas p-value for Rajasthan is more than 0.05 for confirmed cases, hence we do not reject 
the null hypothesis and conclude that model does not show lack of fit for confirmed cases. For 
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the other hotspot states p-value is greater than 0.05 for confirmed, deaths and recovery cases, 
hence we do not reject the null hypothesis and conclude that our model does not show a lack 
of fit. 

 
Table 4: The best ARIMA models with least AIC for six hotspots states of India 

 
Hotspot States Cases ARIMA Model AIC Ljung-Box p-value 

Maharashtra 
Confirmed ARIMA(1,2,0) 695.1979 0.9091 

Deaths ARIMA(2,2,2) 333.7695 0.9026 
Recovered ARIMA(1,2,1) 519.3081 0.9072 

Delhi 
Confirmed ARIMA(2,2,0) 741.8226 0.3344 

Deaths ARIMA(3,2,0) 151.5864 0.7458 
Recovered ARIMA(0,2,2) 233.4595 0.8812 

Madhya Pradesh 
Confirmed ARIMA(2,2,0) 565.2183 0.1515 

Deaths ARIMA(1,2,1) 210.2508 0.9744 
Recovered ARIMA(0,2,1) 322.8164 0.1021 

Tamil Nadu 
Confirmed ARIMA(2,2,2) 614.3582 0.1434 

Deaths ARIMA(0,2,2) 57.20068 0.9963 
Recovered ARIMA(0,2,5) 344.3379 0.8514 

Gujarat 
Confirmed ARIMA(3,2,1) 557.0561 0.9976 

Deaths ARIMA(3,2,0) 74.23162 0.9909 
Recovered ARIMA(0,2,2) 297.4889 0.9622 

Rajasthan 
Confirmed ARIMA(0,2,3) 551.4806 0.6519 

      Deaths ARIMA(0,2,1) 168.3248 0.0320 
   Recovered ARIMA(2,2,1) 496.3972 0.0283 

 
Forecast values of ARIMA models with a confidence interval for six hotspot states of India 
are given in Table 5. 

 
Table 5: Forecast values of COVID-19 cases with 95% CI for six hotspot states of India 

 
Date Cases Maharashtra Delhi Madhya Pradesh Tamil Nadu Gujarat Rajasthan 

15-04-20 

Confirmed 
3028 

(2977, 3079) 
1801 

(1732, 1869) 
764 

(744, 785) 
1255 

(1226, 1283) 
735 

(715, 754) 
1093 

(1074, 1112) 

Death 
191 

(187, 196) 
32 

(31, 34) 
59 

(57, 61) 
12 

(12, 13) 
30 

(29, 31) 
11 

(10, 13) 

Recovered 
277 

(262, 293) 
32 

(30, 35) 
72 

(68, 76) 
85 

(81, 90) 
64 

(61, 68) 
163 

(150, 176) 

16-04-20 

Confirmed 
3375 

(3275, 3475) 
1998 

(1906, 2090) 
842 

(816, 869) 
1318 

(1263,1373) 
803 

(758, 849) 
1195 

(1155, 1234) 

Death 
206 

(200, 212) 
35 

(33, 38) 
63 

(60, 66) 
13 

(12, 14) 
32 

(31, 33) 
12 

(10, 14) 

Recovered 
299 

(276, 322) 
34 

(31, 37) 
81 

(74, 88) 
94 

(87,101) 
70 

(66, 75) 
172 

(154, 189) 

17-04-20 

Confirmed 
3723 

(3561, 3884) 
2140 

(2003, 2276) 
947 

(911, 983) 
1367 

(1278, 1455) 
868 

(797, 939) 
1291 

(1221, 1361) 

Death 
222 

(211, 232) 
39 

(35, 43) 
68 

(64, 73) 
14 

(12, 16) 
34 

(33, 36) 
13 

(10, 16) 

Recovered 
320 

(288, 353) 
35 

(31, 39) 
89 

(79, 99) 
102 

(94, 111) 
76 

(70, 83) 
190 

(168, 212) 
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18-04-20 

Confirmed 
4070 

(3839, 4301) 
2366 

(2178, 2555) 
974 

(921, 1028) 
1404 

(1272, 1537) 
937 

(843, 1032) 
1387 

(1285, 1489) 

Death 
237 

(221, 252) 
42 

(37, 47) 
73 

(67, 79) 
15 

(13, 17) 
36 

(34, 38) 
14 

(10, 17) 

Recovered 
342 

(299, 384) 
37 

(32, 42) 
98 

(85, 111) 
116 

(105, 126) 
82 

(74, 91) 
206 

(177, 236) 

19-04-20 

Confirmed 
4417 

(4109, 4726) 
2530 

(2292, 2767) 
1068 

(1003, 1133) 
1454 

(1271, 1637) 
1014 

(893, 1135) 
1483 

(1347, 1619) 

Death 
252 

(231, 272) 
45 

(39, 52) 
77 

(70, 85) 
16 

(13, 18) 
39 

(36, 41) 
15 

(11, 19) 

Recovered 
363 

(309, 417) 
38 

(32, 44) 
106 

(90, 123) 
126 

(112, 140) 
88 

(78, 99) 
219 

(183, 256) 

20-04-20 

Confirmed 
4765 

(4371, 5158) 
2716 

(2418, 3015) 
1152 

(1072, 1232) 
1512 

(1277, 1748) 
1086 

(935, 1238) 
1579 

(1407, 1752) 

Death 
267 

(240, 294) 
48 

(40, 56) 
82 

(72, 92) 
16 

(13, 20) 
41 

(38, 44) 
16 

(11, 21) 

Recovered 
384 

(318, 450) 
39 

(32, 47) 
115 

(95, 135) 
137 

(118, 155) 
94 

(82, 107) 
235 

(192, 279) 

21-04-20 

Confirmed 
5112 

(4628, 5596) 
2912 

(2551, 3272) 
1189 

(1090, 1288) 
1562 

(1271, 1852) 
1157 

(972, 1342) 
1676 

(1464, 1887) 

Death 
282 

(249, 315) 
51 

(42, 61) 
87 

(75, 98) 
17 

(13, 21) 
43 

(39, 47) 
17 

(11, 22) 

Recovered 
405 

(327, 483) 
41 

(32, 50) 
123 

(100, 147) 
147 

(125, 170) 
100 

(85, 115) 
251 

(199, 303) 

22-04-20 

Confirmed 
5459 

(4878, 6041) 
3085 

(2658, 3511) 
1289 

(1175, 1403) 
1603 

(1252, 1955) 
1226 

(1006, 1446) 
1772 

(1519, 2024) 

Death 
297 

(257, 337) 
55 

(43, 66) 
91 

(77, 105) 
18 

(14, 22) 
45 

(41, 50) 
17 

(11, 24) 

Recovered 
426 

(335, 518) 
42 

(32, 52) 
132 

(104, 160) 
158 

(130, 186) 
106 

(89, 124) 
265 

(205, 326) 

23-04-20 

Confirmed 
5807 

(5122, 6491) 
3278 

(2780, 3775) 
1357 

(1224, 1491) 
1652 

(1235, 2070) 
1299 

(1043, 1555) 
1868 

(1572, 2164) 

Death 
312 

(265, 360) 
58 

(44, 71) 
96 

(80, 112) 
19 

(14, 23) 
46 

(42, 53) 
18 

(11, 25) 

Recovered 
447 

(342, 553) 
44 

(32, 55) 
140 

(109, 172) 
169 

(136, 201) 
112 

(92, 132) 
281 

(211, 350) 

24-04-20 

Confirmed 
6154 

(5362, 6947) 
3461 

(2890, 4031) 
1408 

(1254, 1562) 
1708 

(1222, 2193) 
1371 

(1077, 1665) 
1964 

(1623, 2305) 

Death 
328 

(272, 383) 
61 

(45, 76) 
101 

(82, 119) 
19 

(14, 25) 
50 

(44, 56) 
19 

(12, 27) 

Recovered 
469 

(349, 589) 
45 

(32, 58) 
149 

(113, 185) 
179 

(141, 217) 
118 

(96, 141) 
296 

(217, 375) 

25-04-20 

Confirmed 
6502 

(5595,7408) 
3644 

(2996, 4292) 
1506 

(1334, 1678) 
1757 

(1201, 2313) 
1442 

(1108, 1777) 
2060 

(1672, 2449) 

Death 
343 

(279, 406) 
64 

(46, 82) 
105 

(84, 126) 
20 

(14, 26) 
52 

(45, 58) 
20 

(12, 28) 

Recovered 
490 

(355, 625) 
47 

(32, 61) 
158 

(117, 198) 
190 

(146, 233) 
124 

(99, 150) 
311 

(222, 400) 
 
From the above table, it can be noted that the day-wise estimated figures for confirmed cases 
from 15 April 2020 to 25 April 2020 are nearly the same. However, the day-wise estimated 
recoveries and deaths are less than the actual values. The accuracy of prediction for six hotspots 
states of India is computed by averaging the accuracies obtained by the algorithm of ARIMA 
modeling. The result is given below in Table 6. 
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Table: 6 Model Accuracy for six hotspot states of India 
 

 
 

For all six hotspots states of India, the ARIMA model accuracy of confirmed cases forecasted 
is 83% on an average, which indicates that ARIMA gives good accuracy of prediction. On the 
other hand, model accuracy for death and recovery cases in six hotspots states of India is around 
76% and 58% respectively. This seems we need a better model for forecasting death and 
recovery cases in hotspots states of India. 
 
6.3.  Second round of forecasts for the period: 16/05/2020 till 30/06/2020 
 

While writing this paper, the number of cases in India is doubling up every day, and 
hence the prediction after 25th April may not match with our estimated values. The forecast of 
COVID-19 cases until 25thApril 2020 is nearly the same as per our actual cases. This needs 
further investigation. One of the reasons could be to revise the base data for prediction, a lot of 
the administrative level containment measures started in between. For instance, the complete 
lockdown for three weeks from March 24, 2020, onwards. Similar forecasting is done for India 
and the hotspots states of India based on actual data from January 30, 2020, till May 15, 2020, 
and forecast is done for the period of 46 days: 16/05/2020 till 30/06/2020. The model summary 
for India with the least AIC is presented in Table 7.  

 
Table 7: ARIMA models with all possible values of AIC for India 

 
Confirmed Deaths Recovered 

ARIMA model AIC ARIMA model AIC ARIMA model AIC 
ARIMA(1,2,0) 1421.854 ARIMA(0,2,2) 789.6459 ARIMA(1,2,0) 1282.373 
ARIMA(0,2,1) 1426.392 ARIMA(0,2,0) 823.0364 ARIMA(0,2,0) 1313.382 
ARIMA(2,2,0) 1423.777 ARIMA(1,2,0) 793.7753 ARIMA(0,2,1) 1293.886 
ARIMA(0,2,0) 1441.791 ARIMA(1,2,1) 791.0409 ARIMA(2,2,0) 1283.265 
ARIMA(1,2,1) 1423.807 ARIMA(1,2,3) 792.4254 ARIMA(1,2,1) 1284.015 

 
The model which has the least AIC is selected as the best model. The best ARIMA models for 
forecasting the number of daily confirmed, deaths and recovered cases are ARIMA(1,2,0), 
ARIMA(0,2,2), ARIMA(1,2,0) respectively for India. Weekly forecasts of COVID-19 with 
confidence interval are presented in Table 8.   

 
The equation corresponding to the best ARIMA(1,2,0) model for confirmed cases is given by 
 

 𝑋" = 19.9474 − 0.4333𝑋"(' + 𝜀"                                                                                                                           (9) 
 
 

Hotspot States Confirmed Deaths Recovered 
Maharashtra 92% 95% 71% 

Delhi 68% 91% 66% 
Madhya Pradesh 81% 80% 79% 

Tamil Nadu 98% 85% 53% 
Rajasthan 76% 26% 31% 
Gujarat 82% 77% 78% 
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The equation corresponding to the best ARIMA(0,2,2) model for death cases is given by  
 
𝛶" = 0.6201+ 𝜀" − 0.6618𝜀"(' + 0.2145𝜀"()                                                            (10)  
 
The equation corresponding to the best ARIMA (1,2,0) model for recovery cases is given by 
 
𝛧" = 10.904 − 0.5950𝛧"(' + 𝜀"                                                                                                         (11) 

 
Table 8: Weekly forecast values of COVID-19 with 95% CI for India 

 
Date Confirmed Deaths Recovered 

16-05-20 89742 
(89335, 90149) 

2861 
(2841, 2880) 

32098 
(31888, 32307) 

23-05-20 116778 
(112499, 121056) 

3602 
(3432, 3772) 

46119 
(44118, 48120) 

30-05-20 143821 
(133520, 154122) 

4343 
(3939, 4748) 

60084 
(55293, 64875) 

06-06-20 170864 
(153005, 188723) 

5085 
(4387, 5783) 

74051 
(65762, 82340) 

13-06-20 197908 
(171220, 224595) 

5826 
(4785, 6868) 

88018 
(75644, 100391) 

20-06-20 224951 
(188327, 261575) 

6568 
(5140, 7996) 

101984 
(85016, 118953) 

27-06-20 251994 
(204438, 299550) 

7309.9 
(5457, 9162) 

115951 
(93927, 137975) 

 
Forecasted confirmed COVID-19 cases would be 263584, deaths would be 7627 and recoveries 
would be 121937 on 30th June 2020. To estimate model adequacy, the Ljung-Box test which is 
a diagnostic tool is used to test the lack of fit of a time series model.  H0: The model does not 
show a lack of fit. The alternative hypothesis, H1: the model does show a lack of fit. Here, for 
confirmed cases p-value is 0.6307, for deaths p-value is 0.8192 and for recoveries, p-value is 
0.1003. As for all the cases, p-value is greater than 0.05, hence we do not reject the null 
hypothesis and conclude that our model does not show a lack of fit.  
 

Now we will forecast the figures for the highly affected states in India assuring that the 
data is stationary and reliable to forecast. The final models that are reported in table 9 have the 
lowest AIC values for all hotspot states of India. To estimate model adequacy, the Ljung-Box 
test which is a diagnostic tool is used to test the lack of fit of a time series model. The output 
for all six hotspot states of India is given in Table 9. The null hypothesis, H0: The model does 
not show a lack of fit. The alternative hypothesis, H1: The model does show a lack of fit. The 
p-value for state Rajasthan is less than 0.05 for deaths and recoveries, hence we reject the null 
hypothesis and conclude that model does show lack of fit whereas p-value for Rajasthan is 
more than 0.05 for confirmed cases, hence we do not reject the null hypothesis and conclude 
that model does not show lack of fit for confirmed cases. For the other hotspot states p-value 
is greater than 0.05 for confirmed, deaths and recovery cases, hence we do not reject the null 
hypothesis and conclude that our model does not show a lack of fit. 
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Table 9: The best ARIMA models with least AIC for six hotspots states of India 
 

Hotspot States Cases ARIMA Model AIC Ljung-Box 
 p-value 

Maharashtra 
Confirmed ARIMA(2,2,2) 1338.927 0.7898     

Deaths ARIMA(2,2,3) 571.9736 0.9937 
Recovered ARIMA(2,2,2) 1101.577 0.3162 

Delhi 
Confirmed ARIMA(2,2,2) 1159.906 0.8447 

Deaths ARIMA(0,2,2) 449.952 0.9321 
Recovered ARIMA(1,2,2) 1166.805 0.9672 

Madhya Pradesh 
Confirmed ARIMA(1,2,1) 1030.119 0.9634 

Deaths ARIMA(0,2,1) 456.2507 0.3309 
Recovered ARIMA(1,2,2) 936.19 0.2378 

Tamil Nadu 
Confirmed ARIMA(3,2,0) 1126.77 0.1057 

Deaths ARIMA(2,2,0) 234.3007 0.8082 
Recovered ARIMA(2,2,2) 1049.927 0.9991 

Gujarat 
Confirmed ARIMA(0,2,1) 1008.264 0.8712 

Deaths ARIMA(2,2,1) 563.1694 0.9569 
Recovered ARIMA(4,2,2) 1032.743 0.9571 

Rajasthan 
Confirmed ARIMA(1,2,0) 944.7558 0.9514 

Deaths ARIMA(1,2,2) 396.4093 0.0182 
Recovered ARIMA(2,2,2) 980.4154 0.0397 

 
Forecast values of ARIMA models with confidence interval for six hotspot states of India are 
given in table 10. 

Table 10: Weekly forecast values of COVID-19 with 95% CI for hotspot states of India 
 

Date Cases Maharashtra Delhi Madhya 
Pradesh Tamil Nadu Gujarat Rajasthan 

16.05.20 

Confirmed 30501 
(30233, 30770) 

9258 
(9144, 9372) 

4760 
(4697, 4823) 

10605 
(10507, 10704) 

10270 
(10213,10327) 

4956 
(4914,4998) 

Deaths 1116 
(1109, 1123) 

132 
(128, 136) 

245 
(241, 249) 

75 
(74, 82) 

628 
(621, 634) 

128 
(125, 131) 

Recovered 7064 
(6978, 7150) 

3874 
(3755, 3993) 

2407 
(2368, 2447) 

2832 
(2765, 2899) 

4119 
(4058, 4181) 

2810 
(2761, 2859) 

23.05.20 

Confirmed 41154 
(39120,43188) 

11838 
(11152, 12523) 

5897 
(5401, 6393) 

14184 
(12888, 15480) 

12639 
(11977, 13300) 

6430 
(6013, 6848) 

Deaths 1451 
(1380, 1521) 

194 
(162, 226) 

280 
(258, 303) 

102 
(90, 110) 

772 
(705, 839) 

151 
(134, 168) 

Recovered 10802 
(10045, 11559) 

6008 
(5158, 6858) 

3291 
(3054, 3528) 

4094 
(3712, 4476) 

5921 
(5314, 6529) 

3411 
(3098, 3724) 

30.05.20 

Confirmed 51836 
(4669, 56981) 

14565 
(12730, 16401) 

7031 
(6029, 8032) 

17737 
(14685, 20790) 

15007 
(13412, 16603) 

7905 
(6903, 8906) 

Deaths 1786 
(1609, 1963) 

256 
(187, 325) 

316 
(270, 363) 

129 
(101, 137) 

917 
(757, 1078) 

174 
(141, 207) 

Recovered 14514 
(12581,16448) 

8167 
(6333, 10001) 

4177 
(3554, 4800) 

5466 
(4463, 6470) 

7504 
(6200, 8808) 

4007 
(3277, 4737) 

06.06.20 

Confirmed 62516 
(53417, 71615) 

17283 
(13927, 20639) 

8164 
(6572, 9756) 

21288 
(16043, 26532) 

17376 
(14609, 20143) 

9379 
(7644,11113) 

Deaths 2121 
(1809, 2433) 

319 
(205, 433) 

352 
(276, 428) 

157 
(108,165) 

1062 
(784,1340) 

198 
(145, 250) 

Recovered 18221 
(14794, 21648) 

1032 
(7287,13359) 

5063 
(3932, 6194) 

6846 
(5048, 8644) 

9192 
(7019, 11366) 

4604 
(3348, 5860) 
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13.06.20 

Confirmed 73196 
(59454, 86938) 

       20002 
(14840, 25164) 

9298 
(7036, 
11559) 

24838 
(17040, 32637) 

19745 
(15609, 23881) 

10853 
(8262, 13443) 

Deaths 2456 
(1985, 2926) 

381 
(215, 548) 

388 
(279, 497) 

184 
(112, 192) 

1207 
(792, 1622) 

221 
(146, 296) 

Recovered 21926 
(16745, 27108) 

12480 
(8056,16903) 

5949 
(4215, 7684) 

8226 
(5492, 10959) 

10932 
(7742, 14122) 

5201 
(3332, 7070) 

20.06.20  

Confirmed 2790 
(2142, 3439) 

22720 
(15508, 29932) 

10431 
(7428, 
13434) 

28389 
(17719, 39059) 

22114 
(16438, 27790) 

12327 
(8773, 15881) 

Deaths 2790 
(2142, 3439) 

444 
(219, 668) 

424 
(278, 570) 

212 
(113, 219) 

1353 
(783, 1922) 

244 
(145, 344) 

Recovered 25631 
(18469, 32793) 

14636 
(8661, 20611) 

6835 
(4416, 9254) 

9605 
(5812, 13398) 

12625 
(8299, 16951) 

5798 
(3239, 8357) 

27.06.20 

Confirmed 
94557 

(69798, 
119316) 

25438 
(15959, 34917) 

11564 
(7754, 
15375) 

31939 
(18113, 45766) 

24482 
(17111, 31854) 

13801 
(9188, 18414) 

Deaths 3125 
(2280, 3971) 

506 
(217, 795) 

459 
(273, 646) 

239 
(111, 247) 

1498 
(759, 2237) 

268 
(141, 394) 

Recovered 29336 
(19990, 38682) 

16792 
(9119, 24466) 

7721 
(4545, 
10898) 

10985 
(6023,15947) 

14312 
(8742, 19882) 

6395 
(3078, 9712) 

 
7.  Discussion and Conclusions 

 
In this paper, we have conducted a two-round study of COVID-19 cases in India and six 

hotspots states of India.  Model accuracy is checked for the first round and then the predication 
is verified from 15 April 2020 to 25 April 2020. The first-round model is built on data of 
cumulative confirmed, recovery and death cases from 30 January 2020 to 14 April 2020. We 
have evaluated the accuracy of the ARIMA model in predicting cumulative confirmed, 
recovery and death cases. For all six hotspots states of India, the ARIMA model in predicting 
cumulative confirmed cases is 83% on average which indicates that ARIMA has given good 
accuracy of prediction. If we discuss country India, forecasted cumulative confirmed cases give 
98% model accuracy using the ARIMA model. While model accuracy of cumulative recovery 
cases and death cases are 97% and 78% respectively.  On the other hand, model accuracy for 
death and recovery cases in six hotspots states of India is 76% and 58% respectively. This 
seems we need a better model for forecasting death and recovery cases in hotspots states of 
India. Thus, through this model forecasted confirmed cases are more reliable than with death 
cases and recovery cases in six hotspots states of India. We hope that our forecasts will be a 
useful tool for governments and individuals towards making decisions and taking the 
appropriate actions to curb the spreading of the virus. 
 

There are certain limitations in the numbers of COVID-19 cases forecasted. The forecast 
is based on past data and information, whereas the technology changes with time and medical 
science are in the process of doing inventions for the betterment of mankind. If new methods 
or medicines are invented for the treatment of COVID-19, the figures forecasted may vary. The 
numbers forecasted may also vary if the effective methods are not adopted or medicines or 
vaccines are not invented for the treatment of COVID-19 cases. Depending upon the resources, 
if a greater number of tests are conducted nationwide, the better management of the disease 
can be done and more spread of disease can be avoided. While considering figures forecasted, 
we should understand that we have not considered urban-rural variations, stratification of age, 
occupation, pre-existing co-morbidities, travel history which alters the outcomes. The testing 
rate is lower in India than in different countries, so our absolute numbers might below. If there 
is a substantial increase in tests, it may also affect the numbers forecasted.  If healthcare 
facilities are increased, the forecasted figures may alter. 



 K. TINANI, K. MURALIDHARAN, A. DESHMUKH, ET AL. [Vol. 18, No. 1 
 

 

238 

 
 
Acknowledgements 
 
The authors express their gratefulness to the reviewer and the editor for their invaluable 
comments and suggestions, which have helped us to improve the paper substantially. 
 
References 
 
Kai, L., Ying, C., Ruzheng, L. and Kunyuan, H. (March, 2020). Clinical features of COVID-

19 in elderly patients: A comparison with young and middle-aged patients.   Journal of 
Infection, 6, e14-e18. 

Khot, W. Y. and Nadkar, M. Y. (March, 2020). The 2019 novel coronavirus outbreak – A 
global threat.  Journal of the Association of Physicians of India, 68. 

Khrapov, P.V.  and Loginova, A.A.  (2020). Mathematical modelling of the dynamics of the 
Coronavirus COVID-19 epidemic development in China. International Journal of Open 
Information Technologies, 8(4), 13-16. 

Lin, J., Kewen, L., Jiang, Y., Xin, G. and Ting, Z. (March, 2020). Prediction and analysis of 
coronavirus disease 2019. arXiv.org>q-bio>arXiv, 2003.05447. 

Lina, Q., Zhaob, S., Daozhou, G., Loue Y., Shu, Y., Musa, S., Wangb, M. H., Caig, Y., Wang, 
W., Yangh, L. and Hee, D. (March, 2020). A conceptual model for the coronavirus 
disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and 
governmental action. International Journal of Infectious Diseases, 93, 211-216.  

Liu, Y., Gayle A. A., Wilder-Smith, A. and Rocklöv, J. (February, 2020). The reproductive 
number of COVID-19 is higher compared to SARS Coronavirus. Journal of Travel 
Medicine, 27, 1-4.     

Miller, A., Reandelar, M. J., Fasciglione, K., Roumenova, V., Li, Y. and Otazu, G. H. (March 
2020). Correlation between universal BCG vaccination policy and reduced morbidity and 
mortality for COVID-19: an epidemiological study. CC-BY-ND 4.0 International license.    

          https://doi.org/10.1101/2020.03.24.20042937. 
Petropoulos, F. and Makridakis, S. (March, 2020). Forecasting on the novel coronavirus 

COVID-19. PLOS ONE, https://doi.org/10.1371/journal.pone.0231236. 
Read, J. M., Bridgen, J. R., Cummings, D. A., Ho, A. and Jewell, C. P. (January, 2020). Early 

prediction of the 2019 novel coronavirus outbreak in the mainland China based on simple 
mathematical model. IEEE, 8, 51761-51769. 

Ribeiro, M.H.D.M., Da Silva, R.G., Mariani, V.C. and Coelho, L.S. (May, 2020). Short-term 
forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil. Chaos, 
Solitons and Fractals, 135, 1-10. 

Schueller, E., Klein, E., Tseng, G. K., Balasubramanian, R., Kapoor, G., Joshi, J., Sriram, A., 
Nandi, A. and Laxminarayan, R. (April, 2020). COVID-19 in India: Potential Impact of 
the Lockdown and Other Longer-Term Policies. The Centre for Disease Dynamics, 
Economics and Policy. 

Tania D., Mardani-Fard, H.A. and Paria, D. (March 2020). Forecasting of COVID-19 
Confirmed Cases in Different Countries with ARIMA. MedRxiv, preprint. 

          doi: https://doi.org/10.1101/2020.03.13.20035345. 
 



 
Corresponding Author: Ashish Das, 

Email: ashish@math.iitb.ac.in 

 

 

Statistics and Applications {ISSN 2452-7395 (online)}  

Volume 18, No. 1, 2020 (New Series), pp 239-251 

 

Impact of COVID-19 on Payment Transactions 
 

Ashish Das1, Suchismita Das2, Aashima Jaiswal2 and Tushar Sonthalia2 
1Department of Mathematics, Indian Institute of Technology Bombay, Mumbai 400076, India 

2Department of Data Science, S P Jain School of Global Management, Mumbai 400070, India 

 

Received: 10 June 2020; Revised: 26 June 2020; Accepted: 27 June 2020 

Abstract 

Due to the extreme contagious nature of the COVID-19 virus, the Government of India has 

had to implement several restrictions to curb the outbreak. The brunt of the economic 

consequences of the restrictions has been faced majorly by the aviation, tourism and hospitality 

sector. Nevertheless, many other small/medium/large services are facing the economic 

consequences. 

With the lockdown allowing mostly the essential sectors to continue to function, the 

spending of disposable income is expected to reduce drastically. The cash withdrawals at ATMs 

is a prominent measure of the general retail economic activity. We show its impact along with 

the impact on other digital payment modes such as Debit/Credit cards, UPI, IMPS, NEFT and 

RTGS. We present the extent to which COVID-19 and the subsequent nationwide lockdown and 

slow unlocking, during April-May-June 2020, has impacted the financial transactions in the 

country. The sheer slowdown of the economy gets depicted by the drastic reduction of retail 

payment activities in the country. 

Based on transaction data during Q4 of FY20 and Q1 of FY21, we relate the economic 

impact of COVID induced lockdown and its subsequent relaxations. Although the economy is 

likely to suffer in FY21, we have begun to see some form of cautious and calibrated opening up 

of economic activity, as we see payment transactions picking up starting June 2020. The positive 

effect of COVID can be seen in form of increased levels of BHIM-UPI usage, as more and more 

people learn to use this mobile app-based, easy to use, digital mode of payment. 

Key words:  ATM cash withdrawal; Digital transactions; Polynomial trend. 

 

1.  Introduction 

 

The first case of COVID-19 was reported in January end. While the number of cases 

remained low in February, the number of cases started to rise in March, which led the 

government to implement a nationwide lockdown in the country. As on date, the number of new 

cases is constantly increasing every day. 
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On 1st June, the nationwide lockdown (which started from 25th March) was extended till 

30th June to combat COVID-19. This increases the total lockdown period to 98 days. We 

provide an update on the latest COVID-19 status for India as a whole. 

 

Some of the key observations include: 

 

• Confirmed cases: As of 25th June, India’s COVID-19 confirmed cases stood at 4.9 lakh. 

Before the first phase of the lockdown was initiated from 25th March, India’s total confirmed 

COVID-19 cases stood at 519. Currently, confirmed cases are doubling in about 18 days. The 

timeline for the doubling of confirmed cases has shown a steady increase. 

• Active cases: Active cases currently stand at 1.9 lakh and the doubling of such cases 

followed trends similar to confirmed cases, but on a higher side. 

• Recovery cases: As of 25th June, a total of 2.9 lakh COVID positives have recovered, 

resulting in a nationwide recovery rate of 58%. 

• Deaths: COVID-19-related deaths stood at 9 before 25th March, which has increased to 

more than 15,300 as on 25th June. Deaths are now doubling in about 20 days vs. the previous 

average of 9-18 days in the second half April and month of May and June. The current mortality 

rate based on the number of closed cases (recovered + death) is 5.1%. 

• The daily new confirmed cases of COVID-19 is still at its increasing trajectory with the 

highest, till date, being 18,000 plus. 

• State-wise trend: Maharashtra remains the worst-affected state (confirmed cases have 

crossed the 147,000 mark), followed by Delhi, Tamil Nadu, Gujarat, Uttar Pradesh, Rajasthan, 

West Bengal, Madhya Pradesh, Haryana and Karnataka. They contribute to over 85% of the total 

COVID-19 confirmed cases. On a combined basis, these ten states contribute about 70% to 

India’s total GDP. 

 

With the nationwide lockdown now being extended to a total of 98 days and fiscal stimulus 

is proving to be inadequate, the economy is likely to suffer a deep recession in FY21. Although 

we have begun to see some form of cautious and calibrated opening up of economic activity in 

some regions/areas starting June 2020, return to normalcy or near normalcy depends on how 

quickly the COVID curve flattens out. 

 

Over the past couple of years, the GDP growth rate has been falling, 2018 (6.8%), 2019 

(4.2%) and was expected to be 4.6% percent in 2020. However, due to the imposed lockdown 

recent conservative estimates place the growth rate to be in negative territory (for the first time 

since 1979). 

 

Due to the extremely contagious nature of the COVID-19 virus, the Government of India 

has had to implement several restrictions to curb the outbreak. The brunt of the economic 

consequences of the restrictions has been faced majorly by the aviation, tourism and hospitality 

sector. Nevertheless, many other small/medium/large services are facing the economic 

consequences that include real estate, constructions, textiles, passenger/commercial vehicles, 

poultry/meat, etc. 

 

According to Willis Towers Watson India COVID-19 Readiness (Survey Results and Key 

Insights April 2020), the following gets highlighted: 



2020]  IMPACT OF COVID-19 ON PAYMENT TRANSACTIONS  

 

 

241 

• 57% of organisations have indicated that there will be a moderate to large negative 

impact on their business in the next 6 months 

• 46% of organisations have indicated that there will be a moderate to large negative 

impact on their business in the next 12 months 

• 19% of organisations have indicated that there will be a moderate to large negative 

impact on their business in the next 12-24 months 

• 5% of organisations responded that there will be a positive business impact within the 

next 12 to 24 months 

 

The economic activity of the country is gauged by the retail payments activity, be it the 

ATM usage for cash, or other digital means of payment. To see the impact of COVID-19 on the 

payment systems during the past three months, we use data provided by the Reserve Bank of 

India (RBI) and the National Payments Corporation of India (NPCI). 

 

With the lockdown allowing mostly the essential sectoRs. to continue to function, the 

spending of disposable income is expected to reduce drastically. The cash withdrawals at ATMs 

is a prominent measure of the general retail economic activity. The inactivity in the economy and 

its extent in terms of requirement of cash is depicted in Section 2, using the ATM cash 

withdrawal data. In Section 3, we show the impact of lockdown on other digital payment modes 

such as Debit/Credit cards, UPI, IMPS, NEFT and RTGS. We present the extent to which 

COVID-19 and the subsequent nationwide lockdown has impacted the financial transactions in 

the country. The sheer slowdown of the economy gets depicted by the drastic reduction of retail 

payment activities in the country. Finally, in Section 4 we give some concluding remarks. 

 

 

2.  Impact of COVID-19 Related Lockdown on ATM Usage 

  

We study the impact of lockdown on cash withdraws at ATMs. ATM transactions are an 

important indicator of the day-to-day economic activity. The ATM cash withdrawal transactions 

constitute the on-us and the off-us transactions. In case of on-us transactions, the ATM and the 

debit card that is used for cash withdrawal are of the same bank. While for the off-us 

transactions, the debit card of a bank is used in an ATM of a different bank. Such off-us 

transactions are routed through a switch, called the National Financial Switch (NFS), maintained 

by NPCI. We first present trends on cash withdrawals at ATM for the combined on-us and off-us 

transactions. This is followed by studying the trends for off-us transactions ATM only. 

 

2.1.  ATM usage for combined on-us and off-us transactions 

 

We primarily look at the volume and value data of ATM transactions for the period 

November 2019 through April 2020. Chart 1 shows that in April 2020, there had been Rs. 1.27 

lakh crore of ATM cash withdrawals unlike monthly average of Rs. 2.77 lakh crore during Q4 of 

FY20. Thus, there had been less cash withdrawal to the tune of over Rs. 1.5 lakh crore in April 

20, over the average monthly withdrawal in Q4 of FY20. 
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 Source: RBI data 

 

Chart 1: Trend of cash withdrawal at ATM using debit card 

 

The impact of lockdown on ATM cash withdrawals are better judged based on growth 

curves. Charts 2 provides month-on-month (m-o-m) percentage growths for the period 

November 2018 through April 2020. The m-o-m growth of ATM transactions (in value terms) 

for March 2020 over March 2019 had been (-)24% while for April 2020 over April 2019 had 

been (-)48%. 

 

 

 
  Source: RBI data and authors’ computation 

 

Chart 2: m-o-m growth of debit card usage at ATM 

 

2.2.  ATM usage for off-us transactions 

 

Unlike RBI data for the combined on-us and off-us transactions, NPCI provides the 

monthly NFS data for off-us cash withdrawals at ATM. The latest data available is for the month 

of May 2020. Additionally, since June 2020, RBI has started disseminating daily data for cash 
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withdrawal using the NFS (through ATM). We use such daily data till June 23, 2020, to project 

the June figures. The off-us ATM cash withdrawals till June 23rd had been 2268.33 lakh 

(volume) and Rs. 93606.94 crore (volume). Therefore, based on proportions, for the 30 days of 

June 2020, an estimate of the cash withdrawal volume is 2268.33*30/23 = 2959 lakh and that the 

value is 93606.94*30/23 = Rs. 1.22 lakh crore. 

 

 
 Source: NPCI/RBI data and authors’ computation 

 

Chart 3: Trend of cash withdrawal at ATM for off-us transactions 

 

Chart 3 shows that April 2020 showed a trough and thereafter things are slowly returning 

to normal with significant improvements in June 2020. During Q4 of FY20, the monthly average 

of off-us cash withdrawal at ATM had been Rs. 1.35 lakh crore, while April, May and June 2020 

reflect off-us cash withdrawals of Rs. 0.68 lakh crore, Rs. 1.03 lakh crore and Rs. 1.22 lakh 

crore, respectively. This demonstrates the effect of some form of cautious and calibrated opening 

up of economic activity during the months of May and June. 

 

 
  Source: NPCI/RBI data and authors’ computation 

 

Chart 4: m-o-m growth of off-us ATM usage 
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Charts 4 provides m-o-m growths for the period November 2018 through June 2020. The 

m-o-m growth of off-us ATM transactions (in value terms) for March 2020 over March 2019 had 

been (-)24%, for April 2020 over April 2019 had been (-)45%, for May 2020 over May 2019 had 

been 45%, while for June 2020 over June 2019 is estimated to be 22%. 

 

 

3.  Impact of COVID-19 Related Lockdown on Digital Payments 

 

We study the impact of lockdown on some important digital payment modes such as 

Debit/Credit cards, UPI, IMPS, NEFT and RTGS. 

 

3.1.  Debit card usage at POS (includes e-Com) 

 

Post demonetization, debit cards (primarily mastercard/VISA/RuPay debit cards) have seen 

a significant jump in usage at merchant POS, which includes e-Com mobile/computer-based 

online transactions. Primarily, e-Com constitutes e-commerce transactions and digital bill 

payments through ATMs, etc. for credit/debit cards, while for debit cards it additionally includes 

a card to card transfers. With lockdown in place, we see a significant drop in retail economic 

activity and this is seen clearly in Chart 5, where we present debit card and RuPay card 

transaction data for the period November 2018 through April 2010 (for RuPay debit card, we 

have the additional data for May 2020). 

 

 
 Source: RBI data    Source: NPCI data 

 

Chart 5: Debit card and RuPay card transactions 

 

The impact of lockdown on debit/RuPay card-based POS transactions are now judged 

based on growth patterns. The year-on-year (y-o-y) growth percentages for the period November 

2018 through April/May 2020 are plotted in Chart 6. The impact of lockdown on POS 

transactions (in value terms) is now judged based on growth estimates in the absence of COVID-

19 and the actual COVID-19 impacted figures. The estimates for March-April-May 2020 are 

based on a third-degree polynomial trend fitted from the growth (value) figures of November 

2018 through February 2020. The period November 2018 through May 2020 are associated to 
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the variable x, taking values 1,2,…,16,17,18,19, respectively. Let y denote the y-o-y growth in 

transaction values at POS. The fitted curves for debit card and RuPay card are 

 

  Debit Card: y = 47.938 – 6.934x + 0.251x2 + 0.019x3 with R² = 0.939 

  RuPay Card: y = 97.341 – 6.774x + 0.223x2 + 0.001x3 with R² = 0.832 

 

 
Source: RBI data and authors’ computation   Source: NPCI data and authors’ computation 

 

Chart 6: y-o-y growth patterns for debit/RuPay card usage at POS 

 

The y-o-y growth of debit card transactions (in value terms) for March 2020 over its trend 

estimate had been (–)73%, while for April 2020, it had been (–)163%. For RuPay card the same 

is (–)41% and (–)102% for March 2020 and April 2020, respectively. Finally, the y-o-y growth 

of RuPay card transactions (in value terms) for May 2020 over its trend estimate had been  

(–)75%. 

 

3.2.  Credit card usage at POS (includes e-Com) 

 

Prior to COVID outbreak, credit card (primarily mastercard/VISA credit cards) usage at 

POS (includes e-Com) have been increasing consistently. Lockdown induced a significant drop 

in retail economic activity and this is clearly reflected in Chart 7, which provides credit card 

transactions for the period November 2018 through April 2010. 

 

As in case of debit cards, the impact of lockdown on credit card based POS transactions are 

now judged based on growth patterns. The y-o-y growth percentages for the period November 

2018 through April 2020 are plotted in Chart 8, and the impact of lockdown on POS transactions 

is judged based on growth estimates in the absence of COVID-19 and the actual COVID-19 

impacted figures. As earlier, the estimates for March-April 2020 are based on a third-degree 

polynomial trend fitted from the growth (value) figures of November 2018 through February 

2020. 
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           Source: RBI data 

 

Chart 7: Credit card transactions 

 

The period November 2018 through April 2020 are associated to the variable x, taking 

values 1,2,…,16,17,18, respectively. Let y denote the y-o-y growth in transaction values at POS. 

The fitted curve for credit card is 

 

   y = 29.264 + 1.499x – 0.351x2 + 0.015x3 with R² = 0.565 

 

 
  Source: RBI data and authors’ computation 

 

Chart 8: y-o-y growth patterns for credit card usage at POS 
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The y-o-y growth of credit card transactions (in value terms) for March 2020 over its trend 

estimate had been (–)39%, while for April 2020, it had been (–)94%. Since the third-degree 

polynomial fit has a relatively lower value of R2, being conservative, we also look into the y-o-y 

growth (in value terms) for March 2020 over March 2019, which is (–)42% while for April 2020 

over April 2019 is (–)93%. 

 

3.3.  IMPS and BHIM-UPI transactions 

 

IMPS and BHIM-UPI based digital transactions allow real time account to account money 

transfers, be it person-to-person or person-to-merchant. Primarily based on mobile Apps, its ease 

of use has made it a well-accepted mode of retail payments and money transfer. NPCI has 

provided the transaction data till May 2020, while RBI, since June 2020, has started 

disseminating daily data for IMPS and BHIM-UPI transactions. Accordingly, as earlier, we use 

the daily data till June 23, 2020, to project the June figures. The estimated June 2020 IMPS 

volume and value are 1987 lakh and Rs. 2.07 lakh crore respectively. Similarly, for BHIM-UPI 

the volume and value estimates are 13221 lakh and Rs. 2.63 lakh crore respectively. 

 

Tables 9 and 10 shows a marginal decrease in volume and values of such transactions in 

April 2020. However, omnipresence and proliferation of BHIM-UPI app has come very handy in 

the days of COVID (distancing from physical contacts) for day-to-day usage. This has led to a 

significant increase in BHIM-UPI transactions for the months of May and June 2020. IMPS has 

also shown recovery of transaction levels in May and June over April 2020. 

 

 
      Source: NPCI/RBI data and authors’ computation 

 

Chart 9: IMPS and BHIM-UPI transaction volumes 
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          Source: NPCI/RBI data and authors’ computation 

 

Chart 10: IMPS and BHIM-UPI transaction values 

 

3.4.  NEFT transactions 

 

NEFT transactions are an important indicator of economic activity. In addition to the 

monthly data till April 2020, RBI’s daily data for the period June 1-23, 2020 is used to project 

the June month’s NEFT transactions. Following proportions, the estimated June 2020 volume is 

2337 lakh and the value is Rs. 17.92 lakh crore. Trends in the NEFT transaction are provided in 

Chart 11 for the period November 2018 through April 2010 and June 2020. NEFT transactions 

usually increase in the month of March, being the financial year-end. The same is seen in March 

2020 but to a lesser extent than in March 2019. However, for both volume and value, we see a 

significant drop in NEFT transactions in April 2020. In April 2020, there had been Rs. 13.06 

lakh crore of NEFT transactions unlike a monthly average of Rs. 20.20 lakh crore during Q4 of 

FY20 (i.e., a drop of over Rs. 7 lakh crore). However, in June 2020, we see a significant 

turnaround with increased NEFT transactions, being Rs. 17.92 lakh crore in value terms. 

 

The impact of lockdown on NEFT transactions are better judged based on growth curves. 

In Chart 12, we provide y-o-y growths for the period November 2018 through April 2020. We 

see that the y-o-y growth of NEFT transactions (in value terms) for March 2020 over March 

2019 had been (–)23%, for April 2020 over April 2019 had been (–)62%, while for June 2020 

over June 2019 is estimated to be 10%. This indicates a revival of some economic activities, 

shown at least in terms of NEFT transactions. 
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           Source: RBI data and authors’ computation 

 

Chart 11: NEFT transactions 

 

 
            Source: RBI data and authors’ computation 

 

Chart 12: y-o-y growth of NEFT transactions 
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transactions. We focus on the RTGS transactions, being an indicator of economic activity. As 

earlier, the daily data for RTGS transactions till June 23, 2020 is used to project the June 

month’s figure. The estimated June 2020 volume is 116 lakh and the value is Rs. 79.36 lakh 

crore for the RTGS transactions. Trends in the RTGS transaction for the period November 2018 

through April 2020 and June 2020 is provided in Chart 13. For both volume and value, we see a 

significant drop in RTGS transactions in April 2020. In April 2020, there had been Rs. 64.44 
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lakh crore of RTGS transactions unlike a monthly average of Rs. 103.06 lakh crore during Q4 of 

FY20 (i.e., a drop of Rs. 38.62 lakh crore). However, in June 2020, we see a recovery with 

increased RTGS transactions, being Rs. 79.36 lakh crore in value terms. 

 

 
               Source: RBI data and authors’ computation         

 

Chart 13: RTGS transactions 

 

In Chart 14, we provide y-o-y growths for the period November 2018 through April 2020 

and that of June 2020. The y-o-y growth of RTGS transactions (in value terms) for March 2020 

over March 2019 had been (–)57%, for April 2020 over April 2019 had been (–)80%, while for 

June 2020 over June 2019 is estimated to be (–)55%. One may note that such contracted growth 

are consistent and persisted since November 2019. It is remarked that from November 2019, RBI 

had introduced a new format for data dissemination. 

 

 
               Source: RBI data and authors’ computation 

 

Chart 14: y-o-y growth of RTGS transactions 

50

60

70

80

90

100

110

120

130

140

5500000

7500000

9500000

11500000

13500000

15500000

17500000

19500000

N
o

v-
1

8

D
e

c-
1

8

Ja
n

-1
9

Fe
b

-1
9

M
ar

-1
9

A
p

r-
1

9

M
ay

-1
9

Ju
n

-1
9

Ju
l-

1
9

A
u

g-
1

9

Se
p

-1
9

O
ct

-1
9

N
o

v-
1

9

D
e

c-
1

9

Ja
n

-2
0

Fe
b

-2
0

M
ar

-2
0

A
p

r-
2

0

M
ay

-2
0

Ju
n

*
-2

0

la
kh

R
s 

cr
o

re

RTGS Transactions

 Value
(Rupees Crore)

Volume
(Lakh)

-70
-60
-50
-40
-30
-20
-10

0
10
20
30
40

N
o

v-
1

8

D
e

c-
1

8

Ja
n

-1
9

Fe
b

-1
9

M
ar

-1
9

A
p

r-
1

9

M
ay

-1
9

Ju
n

-1
9

Ju
l-

1
9

A
u

g-
1

9

Se
p

-1
9

O
ct

-1
9

N
o

v-
1

9

D
e

c-
1

9

Ja
n

-2
0

Fe
b

-2
0

M
ar

-2
0

A
p

r-
2

0

M
ay

-2
0

Ju
n

*
-2

0

y-o-y Growth of RTGS Transactions

y-on-y growth (Volume) y-on-y growth (Value)



2020]  IMPACT OF COVID-19 ON PAYMENT TRANSACTIONS  

 

 

251 

 

4.  Concluding Remarks 

 

 In India, COVID-19 cases started increasing exponentially from mid-March 2020. The 

subsequent lockdowns and thereafter slow unlocking had been witnessed during April-May-June 

2020. Based on transaction data during Q4 of FY20 and Q1 of FY21, we relate the economic 

impact of COVID induced lockdown and subsequent relaxations in lockdown. 

 

Although the economy is likely to suffer in FY21, we have begun to see some form of 

cautious and calibrated opening up of economic activity, as we see payment transactions picking 

up starting June 2020. This is clearly reflected in the country’s ATM usage for cash withdrawal 

and a few other forms of digital payments. However, return to normalcy or near normalcy would 

depend on how quickly the COVID curve flattens out. The positive effect of COVID can be seen 

in form of increased levels of BHIM-UPI usage, as more and more people learn to use this 

mobile app-based, easy to use, digital mode of payment. Moreover, money transaction using 

BHIM-UPI does not cost the users of this payment mode. 
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Abstract 
 

RNA viral genomes have very high mutations rates. As infection spreads in the host 
populations, different viral lineages emerge acquiring independent mutations that can lead to 
varied infection and death rates in different parts of the world. By application of Random Forest 
classification and feature selection methods, we developed an analysis pipeline for 
identification of geographic specific mutations and classification of different viral lineages, 
focusing on the missense-variants that alter the function of the encoded proteins. We applied 
the pipeline on publicly available SARS-CoV-2 datasets and demonstrated that the analysis 
pipeline accurately identified country or region-specific viral lineages and specific mutations 
that discriminate different lineages. The results presented here can help designing country-
specific diagnostic strategies and prioritizing the mutations for functional interpretation and 
experimental validations.  
 
Key words: Random forest; Feature selection; Classification; SARS-CoV-2; Coronavirus. 
 

 
1. Introduction 

In December 2019, researchers identified a novel coronavirus that first infected and 
caused coronavirus disease (COVID) in patients in Wuhan, China (Lu et al. 2020b). The virus, 
initially named as 2019-nCoV, was officially renamed as SARS-CoV-2 by the International 
Committee on Taxonomy of Viruses to indicate that it was very closely related to the SARS 
(Severe Acute Respiratory Syndrome Coronavirus). It infected 6,265,496 confirmed cases and 
caused 375,526 deaths globally as of June 1, 2020 (https://coronavirus.jhu.edu/).  SARS-CoV-
2 is an enveloped single-stranded RNA virus. It infects a human host by breaking into the host’s 
cell and acquires mutations during replications in the cell. As it spreads from person to person, 
the accumulated mutations in the viral genomes can lead to different viral lineages. One 
particular type of mutations, called missense mutations, alter the amino acids encoded by the 
RNA sequences. For example, some missense mutations alter a protein to give growth 
advantage for the virus – allowing virus entry into a host cell, and others can lead to changes 
in the target region of a drug or antibody that acts against the virus protein (Zhao et al. 2018; 
Holland et al. 2020). Therefore, computational methods to prioritize specific mutations from a 
large set of passenger mutations and classify different lineages is of great importance for the 
ongoing COVID research.  
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We developed a computational pipeline for constructing a tree based Random Forest 
classifier to discriminate SARS-CoV-2 lineages from different geographic regions and identify 
important mutations, using the rich source of existing mutational profiles and associated 
genomic annotations and geographic information. Here, we attempt to classify viral lineages 
from four geographic locations – 1) USA-New York; 2) China; 3) Europe-Spain and Italy; and 
4) India.  We prepared a dataset by processing publicly available mutational profiles that were 
curated by analyzing 20,746 SARS-CoV-2 genome sequences. These genome sequences were 
sequenced from infected patient samples in different countries. We systematically trained and 
evaluated Random Forest (RF) classifiers on subset of this dataset, using both cross validation 
and testing on independent test set, and selected the best performing RF classifier for the final 
algorithm.  
 
2. Data Description 
 

Working around the world in different countries, teams of scientists are racing to 
understand the virus’s genetic sequences, develop treatments and vaccine candidates, and to 
accurately forecast future outbreaks. In this unprecedented effort, more than 30,000 SARS-
CoV-2 genomes have been sequenced and submitted to public data repositories since the 
outbreak in December, 2019 (Colson et al. 2020; Lu et al. 2020a; Yadav et al. 2020). By 
aligning these genomic sequences to a reference SARS-CoV-2 genome, numerous mutation 
sites are identified and stored in public databases. We downloaded the following data files from 
2019 Novel Coronavirus Resource at China National Center for Bioinformation 
(https://bigd.big.ac.cn/ncov/release_genome).  

 
1. VCF file from https://bigd.big.ac.cn/ncov/variation/statistics?lang=en. File name “2019-

nCoV_total.vcf”. VCF (Variant Call Format) file contains meta-information lines, header 
lines, and then data lines (rows) each containing information about a mutation in the 
genome. The columns contain genotype information on samples for each position. The 
downloaded file contains 10,261 non-header rows (each corresponding to specific 
mutation in the genome) and 20,755 columns, of which first 9 columns are mutation 
information and the rest of the columns contain genotype information for 20,746 virus 
samples. Supplement Table 1 provides an example of top-ranking mutations, and their 
genotype information for two samples (columns 10 and 11).    

 
2. Variant Annotation file from https://bigd.big.ac.cn/ncov/variation/annotation. File 

name “Variation Annotation.xls”. This file contains the genomic annotations of the 
identified mutations, such as a) genomic position, b) gene name or region in which the 
mutation is located, c) Number of viruses with the mutation, d) Annotation type – 
missense, synonymous or intergenic variant, etc., e) Mutation type – SNP, insertion or 
deletion, etc., and f) Protein position and amino acid change, etc.  

 
In particular, we focused our analysis of missense variants – those genomic variants that 

alter the encoded amino acid sequences; because study of proteins is key to understanding the 
viral spread and successful development of vaccines and neutralizing antibodies. We choose 
four countries/regions based on the wide variations in infection and death rates. The four 
regions are –1) USA-NY, the epicenter in the United States; 2) China, where the pandemic 
originated; 3) Spain and Italy, two epicenters in Europe; and 4) India, where the world's biggest 
coronavirus lockdown measures were strictly implemented.  
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3. Methodology and Computational Framework 
 

This Section describes the methodology and computational processing used in this 
analysis. We applied advanced tree-based ensemble learning algorithm – Random Forests 
(Breiman 2001) for building the classification model for discriminating the virus lineages of 
four geographical locations. Since RF results its output in a ‘black-box’ model, we applied 
Classification and Regression Tress (CART) methodology on selected feature sets due to its 
key advantage in terms of interpretability  (James et al. 2013). 

Random forest: Fandom forest is a collection of tree structured classifiers {ℎ(𝑥, Θ'), 𝑘 =
1,… }, where the Θ' are independent identically distributed random vectors and each tree casts 
a unit vote for the most popular class at input x. For a given ensemble of classifiers, with the 
training set drawn at random from the distribution of the random vector Y,X, the margin 
function is defined as,  

𝑚𝑔(𝑿, 𝑌) = 𝑎𝑣'𝐼(ℎ'(𝑿) = 𝑌) −𝑚𝑎𝑥678 	𝑎𝑣'𝐼(ℎ'(𝑿) = 𝑗), 
 

where 𝐼(. ) is the indicator function. The confidence in the classification is directly proportional 
to the margin, as the margin measures the extent to which the average number of votes at X,Y 
for the right class exceeds the average vote for any other class. Each tree is constructed using 
a different bootstrap sample from the original data where about one-third (33%) of the cases 
are left out of the bootstrap sample and not used in the construction of the k-th tree. These left 
out samples, usually called “out-of-bag” data, is used to get a running unbiased estimate of the 
classification error as trees are added to the forest. Thus, a test set classification is obtained for 
each case in about one-third of the trees. At the end of the run, let j to be the class that got most 
of the votes every time case/sample n was out-of-bag. The proportion of times that j is not equal 
to the true class of n averaged over all cases is the out-of-bag error estimate. At each node, only 
a subset of the possible predictors are used, primarily for reducing the correlation between trees 
and improving the accuracy of classification (Breiman and Cutler 2001). 
 
CART and rpart: CART is a tree-based algorithm that works via recursive partitioning of the 
training set in order to obtain multiple subsets that are closest (or as homogeneous as possible) 
to a given target class (Breiman 1984).  At each step, the split is made based on the independent 
variable that results in the largest possible reduction in heterogeneity of the dependent 
(predicted) variable.  
  
We describe the computational pipeline (Supplementary Figure 1) in the following two steps: 
 
Step 1 (Data processing step):  We wrote a Perl program to scan the two downloaded files for 
extracting the geographic information (from sample IDs) and selecting only the missense 
mutations with minor allele frequency greater than a certain cut-off.  For each mutation site, 
major allele is the one with the highest count and minor allele is the one with the second highest 
count. In other words, Minor Allele Frequency (MAF) is the frequency at which the second 
most common allele occurs in a given population. We included only those missense variants 
with minor allele count greater than 10. This step prepares the data in tab-separated tabular 
form for statistical analysis in R programing environment.      

 
Step 2 (Variable Selection and Classification Steps): Prior to building the final classification 
model using RF, we applied  a variable selection algorithm (Diaz-Uriarte 2007) to select a 
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small set of important non-redundant mutations. Feature selection was done using an RF based 
algorithm, that uses hybrid approach of selecting the virus mutations (predictor variables) based 
on importance spectrum (similar to scree plot) and backward variable elimination (for the 
selection of small sets of non-redundant variables) by changing parameters related to trees and 
iteration. Using 80,000 initial trees and a fractional variable drop of 10%, we finally selected 
42 mutations as the most discriminative variables between the four geographic regions (classes) 
and created the RF classifier for viral lineage prediction with high accuracy. The accuracy of 
the classifier was determined by RF’s cross-validation analysis (out-of-bag approach) and 
testing on independently set aside dataset.  We split the data into 80:20 ratio and classification 
model generated from the training set (80%) was applied to the test set (20%) to strengthen the 
accuracy claims. We then developed CART model for better visualization of mutation 
differences among classes. For developing CART model, we used the important features as 
selected by RF. Analyses were done using custom scripts in R and libraries including, 
randomForest and varSelRF. Recursive Partitioning and Regression Trees (rpart), an R 
implementation of the CART algorithm, is used for developing CART model in this study.  
randomForest library provides an R interface to the Fortran programs (available at 
https://www.stat.berkeley.edu/~breiman/RandomForests/). varSelRF library is used for 
selecting a small set of mutations while preserving Random Forest classification accuracy.  
 
4. Results 

 
We downloaded mutation profile of 10,261 mutations in 20,746 SARS-CoV-2 samples 

as described in Section 3. After selecting only missense variants that show variation in at least 
10 samples, we retained 588 missense mutations. Further, we selected a total of 2,927 samples 
that correspond to four geographic locations. Data was divided into training (2,341) and testing 
(586) sets based on number of samples, maintaining the class ratios. In Table 1, we list the top 
50 mutations observed among all the sequenced viral samples. USA-NY samples showed 
highest mutation rate, suggesting that coronavirus was probably circulating undetected in the 
NY area for quite some time. Additionally, we found that the top four most common mutations 
showed significantly higher mutation rates in USA-NY samples than the other geographical 
regions, including rest of the world samples. For example, two of the mutations – one at 
genomic location 23403 (A mutated to G) and the other at 25563 (G mutated to T) – alter amino 
acids QHD43416.1:D614G and QHD43417.1:Q57H, respectively, in the S and ORF3a proteins 
of the SARS-Cov-2 virus. For the virus to break into a human cell (host cell), the S protein of 
the virus binds to ACE2 (angiotensin converting enzyme 2) protein on the human cell surface. 
The D614G mutation in S protein might change the protein structure so that it binds to the 
target enzyme (ACE2) with different affinity than the other lineage proteins (Amin et al. 2020). 
Similarly, the Q57H mutation in ORF3a protein might change important functional domains 
linked to virulence, infectivity, ion channel formation, and virus release (Issa et al. 2020). We 
speculate that this may partly explain why the infection rate is much higher in USA-NY area 
than other geographic locations.  

 
Next, we built a four-class classification model for discriminating the SARS-CoV-2 

samples grouped according to the four geographic locations, by specifying the country/region 
as factor variable y and mutation profile as predictor variable matrix X (a binary matrix, where 
1 and 0 denote presence and absence of the mutation respectively). The accuracy of the finally 
selected classifier based on cross-validation analysis (out-of-bag approach) is 85%. Table 2 
shows the confusion matrix for the final model and Figure 1 shows corresponding AUC. The 
robustness of developed model was then confirmed on the test data with high accuracy. Table 
3 shows evaluation metrics of the model on training and test data. USA-NY and China classes 
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have shown the best classification accuracy, followed by Italy-Spain class. The least accuracy 
was observed for India class, which could be due to small sample size of that class. However, 
we speculate that the misclassification of 26.8% and 10.3% of India class into Italy-Spain and 
USA classes, respectively, might be due the viral samples from the infected patients who 
traveled back to India from those geographic regions and not due to local spread of the virus.  

 
Class 4 (India) and Class 2 (China) showed better Specificity and PPV and lower FDR 

than the other two classes. DOR, ratio of the odds of positivity was also higher for Indian and 
Chinese lineages than the other two geographical regions.  DOR depends significantly on the 
sensitivity and specificity of a test. A test with high specificity and sensitivity with low rate of 
false positives and false negatives has high DOR. A diagnostic odds ratio of 1 is similar to an 
AUC of 0.5 and represents an uninformative test. Higher values for both reflect usefulness of 
the classification model. Youden index analysis is useful in finding the optimal cutoff value. 
The value provides the best tradeoff between sensitivity and specificity and is highest for Class 
2. F-score, which combines precision with recall is a good measure of goodness of model and 
shows high value for the current model predictions. Similarly, greater the value of positive 
likelihood ratio (PLR) for a particular test, the more likely a positive test result be a true 
positive. A good classifier should have high PLR and low Negative Likelihood Ratio (NLR). 
Matthews correlation coefficient (MCC), initially developed for binary classifier, considers 
true and false positives and negatives and is regarded as a balanced measure, which can be used 
even if the classes are of very different sizes. Optimized precision, a novel metrics used to 
negate the detrimental effects of using Precision (P) for performance evaluation of unbalanced 
data, also shows high values for all classes. The evaluation results from training model clearly 
indicate that the algorithm effectively distinguished the samples from the four regions based 
on the mutation profile of SARS-CoV-2. Results from testing the classifiers on test data agree 
with the cross-validation results and support the accurate predictive performance of the 
classification model.  

The results from CART analysis are shown in Table 4 and Figure 2. Although, the CART 
model is not as accurate as the random forest model, it provided a better visualization of the 
associations between viral samples/lineages in different geographic regions and the mutation 
patterns. For example, the final CART model (Figure 3) found that the presence of mutations 
at genomic locations 1059_C and 17747_C, but not at genomic locations 14408_C, 13730_C, 
9477_T and 11083_G classified majority of USA-NY samples from the rest in one branch of 
the tree. Similarly, mutation at genomic location 13730_C, but not at 1059_C, 14408_C 
classified majority of India samples in one branch of the tree. Interestingly, most of the 
missense mutations in the model alter the amino acids encoded by gene orf1ab. This gene 
encodes 16 non-structural poly-proteins (Nsp1-Nsp16) of viral RNA synthesis complex 
(Kirchdoerfer and Ward 2019). We expect that these results will help prioritization of select 
mutations, and study of their effect on SARS-Cov-2 and Human protein-protein interactions 
through focused experimental validations.  
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Table 1: Top 50 Mutations in the four geographic regions and the rest of the world. 
Column 2 – Genomic location of the mutation and the reference allele; Column 3 
– Gene location of the missense mutation; Columns 4-8 – Percentage of samples 
mutation observed in each geographic location; Column 9 – Range (difference of 
highest and lowest mutation percentages among the four geographic locations).  

   Percentage of mutated samples/isolates in  
(Total number of samples in the parentheses)  

Mutation 
rank 

Genomic 
location of 

the mutation 
(Ref Allele) 

Gene 
name 

Rest of 
the 

World 
(17816) 

USA-
NY 

(1243) 

China 
(656) 

Italy, 
Spain 
(534) 

India 
(494) Range 

1 23403 (A) S 74.45 93.24 5.34 65.92 62.35 87.91 
2 14408 (C) orf1ab 74.25 93.24 3.66 64.42 62.35 89.58 
3 25563 (G) ORF3a 28.37 86.32 0.91 1.69 23.08 85.41 
4 1059 (C) orf1ab 21.57 79.00 0.91 1.31 0.61 78.40 
5 28881 (G) N 24.36 4.02 1.52 17.04 12.15 15.52 
6 28882 (G) N 24.33 4.10 1.22 16.67 12.15 15.45 
7 28883 (G) N 24.29 4.10 1.22 16.85 12.15 15.63 
8 28144 (T) ORF8 10.22 2.65 31.10 27.53 4.25 28.44 
9 11083 (G) orf1ab 9.65 4.67 5.95 6.55 34.01 29.34 

10 17858 (A) orf1ab 6.93 1.21 0.00 0.00 0.20 1.21 
11 17747 (C) orf1ab 6.87 1.21 0.00 0.00 0.20 1.21 
12 26144 (G) ORF3a 5.96 3.78 5.03 4.87 0.61 4.42 
13 27964 (C) ORF8 3.09 0.56 0.00 0.00 0.00 0.56 
14 2558 (C) orf1ab 2.23 0.48 0.15 0.00 0.61 0.61 
15 28854 (C) N 1.82 0.00 1.37 0.00 14.17 14.17 
16 13730 (C) orf1ab 1.36 0.08 0.46 0.19 30.16 30.08 
17 28311 (C) N 1.40 0.00 0.46 0.19 28.95 28.95 
18 27046 (C) M 2.09 0.16 0.00 1.12 0.00 1.12 
19 2480 (A) orf1ab 2.07 0.48 0.15 0.00 0.40 0.48 
20 6312 (C) orf1ab 1.25 0.00 0.46 0.19 28.14 28.14 
21 11916 (C) orf1ab 0.74 17.62 0.00 0.00 0.00 17.62 
22 10097 (G) orf1ab 1.96 0.08 0.00 0.00 0.00 0.08 
23 25429 (G) ORF3a 1.80 0.08 0.00 0.19 0.20 0.20 
24 28077 (G) ORF8 1.55 0.72 1.52 0.00 0.81 1.52 
25 1440 (G) orf1ab 1.48 0.00 0.00 0.00 0.00 0.00 
26 2891 (G) orf1ab 1.46 0.00 0.00 0.00 0.00 0.00 
27 26530 (A) M 1.32 0.24 0.00 1.12 0.61 1.12 
28 18998 (C) orf1ab 0.34 14.32 0.00 0.00 0.00 14.32 
29 3177 (C) orf1ab 1.27 0.40 0.15 0.00 0.00 0.40 
30 490 (T) orf1ab 1.22 0.40 0.15 0.00 0.00 0.40 
31 28863 (C) N 0.63 0.24 0.15 19.66 0.20 19.51 
32 1397 (G) orf1ab 0.98 0.16 2.90 0.94 3.85 3.69 
33 9477 (T) orf1ab 0.59 0.24 0.15 20.04 0.20 19.89 
34 18736 (T) orf1ab 1.19 0.40 0.00 0.00 0.00 0.40 
35 25979 (G) ORF3a 0.61 0.16 0.15 19.10 0.20 18.95 
36 11109 (C) orf1ab 1.20 0.00 0.00 0.00 0.00 0.00 
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37 6310 (C) orf1ab 0.82 0.00 0.00 0.00 9.51 9.51 
38 4002 (C) orf1ab 1.03 0.08 0.00 0.00 0.00 0.08 
39 28836 (C) N 0.95 0.16 0.00 0.00 0.00 0.16 
40 13862 (C) orf1ab 0.94 0.00 0.00 0.00 0.40 0.40 
41 24368 (G) S 0.88 0.00 0.00 0.00 0.00 0.00 
42 21575 (C) S 0.69 1.13 0.00 0.37 0.61 1.13 
43 28878 (G) N 0.55 0.72 1.22 0.75 3.85 3.12 
44 16289 (C) orf1ab 0.72 0.16 0.00 0.19 0.00 0.19 
45 25688 (C) ORF3a 0.68 0.32 0.00 0.19 0.00 0.32 
46 10323 (A) orf1ab 0.68 0.08 0.30 0.19 0.00 0.30 
47 10798 (C) orf1ab 0.70 0.00 0.00 0.00 0.00 0.00 
48 25350 (C) S 0.66 0.00 0.00 0.00 0.20 0.20 
49 28580 (G) N 0.66 0.00 0.00 0.19 0.00 0.19 
50 1302 (C) orf1ab 0.66 0.00 0.00 0.00 0.00 0.00 

While the Random Forest classification method used here is considered as a “black box” 
method, with no interpretable classification model, the method provides useful information, 
such as variable importance. One of the measures of variable importance in Random Forest 
method is the mean decrease in accuracy, calculated using the out-of-bag sample. The 
difference between the prediction accuracy on the untouched out-of-bag sample and that on the 
out-of-bag sample permuted on one predictor variable is averaged over all trees in the forest 
and normalized by the standard error. This gives the mean decrease in accuracy of that 
particular predictor variable which has been permuted.  Figure 3 shows the list of feature 
variables ranked according to mean decrease in accuracy of classification. It is interesting to 
note that the mutations in genes orf1ab, ORF3A and S genes rank among the most 
discriminative variables from mean decrease in accuracy graph (Figure 3).  

 

Table 2: Confusion matrix of the prediction results of fitted model on Training set  

 
 

 
 
 
 

  True Class – Number of real samples in each class 

  USA-NY 
(Class 1) 

China 
(Class 2) 

Italy, Spain 
(Class 3) 

India 
(Class 4) Total 

Predicted 
Class –  
Number 

of 
predicted 
samples 
in each 
class 

USA-
NY 

907  
(91.25%) 

15  
(1.51%) 

72  
(7.24%) 

0  
(0.00%) 994 

China 9  
(1.71%) 

497 
(94.67%) 

16 
(3.05%) 

3  
(0.57%) 525 

Italy, 
Spain 

20  
(4.68%) 

42  
(9.84%) 

362 
 (84.78%) 

3  
(0.70%) 427 

India 41 
 (10.38%) 

23  
(5.82%) 

106  
(26.84%) 

225  
(56.96%) 395 

Total 977 577 556 231  
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Table 3: Evaluation metrics of the four-class classification model based on cross-
validation and independent test data. Bold numbers represent best performance among 
classes in training and test set. NPV – Negative Predictive Value; FDR – False Detection 
Rate; FNR – False Negative Rate; DRO – Diagnostic Odds Ratio; PLR – Positive Likelihood 
Ratio; NLR – Negative Likelihood Ratio; MCC – Matthews correlation coefficient. 

 

Metric 

 
Cross validation  

 
Test data 

USA 
(Class 

1) 

China 
(Class 

2) 

Europe 
(Class 3) 

India 
(Class 

4) 

USA 
(Class 

1) 

China 
(Class 

2) 

Europe 
(Class 3) 

India 
(Class 

4) 
Balanced 
accuracy  0.93 0.95 0.87 0.78 0.91 0.94 0.83 0.82 

Sensitivity or 
Recall 0.91 0.95 0.85 0.57 0.91 0.95 0.74 0.65 

Specificity 0.94 0.95 0.89 1.00 0.92 0.94 0.91 0.99 
PPV or 
Precision 0.93 0.86 0.65 0.97 0.90 0.83 0.66 0.94 

NPV 0.93 0.98 0.96 0.91 0.92 0.98 0.94 0.92 

FDR 0.07 0.14 0.35 0.03 0.10 0.17 0.34 0.06 

FNR 0.09 0.05 0.15 0.43 0.09 0.05 0.26 0.35 
False Omi-
ssion Rate 0.07 0.02 0.04 0.09 0.08 0.02 0.06 0.08 

False 
Positive Rate 0.06 0.05 0.11 0.00 0.08 0.06 0.09 0.01 

DRO 161.44 331.48 46.76 389.56 109.32 261.46 29.20 196.11 
Youden's 
Index 0.85 0.90 0.74 0.57 0.83 0.88 0.65 0.64 

Geometric 
Mean 0.93 0.95 0.87 0.75 0.91 0.94 0.82 0.80 

F-score  
(beta 0.5) 0.93 0.88 0.68 0.85 0.90 0.85 0.68 0.86 

F-score  
(beta 1) 0.92 0.90 0.74 0.72 0.91 0.89 0.70 0.77 

F-score  
(beta 2) 0.92 0.93 0.80 0.62 0.91 0.92 0.72 0.69 

PLR 15.04 18.63 7.97 168.23 11.01 14.92 8.38 69.98 
NLR 0.09 0.06 0.17 0.43 0.10 0.06 0.29 0.36 
MCC 0.85 0.87 0.67 0.71 0.82 0.85 0.62 0.74 
Markedness 0.85 0.87 0.67 0.71 0.82 0.85 0.62 0.74 
Optimization 
Precision  0.84 0.85 0.82 0.58 0.84 0.84 0.74 0.63 
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Table 4: Confusion matrix of the prediction results using CART on training set 

 
5. Conclusions 
 

In theory, accumulation of mutations could make a virus more infectious or deadly, or 
vice versa, but the vast majority of mutations do not affect a virus’s performance. While some 
mutations lead to more virulent and lethal strains, other mutations make the virus less infectious 
and less lethal in the populations. Computational methods that effectively integrate genomic 
profiles to identify and prioritize important genomic features and classify different groups of 
samples are valuable tools for Bioinformatics researchers. SARS-CoV-2 related research is 
rapidly evolving with numerous publications. Phylogenetic methods have been applied to 
SARS-CoV-2 genome sequences to construct the phylogenetic trees (clusters of closely related 
lineages) and predict future global hot spots of disease transmission and surge (Forster et al. 
2020).  Similarly, analysis pipelines are being developed for analysis of SARS-CoV-2 genomes 
to facilitate identification of novel mutations (Pachetti et al. 2020) and for functional 
annotations of mutations in specific gene regions, for example, nonsynonymous mutations in 
the ORF3a protein (Issa et al. 2020). Here, we have developed a complementary computational 
pipeline based on Random Forest based classification methods to identify a subset of missense 
mutations that can classify groups of virus lineages. It was previously reported, based on 
analysis of 220 genomic sequences, that the mutations located at positions 2891, 3036, 14408, 
23403 and 28881 positions were predominantly observed in Europe, whereas those located at 
positions 17746, 17857 and 18060 were exclusively present in North America (Pachetti et al. 
2020). However, we found that the top-ranking mutations located at positions 14408 and 23403 
were most frequent in USA-NY samples than the rest of the geographical regions. We believe 
that this contradictory result could be due to much bigger sample size and small geographic 
regions in our analysis. Our findings suggest that the virus is evolving locally, and presence of 
small geographic region-specific strains that could be accurately classified by different 
mutational patterns.  
 

Random Forest based algorithms have been successfully applied in various genomic 
analysis studies. For example,  we have earlier used an integrative modeling approach that 
combines CART (Breiman 1984) and Random Forest to classify different estrogen receptor 
alpha responsive promoters (Cheng et al. 2006) and SMAD target promoters (Qin et al. 2009) 
with reasonably good classification accuracy and reduced instability (Qin et al. 2009).  
Although the main goal in classification is to build a model with minimal misclassification 
error in cross-validation, in these applications we are equally interested in identifying 

  True Class – Number of real samples in each class 

  USA-NY 
(Class 1) 

China 
(Class 2) 

Italy, Spain 
(Class 3) 

India 
(Class 4) Total 

Predicted 
Class –  
Number 

of 
predicted 
samples 
in each 
class 

USA-
NY 

914  
(91.95%) 

9  
(0.91%) 

65  
(6.54%) 

6  
(0.60%) 994 

China 10  
(1.90%) 

489 
(93.14%) 

16  
(3.05%) 

10  
(1.90%) 525 

Italy, 
Spain 

22  
(5.15%) 

38  
(8.90%) 

363  
(85.01%) 

4  
(0.94%) 427 

India 41  
(10.38%) 

10  
(2.53%) 

115  
(29.11%) 

229  
(57.97%) 395 

Total 987 546 559 249  
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biologically important features, such as genomic mutations or single nucleotide 
polymorphisms, for future experimental prioritization. The computational pipeline presented 
here will help the discovery of geographic specific SARS-CoV-2 mutations for further 
computational modeling and experimental validations and help in the interpretation of their 
functional effects. 
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Figure 1: ROC curve between classes for (a) training set USA-NY (Class 1); China 
(Class 2); Italy, Spain (Class 3); India (Class 4) 

 

 
 
 
 
 
 
 
 
 
 
 
  

a. 
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Figure 2: Model features and their importance 
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Figure 3: Pruned Tree representation of CART model, generated using 42 features 
selected by Random forest feature selection method. The gene name and UniProt Protein 
Products or Polypeptide Chains (in parentheses) in which the mutation is located is 
mentioned at the bottom of each mutation in the tree.  
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Supplement Table 1: List of top ranking (top 10) mutations. First four rows are header 
lines; fifth line is for column headings. Columns 1 to 9 provide mutation information, 
such as the chromosome (CHROM), genomic position (POS), unique identifier (ID), 
reference allele (REF), alternative alleles (ALT) identified in different lineages, 
sequence quality score (QUAL), filtering out (FILT) criteria for low quality 
mutations, any information (INFO) and format of the mutation, GT – Genotype. 
Genotype data are given for two samples, one for USA and the other from India. 
Missing information is denoted by period “.” symbol. If more than one alternative 
alleles exist, those are comma-separated in ALT column. The nucleotide symbols in 
REF and ALT columns are: A – Adenine; C – Cytosine; G – Guanine; T – Thymine; 
R – G or A (purine); Y – C or T (pyrimidine); K – G or T; M – A or C; S – G or C; 
W – A or T; B – G or T or C; D – G or A or T; H – A or C or T; V – G or C or A.  

 
##fileformat=VCFv4.2 
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype"> 
##reference=file:///xtdisk/apod/licp/Virus/ref/2019-nCoV.fa 
##contig=<ID=2019-nCoV,length=29903> 

#CHR
OM POS ID REF ALT QUAL FILTER INFO FORMAT 

2019-
nCoV/USA
-AZ1/2020 

SARS-CoV-
2/human/IND
/GMCKN318/

2020 
2019-
nCoV 23403 

2019-
nCoV_23403 A R,G . . . GT 0 2 

2019-
nCoV 14408 

2019-
nCoV_14408 C A,T,Y . . . GT 0 2 

2019-
nCoV 3037 

2019-
nCoV_3037 C T,Y . . . GT 0 1 

2019-
nCoV 241 

2019-
nCoV_241 C T,Y . . . GT 0 1 

2019-
nCoV 25563 

2019-
nCoV_25563 G T,C,R,K . . . GT 0 0 

2019-
nCoV 1059 

2019-
nCoV_1059 C T,Y . . . GT 0 0 

2019-
nCoV 28881 

2019-
nCoV_28881 G A,T,R . . . GT 0 0 

2019-
nCoV 28882 

2019-
nCoV_28882 G A,T,R . . . GT 0 0 

2019-
nCoV 28883 

2019-
nCoV_28883 G A,S,C . . . GT 0 0 

2019-
nCoV 8782 

2019-
nCoV_8782 C T,Y . . . GT 1 0 
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Supplementary Figure 1: Flowchart of the computational frame-work 
 

Perl Script to prepare the Data Matrix X (a binary matrix, where 1 denotes 
presence of mutation and 0 otherwise) and Y – Vector of factor/class variable   

VCF data-file (File name “2019-
nCoV_total.vcf”) of 10,261 (rows) and 20,746 

SARS-Cov-2 samples/lineages (columns) 

1/5th testing set 

4/5th training set 

Select most discriminating mutations 
(42) by applying varSelRF R package 

Apply the classifiers on 
test set and report 

performance metrics 

Variant annotation file 
for 10,034 mutations 

Split the Data 

Build two separate classifiers 
by applying randomForest and 

rpart R packages 

Report classifiers’ performance metrics by cross-validation 
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Abstract 
 

There has been substantial interest worldwide in understanding the current status of Corona Virus 
Disease (COVID-19) epidemic and prediction of the future path through the pandemic. Many groups 
are attempting to provide the description of spread and modeling the transmission processes for short 
and long term projections. Since the epidemic is in its early stage, there is paucity of data for predicting 
the future course of the disease. The back-calculation approach is one of the methods used in such a 
situation. The back-calculation reconstructs the past pattern of the infection and predicts the future 
number of cases with the present infection curve. Lack of information about incubation distribution, 
effect of intervention on incubation period and errors in reporting the cases lead to uncertainties 
associated with modeling. This paper attempts to formulate the problem of estimating future COVID-
19 cases as estimation of parameters in a multinomial likelihood with unknown sample size by EM 
algorithm. Illustrations are provided using reported cases in India and discussed. 
 
Key words: COVID-19; Back-calculation; EM algorithm; Incubation period; Infection density. 
 
1. Introduction  

 
The extensive world-wide spread of COVID-19, which started in late 2019 in China, has 

become the first modern pandemic in less than six months (Korean Society for Infectious 
Diseases, 2020; Li et al., 2020; Liu et al., 2020, Sun and Vibound 2020). Given the need to 
develop a better understanding of the levels and trends in the epidemic and the limited 
information on which to base these estimates, the use of modeling approaches can make a 
valuable contribution has seen in other epidemics (e.g. Solomon et al., 2003, Ravanan and 
Venkatesan 2008). The goal of any modeling exercise is to extract as much information as 
possible from the available data in order to provide an accurate representation of both the 
knowledge and uncertainty about the epidemic. 

 
A range of different types of models have been developed and applied to the estimation 

of epidemics in variety of settings. (One major tradition in modeling infectious diseases like  
HIV and COVID-19 epidemic  is the use of back-calculation of back projection techniques 
which provides statistical solutions convolution equations relating the number of cases 
diagnosed over time and incubation period distributions (Anderson, 1988; Venkatesan, 2006; 
Liu et al., 2020; Nishiura, 2020) The objective of this paper is to highlight areas in which 
further methodological developments are needed given currently available data sources. In 
general, epidemic modeling is categorized in to four broad categories, but not mutually 
exclusive ones. 
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(a) Deterministic models: In this type of modeling the parameters such as number of 
susceptible, infected and disease individuals are assumed to deterministic. These models 
are described by a system of differential or integral equations. The progression of the 
epidemic is studied using these equations. Many such models were developed in the past 
for diseases such as HIV/AIDS (Anderson et al., 1989; Hyman and Stanley, 1988; 
Anderson and May, 1992). 

 
(b) Stochastic models: Stochastic models assume that some of the key parameters are random 

variables. It is assumed that is a continuous time stochastic process. The stochastic 
models are considered to be more realistic than deterministic models and with some 
special assumptions the results of the deterministic models can be approximated through 
stochastic models. Several studies showed that stochastic models gave a better 
interpretation of epidemics than deterministic models (Tan, 2000; Mode et al., 1988; 
Isham, 1991). 

 
(c) Statistical models: The statistical models are based on epidemiology of the disease and 

survey/surveillance data. These models make full use of the available data compared to 
deterministic and stochastic models. In this type of modeling the disease mechanism and 
prior information are usually not considered. The back-calculation approach for 
projection of disease epidemics can be categorized in to this type of modeling (Jewel et 
al., 1992; Bacchetti et al., 1993; Venkatesan, 2006; Ravanan and Venkatesan, 2008; Egan 
and Hall, 2015). 

 
(d)  State-Space models: The state-space models have been introduced by Wu and Tan (1995) 

for modeling HIV/AIDS epidemic, which takes advantages of both stochastic and 
statistical models. The state-space models were originally proposed for engineering 
control and communication. This model was also used for projections and detailed 
description is given by Tan (2000).  

 
2. Back-Calculation Methodology 
 

Brookmeyer and Gail (1986, 1988) introduced back calculation method for short-term 
projection of HIV/AIDS epidemic.  This method uses a form of infection curve, either 
parametric or non-parametric, for the number of past HIV infections or equivalently a density 
function for infections as noted by Ding (1995, 1996).  The time between infection and the 
diagnosis of disease is known as incubation time and it is modelled by a known distribution. 
Many distributions are used for the incubation curve depending on the length (Lawless and 
Sun, 1992; Ravanan and Venkatesan, 2008; Venkatesan et al., 2012). The next section presents 
some of the useful distributions for modeling the COVID-19 infection curve. The formulation 
of back-calculation for discrete and continuous cases are considered here. 
 
2.1. Discrete back-calculation formulation 

 
The number of reported COVID-19 cases is available during the calendar time T0 to TL. 

Here T0 denotes the start of the epidemic and TL denotes the time up to which the data on 
reported COVID-19 cases are available. The back-calculation method to reconstruct the 
COVID-19 infection and projection of future COVID-19 cases can be described in the 
following sections.  
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Let Xj denotes the number of COVID-19 cases reported in the interval 

. Let , then (X1,X2,…XL) can be assumed to follow 

multinomial distribution . Here  denotes the probability that a person 

infected at time T0 is diagnosed with COVID-19 in the jth interval. This probability  may 
be estimated using the equation 

 

        (1) 

 
where F(t) denotes the discrete time formulation of incubation period distribution and Ij denotes 
the number of infected individuals at the beginning of the jth  interval.  

 
Let   fj-I = F (j+1–i) – F(j–i)        (2) 

 
then equation (1) can be modified as  

                      (3) 

 
If pj’s values are known then Npj denotes the expected number of COVID-19 cases in the 
interval [Tj-1, Tj). Estimation of pj is done by using various approaches. Let us consider the 
multinomial likelihood method of estimation of pj , where a form of infection curve is given by 
Ij = Ij(q1,q2,…,qk) which is assumed to be known except  the  k  parameters. Therefore, pj is a 
function of k unknown parameters, assuming F(t) is completely specified. The unknown 
parameters pj can be obtained using the multinomial likelihood as 
 

                   (4)                                           

 

Then           (5)  

 
Fisher’s scoring algorithm can be used to estimate the unknown parameters qi’s and hence pj 
can be estimated. The above formulation has been used by Taylor (1989). Future COVID-19 
cases in the kth time point following TL can be obtained using the equation  
 

              

                                         (6) 

where is the minimum number of COVID-19 cases in the interval TL+K. 
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2.2. Continuous time formulation of back-calculation 
 

In the discrete time formulation the incubation time was treated as a discrete random 
variable. If the incubation time is treated as a continuous random variable, then the probability 
of infection in the jth interval given in equation (1) can be rewritten as  

 

                                            (7)

  

Now  is assumed to be a smooth function of t. Brookmeyer and Gail (1986) modified 
(7) by assuming  to be the density function of infection times of N individuals. 

Therefore  and the equation (7) can be written as  

                                               (8) 

Thus a model for infection curve is  and a model for infection density are related by 

 where N =  

Hence we now work in the formulation of pj as given in equation (8). The parameter in 
pj can be estimated using the Fisher’s scoring algorithm assuming a multinomial likelihood.  
Brookmeyer and Gail (1988) formulated the problem of estimation of future cases in short 
interval of time as the problem of estimation of parameters in multinomial likelihood with 
unknown sample size and the method as explained in in the next section. 

 

2.3. EM algorithm approach 
  

The Expectation-Maximization (EM) algorithm was first proposed by Dempster et al. 
(1977) for the analysis of incomplete data. The algorithm is formulated as follows: 

XL+1 denote the number of individuals infected before the time TL who have not become 
COVID-19 cases by time TL. The problem is to estimate the total number of infections before 
the time TL. This number N is the minimum size of the COVID-19 epidemic, because even if 
the infections after the time TL could be prevented, the cumulative number of COVID-19 cases 
would eventually reach N. The minimum size is the sum of all cases already diagnosed, called 

 and all the susceptible individuals infected before TL but not yet diagnosed, called 

XL+1=N-n. It can be noted that, in this formulation both N and XL+1 are unknown. Therefore an 
estimate of the minimum cumulative incidence of COVID-19 that can be anticipated in some 
future time point TL+1 is 
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                        (9) 

where is the estimate of N and is the probability of becoming COVID -19 in the future 
interval [TL,TL+1). 

Assuming  as step function, Brookmeyer and Gail (1988) gave the following EM 
algorithm for the estimation of the parameter. 
 

Suppose  =  for t in . denote the time point 

defining the ith step. Let Xij denote the number of COVID-19 cases who were infected in the ith 
step  and    diagnosed in   the jth interval . Note that , since 

Xij is not defined if .  

 
For a fixed N,  

                                                                  (10) 

where  is the estimated probability that individual infected in the ith step is diagnosed as 
COVID-19 in the jth interval. These estimates are obtained using the current estimate of the  

values at the mth iteration i.e., , then the updated estimates are obtained using the equation  

                                                                                   (11) 

where  is the width of the ith step. The numeration in equation (11) is an estimate of the 
number of individuals N infected during the ith step. Further detail of the algorithm for a step 
function  is given by Brookmeyer and Gail (1988). 

 
3. Statistical Models for Incubation Period 

 
The incubation period models are similar to survival models based on non-negative 

random variables and can be fitted using either parametric or semi-parametric approach. A 
detailed description can be found in Lawless (2011).  Here we restrict our attention to only 
parametric models for incubation period as described in our earlier work (Ravanan and 
Venkatesan, 2008). The common distributions used for the incubation distribution are given in 
Table 1 and the infection densities used for prevalence are given in Table 2. Two other 
important distributions used are the staging model mode and change point model which are 
described below:  
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3.1. Staging model 
 

Under staging models the incubation period is considered to be comprised of stages 
(Brookmeyer and Liao 1990). Different models for these two stages can be assumed. Let  

and  denote the hazard functions of the two stages. The convolution equation for the 
incubation period comprising of these two stages 

 

             (12) 

where                                      (13) 

and                                          (14)  

 Suitable changes should be made in the above formulations to account for calendar 
time of infection 
 

Table 1: Incubation period distributions 
 

Model Distribution Function 
Weibull  
Gamma  

Lognormal , 

 
Log-logistic  
Gen. Exponential  
Gen.  Log-logistic 

 

Gen. Gamma 

,         

Mixed Weibull 
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3.2. Change point model 
 

Estimates of the population parameters are obtained in the case of subpopulations are 
exponentially distributed and sampling is censored at a predetermined test termination time 
was first introduced by Mendenhall and Hader (1958). The change point model considered here 
is briefly presented below. 
 
Suppose the hazard before and after the change point is constant, then h(t) is given by 
 

                                                                              (15) 

 
The distribution function is given by  
 

                                            (16) 

  
The median of the incubation period is given by  
 

                         (17)  

 
  Table 2:  Infection densities 
 

Model Infection Density 
Logistic Prevalence  

Logistic Incidence  

Double Exponential 
incidence 

 

Log-logistic incidence  

Exponential incidence  

Root exponential 
incidence 

 

       

4. An Illustration Using Indian Data 
 

The basic data required for back-calculation methodology is the number of COVID-19 
cases over a period of time (Brookmeyer and Gail, 1986, 1988, 1990; Ding, 1995, 1996). The 
Ministry of Health publishes daily updates of the reported COVID-19 cases for the past few 
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months. The updates of the recent days also suffer reporting delays and under reporting and 
therefore pooled weekly reported cases may be more reliable. In this illustration only weekly 
reported cases were considered. The period is from 1st March 2020 to 30th May 2020 (13 weeks) 
(https://www.coronatracker.com/country/india/). It is also reported that level of under reporting 
may vary from 50-90%. For this work, it is assumed that the level of under reporting is around 
90% in early March 2020 and gradually decreased to 50% exponentially in the end of May 
2020. The exponential decay model 

 
 P(t) = 0. 90 e –0.05t       (18) 

 
gives a better  approximation of the above assumption. The upward adjustments for the weeks 
are carried out. Table 3 gives the actual number of reported and adjusted COVID-19 cases 
along with 3-week moving averages. The reported cases are smoothed using a three week 
moving averages as a first step. The linear and quadratic models are fitted to find the best fit 
liner model for the trend for the moving average cases which serves as a bench mark for 
comparisons. The results are given in Table 4. From the table it is seen that the quadratic trend 
model seems to be a better fit for moving averages and the corresponding model is  
 

Cases = 1114.9 – 1205.7 Time + 373.2 Time2     (19) 
 
Table 3: Weekly confirmed COVID-19 cases in India 
 

 
Week 

Weekly 
Confirmed 

COVI-19 Cases 

3week 
Moving 
Average 

Cumulative 
COVID-19 

Cases 

 Adjusted  
weekly  
Cases 

March 1-7 31 - 31 63 
March 8-14 50 104 81 93 
March 15-21 231 294 312 419 
March 22-29 601 995 913 1067 
March29-April 4 2154 2407 3067 3741 
April 5-11 4467 4628 7534 7581 
April 12-18 7263 7460 14797 12105 
April 19-25 10650 10319 25447 17404 
April 26-May 2 13044 15193 38491 20913 
May 3-9 21886 20924 60377 34446 
May 10-16 27842 30168 88219 43040 
May17-23 40775 39797 128994 61948 
May24-30 50404 - 179398 75300 

   
  Table 4:  Trend lines based on the moving averages 
 

Trend Variable B Se(B) Z Sig R2 

Linear Constant 
Time 

–8742.3 
3333.0 

2500.8 
368.7 

–3.496 
9.039 

0.01 
8.24e-05 

 
0.889 

Quadratic Constant 
Time 
Time2 

879.0 
–1107.6 

370.1 

1314.0 
519.2 
49.9 

1.505 
–4.655 
7.413 

0.163 
0.0009 

7.54e-05 

 
0.984 
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4.1. Estimation of parameters 
 

Based on the availability of data, the starting point of the epidemic T0 is taken as March 
2020. The incubation distributions discussed in the previous section are used in this section to 
illustrate projection of COVID-19 in India. The estimates of minimum size of the epidemic and 
future COVID-19 cases are obtained assuming a median incubation period of two weeks. For 
the incubation period models Weibull, gamma, log-logistic, log-normal and generalized 
exponential distribution prior estimates of their parameters are obtained methods described in 
Venkatesan (2006). All these models have two parameters and one parameter is fixed based on 
the estimates reported (Table 1). The other parameter was determined such that the median 
distribution period is known. The parameters of the generalized log-logistic, generalized 
gamma, mixed Weibull and change point models are not available. The parameters of these 
models are decided based on the simulation study as described in our earlier work (Ravanan 
and Venkatesan, 2009). For the infection density, the exponential, root exponential, double 
exponential, logistic and log-logistic are commonly used (Table 2). In this work only logistic 
density incidence based projections are given for illustrative purpose. The projections based on 
logistic infection density under various incubation period distributions are presented in Table 
5. 

Table 5: Projection of COVID-19 prevalence under logistic infection density and  
   total expected confirmed cases (Median incubation = 2 weeks) 

 
Incubation period 

Model 
Projection of COVID-19 cases (‘000) 

Up to June 6  Up to June 13 Up to June 20 
Weibull 240.5 318.8 408.1 

Gamma 242.8 321.9 411.8 

Log-logistic 248.5 327.7 419.2 

Log-normal 244.8 327.0 419.7 

Gen. Exponential 249.6 328.7 420.9 

Gen. Log-logistic 248.0 326.9 418.4 

 Gen. Gamma 249.3 327.1 417.8 

Mixed Weibull 241.5 322.1 414.4 

Change point 247.7 326.1 418.1 

Quadratic 246.9 324.8 413.8 

Observed 236.2 321.6 411.8 

 

From Table 5 we see that the projections obtained for the next three weeks under different 
models do not differ widely. This may be due to the behaviour of the epidemic in the early 
stage.  However, the projections based on Weibull, gamma, lognormal and mixed Weibull are 
close the observed cases.  The quadratic model also gives results close to the observed cases. 
The projections based on exponentially adjusted cases for under reporting resulted higher cases 
and are not reported here. We also considered the other infection densities for incidence given 
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in Table 2. They resulted in higher cases than the logistic prevalence. Hence only the results 
pertaining to the logistic prevalence infection density are given to illustrate the use of the 
models. After obtaining sufficient data in the infection curve, the comparisons will provide 
valid estimates. 

 

5. Discussion 
 

There has been research showing that on average, each infected person spreads the 
infection to more than two persons. Therefore the majority of the population is at risk of 
infection if no intervention measures were undertaken. The true size of the COVID- 19 
epidemic remains unknown, as a significant proportion of infected individuals only exhibit 
mild symptoms or are even asymptomatic.  Timely assessment of the evolving epidemic size 
is crucial for resource allocation and plan strategies. In this article, we used the back-calculation 
algorithm to obtain a lower bound estimate of the numbers of COVID-19 infected confirmed 
cases in India using the available data. Since the data source is limited and suffers from under 
reporting, under diagnosis and delay in reporting, adjustments are needed before making any 
modeling and projections. 

 
One of the critical issues in infectious disease epidemiology is that the time of infection 

event is seldom directly observable. For this reason, the time of infection needs to be 
statistically estimated, employing a back-calculation method. It is observed that the short-term 
projection of three weeks do not vary much across various incubation period distributions.  
Further the estimates vary widely for different infection densities.  The projected COVID-19 
cases for three weeks under Weibull, gamma, lognormal and mixed Weibull are similar and 
close to the confirmed cases. One reason could be that they are related models and the do not 
differ in the initial stages.  We also considered projections under the logistic, exponential 
double exponential and root exponential infection densities with varying median incubation 
periods. But the estimates vary significantly particularly under exponential infection density. 
Since the infection curve is at its early sage, we have reported only the logistic infection density 
estimates as an illustration. Once sufficient size data is available, the comparisons are reliable. 
This paper provides a methodology based on the back-calculation for short-term projections 
which ae widely used in diseases like HIV/AIDS. 
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Abstract

Total economic shutdown being detrimental to a nation’s prosperity, most governments
are reopening businesses and schools with the requirement of frequent and mass-scale testing
to determine each person’s status of COVID-19 infection. Obviously, the costs add up
quickly and impose a heavy economic toll. As a way out of this dilemma, employers and
administrators should consider seriously the application of group testing methodologies.

Group testing methods check samples in batches, rather than individually, for the
presence of a disease. If the group tests positive, then the group is investigated further to
identify who all are positive. On the other hand, if the group tests negative, not just once
but also a second or a third time, then everyone within the group is cleared for activity.
With a carefully chosen protocol, group testing costs can be 30-80% lower than those of
individual testing, with the savings being higher when prevalence of the disease is lower.

Key words: Design of Experiments; Sensitivity; Specificity; False positive; False negative.

AMS Subject Classifications: 62K05

1. Introduction

Originating in Wuhan Province of China in November 2019, the novel corona virus has
inflicted the SARS COVID-19 pandemic across the globe. In an immediate attempt to curtail
the spread of the virus in the absence of a vaccine, many governments imposed lock-downs
on their respective jurisdictions. However, the economies of many states, provinces and
countries have been severely damaged because of lock-downs and stay-at-home orders. To
prevent a total collapse of the economy, many governments are forced to reopen businesses
and schools, notwithstanding the risk of spreading the disease. Therefore, it has become
imperative to isolate people who have the disease and quarantine people who test positive
for the virus. Consequently, frequent and mass-scale testing for COVID-19 infection has
become a necessary precondition for restarting the economy. See, for example, The White
House, et al. (2020) report.

The cost of testing has become burdensome on the payers (individuals, employers, ad-
ministrators, insurance companies and governments). Also, testing capacity is often limited.
In the midst of this dire situation, the celebrated group testing methodologies can offer a
valuable relief without compromising safety.
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Even though little in this paper is theoretically a new finding, except perhaps the
extension to imperfect tests, the importance and necessity of the day prompt us to review this
methodology anew. A recent paper by Aprahamian et al. (2017) mentions that it is precisely
a lack of understanding of how an optimal pooling scheme should be designed to maximize
classification accuracy under a budget constraint that hampers screening efforts. Perhaps a
wide-spread familiarity with the techniques will not only reduce the cost of administering
the tests, but also put suspicious minds at rest knowing that safety is not compromised in
an attempt to reduce cost. In fact, Conger (2020) reports how pooling patient samples for
COVID-19 testing helped Stanford researchers track the early spread of the virus in the Bay
Area prior to the last week of February, 2020.

Section 2 gives a brief history of the group testing methodologies (GTMs). Section 3
determines the optimal group size for a perfect test and computes percentage savings for
various choices of group sizes. Section 4 studies the more realistic case of imperfect tests,
evaluating sensitivity and specificity of a group’s sample as functions of those same quantities
for an individual’s sample and prevalence of disease, and determines the optimal size and
cost savings. Section 5 gives some advancements in Group Testing Designs (GTDs) and
GTMs that shed light on identifying a few defective items intermixed with many good items.
Section 6 draws some practical implications of GTMs in the COVID-19 context.

All figures are drawn using the freeware R; and the codes are given in the Annexure.

2. A Brief History of Group Testing Methodology Used in Medicine

We borrow the history of group testing from Ding-Zhu and Hwang (1993). GTMs
have had a humble start in Dorfman (1943). During the World War II, the United States
Public Health Service and the Selective Service carried out a large-scale project to isolate all
syphilitic men called up for induction. Testing an individual for syphilis involved drawing a
blood sample and then analyzing the sample to determine the presence or absence of syphilis.
At the time, performing this test was expensive, and testing every soldier individually would
have been very expensive and inefficient.

Here is how the methodology works: Suppose that there are N soldiers. Testing each
individual separately requires N tests, which is a reasonable approach if a large proportion of
the people are infected. However, if a small proportion of men are infected, there is a much
more efficient testing scheme: Split the soldiers into groups, and in each group combine the
blood samples together. If one or more of the soldiers in this group has syphilis, then the
test will be positive; and each member of the group has to be tested individually to find
which soldier(s) are syphilitic. On the other hand, if the test is negative all members of the
group are declared free of syphilis using only one test.

Sterrett (1957) improved Dorfman’s procedure: Perform individual testing on a positive
group sequentially; stop as soon as a defective is identified; then test the remaining items
in the group, as a smaller group, since it is likely that none of them are defective. The first
thorough treatment of group testing was given by Sobel and Groll (1959) who described five
new procedures, including when prevalence is unknown. For the most optimal procedure,
they provided an explicit formula for the expected number of tests it would use. Ungar
(1960) proved that the range of prevalence of disease (or proportion of defective items),
for which there is a group testing plan with expected number of perfect tests less than the
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numer of items, is [0, (3−
√

5)/2) ≈ [0, .382). Hwang (1972) detects all defective members in
a population by group testing. Sobel and Elashoff (1975) used group testing for estimation.

The above methods work under the simplistic assumption that testing is error-free.
However, in reality, most often a diagnostic test is “imperfect” in the sense that there is
some chance that the result of a test is erroneous—exhibiting either false positive (that is,
the test comes out positive when the sample contains no defectives) or false negative (that
is, the test is negative even though the sample contains defectives).

As with most diagnostic tests, COVID-19 tests are imperfect. In particular, Yang et
al. (2020) suggests that the sensitivity of polymerase chain reaction (PCR) tests on samples
collected by nasal swab is around 70%, implying that about 30% of infected patients will
return a false negative test result. Much of this error is caused by factors related to sample
collection (for example, the patient does not have high enough viral-load levels at the time
of collection or the swab did not reach the right place) rather than failures of the PCR test
itself. But the danger of a false negative in this situation is unacceptably high: If someone
believes he or she is free of disease contrary to truth, they risk spreading the disease to other
employees, customers or students—precisely what the testing is trying to prevent!

GTMs have seen a lot of advancements during the last 40 years. Applications abound
in both industrial product testing and in medical diagnostic tests. We completely skip the
industrial applications (referring readers to Wikipedia, n. d.). In Section 5 of this paper,
we mention some important advancements on GTDs and GTMs. Subsection 5.1 illustrates
use of one such advancement. Here, we highlight a few references on medical diagnostics.
Keeler E. and Berwick D. (1976) presents models of how test performance is degraded by
pooling, and of the financial savings that pooling allows. They demonstrate the method
of computing optimal pool size on a screening test and on a test for gastrin. Schisterman
and Vexler (2008) examines the effect of different sampling strategies of biospecimens for
exposure assessment that cannot be detected below a detection threshold. They compare
use of pooled samples to a randomly selected sample from a cohort to evaluate the efficiency
of parameter estimates.

To apply these GTMs, one must ensure that the following assumptions hold: (i) indi-
vidual samples can be combined into groups, (ii) group tests have comparable accuracy to
individual tests, and (iii) results of group tests can be correctly interpreted.

3. Optimal Group Size and Savings: Perfect Test

Consider first the simpler case of group testing with a perfect test. We explain the re-
lationship among group sizes, number of tests and infection rates. Suppose that an employer
splits up N workers into groups of equal size g and tests each group (with one or more group
tests) in the first stage. In the second stage, all workers who belong to groups that tested
positive (at least once) are subjected to individual testing, as in Dorfman (1943).

Extensions of the above simple protocol is not too hard: One can apply this framework
to strategies with more than two stages. For example, lower-prevalence regions can afford
to test larger pools and carry out multiple pooled testing rounds before beginning individ-
ualized testing. Moreover, employers can learn the actual prevalence over time based on
the prevalence level revealed in earlier rounds of testing through statistical predictions. If
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prevalence is higher or lower than anticipated, pool size can be adjusted in the next round.

Here, we also assume that workers are homogeneous in their risk of testing positive.
But the method extends to heterogeneous population: The employer can simply stratify
its workforce into subgroups by risk, and solve the test-minimization problem on each sub-
population separately using a smaller group size for a high risk stratum and a larger group
size for a low risk stratum. We leave these extensions to the interested readers, and focus
on a homogeneous population of employees tested in two stages—group and individual.

Suppose that the prevalence of active infection in the workforce is θ, and it is known
to the employer. (Even if θ is unknown, the savings might decrease, but still there will
be considerable savings as long as θ is estimated reasonably well.) Suppose also that N
employees are split into N/g groups of size g each. Then the probability that a pool of g
workers contains at least one infected member is θg = 1 − (1 − θ)g. The expected number
of groups testing positive is given by θgN/g. All g members of these COVID-19 positive
pools have to be tested individually. Therefore, the expected number of workers receiving
follow-up tests will be θgN . Hence, the total number of tests will be

N

g
+Nθg = N

{
1
g

+ 1− (1− θ)g
}

(1)

On the other hand, an individual testing protocol requires exactly N tests.

3.1. Minimize the number of tests

To compare the pooled testing protocol versus the individual testing, it suffices to
minimize the number of test per worker less one, or to solve the minimization problem:

min
1≤g≤N

{
1
g
− (1− θ)g

}

Using calculus, the argmin may be obtained by the solving

g2(1− θ)g = [− ln(1− θ)]−1

and then taking the largest integer no more than the solution, since g is a whole number
(because people are indivisible). Alternatively, we can compare a contemplated g ≥ 3 against
the previous value (g− 1); and we prefer g over (g− 1) if and only if g(g− 1)θ(1− θ)g−1 < 1.
If this condition holds, we increase g by one and check this condition again; otherwise, we
stop and declare the previous g as optimal. Hence, for a given prevalence θ, the optimal
group size is given by

g∗(θ) = max{g, 1 ≤ g ≤ N : i(i− 1)θ(1− θ)i−1 < 1, for all i = 3, 4, . . . , g} (2)

See the Annexure for the R codes to compute g∗. Indeed, the optimal g∗ is a non-increasing
step function of θ. For example, g∗(0.05) = 5, g∗(0.02) = 8, g∗(0.01) = 11, g∗(0.005) = 16,
g∗(0.002) = 24, g∗(0.001) = 32. See more details in Figure 1. Of course, aligning with our
intuition, we have g∗(0+) = limθ→0+ g(θ) = N and g∗(1−) = limθ→1− g(θ) = 1.
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Figure 1: For a perfect test, the optimal group size g∗(θ)

Alternatively, solving the dual problem, one can determine the range of values of θ for
which a given group size g is optimal. For instance, g = 4 is optimal for θ ∈ (.0655, .1235),
g = 5 is optimal for θ ∈ (.0415, 0.0655), etc. Again, more details are in Figure 1. Thus,
oftentimes an imprecise knowledge of θ does not significantly alter the optimal choice of g.

3.2. Maximize the percentage savings

For a perfect test, instead of N individual tests, a group testing protocol with a fixed
group size g requires fewer number of tests given by Eq. (1). Hence, a group testing protocol
achieves a percentage saving over the individual testing protocol given by

Savings (Perfect Test) =
(

(1− θ)g − 1
g

)
× 100% (3)

Clearly, savings are maximum when the optimal group size g∗(θ) is chosen; otherwise, savings
are reduced. See Figure 2 (and the R codes in the Annexure).

Figure 2: For a perfect test, the percentage savings for various group sizes:
optimum and fixed
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Caution: The group size must be chosen with careful consideration of the prevalence.
For otherwise, savings may be negative when group size is chosen far from the optimum. For
example, if prevalence is 12% then using the optimum group size g∗ = 4, given by Eq. (2),
the savings would be about 35%, using Eq. (3). However, if group size is (incorrectly) set
at 32, then the savings would be −1.45%.

To illustrate the use of Figure 2, employers can reduce the number of tests by using
groups of 4 workers, so long as prevalence is under 25 percent. Employers who know the
prevalence with higher precision can further reduce the number of tests by choosing larger
group sizes. But if employers underestimate the true prevalence rate and use larger group
sizes than warranted, then the number of tests will increase.

4. Determining Group Size: Imperfect Test

The best COVID-19 test available to date is still imperfect. Let the sensitivity of the
test be τ =Pr{+|D}, the probability that a person with the disease (D) will test positive.
Then (1 − τ) is the probability of a false negative. Likewise, let the specificity of the test
be η =Pr{−|N}, the probability that a person with no disease (N) will test negative. Then
(1− η) is the probability of a false positive. Assume that the sensitivity and the specificity
remain the same whether we are testing a nasal swab of an individual or the combined swabs
of the group (of any size). As mentioned earlier, PCR test for COVID-19 infection has
sensitivity 0.70 and specificity 0.99.

4.1. Specificity of group testing

Suppose that a person has no COVID-19 infection. The group’s test will be negative
because of two disjoint and exhaustive cases: (1) all other (g − 1) group members are also
negative and the group tests negative (which is a true negative); (2) not all group members
are negative, but the group’s test comes out negative (which is a false negative). Writing
a = (1 − θ)g−1, the probability that the group’s test is negative, obtained by adding the
probabilities of true negative and false negative, is

a η + (1− a)(1− τ) = 1− τ + a(η + τ − 1) (4)

Similarly, the probability that the group’s test will be positive, obtained by adding the
probabilities of false positive and the true positive, is

a (1− η) + (1− a)τ = τ − a(η + τ − 1) (5)

which is one minus the probability that the group’s test is negative, as it should be.

In this case of imperfect test, whenever the group tests negative, no individual tests
are run: All individuals are declared negative. However, if the group tests positive, the
individual without disease must get a negative result during the second-stage individual
testing in order to be declared disease-free. Note that the specificity of the group testing is
the same as the probability that the person without the disease will be declared negative
after passing through both stages of the group testing protocol. As such, using Eqs. (4) and
(5), the specificity of the group testing is given by

1− τ + a(η + τ − 1) + [τ − a(η + τ − 1)]η = 1− (1− η)[(1− a)τ + a(1− τ)] > η (6)
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since the factor within square brackets on the right hand side of Eq. (6) is less than one.
Thus, a group testing protocol increases specificity compared to individual testing. This
reduces the probability of false positive results—a happy achievement. However, as we shall
see in the next Subsection, it comes at the cost of increasing the probability of false negative
results, which is highly risky in the COVID-19 application.

4.2. Sensitivity of group testing

A person with disease exhibits a positive result if and only if the group tests positive
and so does the individual. Hence, The probability that a person with disease exhibits a
positive result is τ 2, which is less than τ . This is a cause for concern, since the probability
of false negative, 1− τ 2, is quite high.

A possible remedy is to run a follow-up group testing when the first group test is
negative. Then the sensitivity of the group testing protocol, with two group-tests performed
sequentially and if either group-test is positive then testing all group members individually,
is the probability that a patient with disease shows a positive test result, and is given by

τ 2 + (1− τ)τ 2 = τ 2[2− τ ] > τ 2 (7)

For COVID-19 test, with τ = .7, a single group test has sensitivity τ 2 = .49; but a
second follow-up group testing protocol has an overall group-test sensitivity τ 2(2−τ) = .637,
which is tolerable. If a third follow-up group testing is used, then the sensitivity further rises
to τ 2(3 − 3τ + τ 2) = .681. Of course, while multiple follow-up group testing will increase
sensitivity (though it will never exceed τ), it will also reduce savings. Therefore, let us settle
on the protocol of at most two group testings before the group is found to be either positive
(at least once) or declared to be negative. For this protocol, the sensitivity is given by the
left hand side of Eq. (7). We leave it to the reader to study the group testing protocol that
allows at most three group testings.

Suppose that a group has at least one COVID-19 patient, which happens with proba-
bility θg = 1− (1− θ)g. Following the “two-group-testing protocol,” the group’s test will be
positive with probability

1− (1− τ)2 = τ(2− τ) (8)
Similarly, if a group has no COVID-19 patient, which happens with probability (1− θ)g, the
probability that this group’s test will be positive (falsely) is

1− η2 (9)

4.3. Minimize the number of tests

For the two-group-testing protocol, using Eqs. (8) and (9), the number of tests per
worker is 2/g + [θgτ(2− τ) + (1− θ)g(1− η2)], which simplifies to

2
g

+ τ(2− τ)− (1− θ)g[τ(2− τ) + η2 − 1] (10)

Consequently, to determine the optimum group size we may drop the constant τ(2− τ) from
Eq. (10) and solve the minimization problem:

min
1≤g≤N

{
2
g
− (1− θ)g[η2 + τ(2− τ)− 1]

}
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Analogously to the method of solution in case of a perfect test, here in the imperfect
test case with two-group-testing protocol, given θ, the optimal group size g#(θ) is the largest
g such that

i(i− 1)θ(1− θ)i−1 <
2

η2 + τ(2− τ)− 1 , for all i = 3, 4, . . . , g (11)

The R codes to compute g# are given in the Annexure. Note that the optimal g# is a non-
increasing step function of θ. For example, g#(0.05) = 10, g#(0.02) = 16, g#(0.01) = 23,
g#(0.005) = 33. See more details in Figure 3, where the thick (black) curve shows g# and
the thinner (green) curve shows g∗ already depicted in Figure 1 corresponding to the perfect
test and repeated here for easy comparison. The optimal group size in the imperfect test
case, with the two-group-testing protocol, is about 40–80% larger than the optimal group
size in the perfect test case.

Figure 3: For an imperfect test, the optimal group size g#(θ) is shown by a thick,
black curve. The thin, green curve shows g∗ for the perfect test as in Figure 1

4.4. Maximize the percentage savings

For an imperfect test, with the two-group-testing protocol and fixed group size g, the
percentage savings is given by

Savings (ImperfectTest) =
(

[η2 + τ(2− τ)− 1](1− θ)g − 2
g

)
× 100% (12)

Once again, the percentage savings is maximum when the optimal group size g#(θ) is chosen;
otherwise, savings is reduced as the group size deviates from the optimum size. See details
in Figure 4 (and the R codes in the Annexure).

As it happened in the perfect case, so also in the imperfect case, employers can reduce
the number of tests by using groups of 8 workers, so long as prevalence is under 20 percent.
Employers who know the prevalence more precisely can further reduce the number of tests
by choosing larger group sizes. But if employers underestimate the true prevalence rate and
choose larger group sizes, then the number of tests will increase.



2020] GROUP TESTING METHODOLOGIES FOR COVID-19 289

Figure 4: For an imperfect test, the percentage savings for various group sizes:
optimum and fixed

5. Further Improvements in Group Testing Methodologies

As mentioned in Section 2, GTMs have undergone tremendous advancement during
the last 40 years. We mention some of these results that focus on identifying a few defective
items from among many good items, since that is the situation we find ourselves in when
a group tests positive in the first-stage. We hope this short review of the GTD research
landscape will inspire other researchers pursue this fascinating field of study.

Bush et al. (1984) introduced a new class of combinatorial designs with completeness
property on t symbols, and used them in group testing to separate defective items from good
ones using fewer number of tests than items. In their language: “if a large population of v
items has exactly 1 bad item, it can be detected in b tests, where b is only a very tiny fraction
of v.” Weideman and Raghavarao (1987 a) carried out a systematic study of non-adaptive
hypergeometric GTDs for identifying two defectives items from among n, obtaining bounds
for n, given the number of tests. Weideman and Raghavarao (1987 b) extended the work to
identifying at most two defective items.

Das and Roy Choudhury (1987) provides simple methods of forming a small number
of groups out of a large number of individuals so that the group test results uniquely (and
easily) determine all defective individuals. The methods consist of first encoding suitably
all individuals and then forming the groups by using certain properties of the encoders.
Hwang and Sos (1987) mentions that even though adaptive or sequential designs (which
keep constructing new groups based on the results of previous groups) typically outperform
non-adaptive combinatorial designs (which declare the groups at the outset), with the advent
of parallel processing, the time-saving feature of non-adaptive designs remains attractive.

Whereas Ding-Zhu and Hwang (1993) develops the conventional disjunct search model,
D’yachkov et al. (2001) discusses two non-standard models of nonadaptive combinatorial
search for a small number of defective elements contained in a finite population in the
presence of inhibitors. Hung and Swallow (1999) discusses the robustness of group testing for
estimating proportions when the underlying assumptions of no testing errors and independent
individuals are violated. Adhikari, Ghosh and Sinha (2001) considered a multi-component
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system which can be tested even though the components cannot be tested separately. For
a five-component system, they utilized Taguchi’s L16 orthogonal array design to identify
defective components and to estimate the proportion of defectives. They also designed a
sequential experiment which reduced the number of tests from 16 to 12.

Du and Hwang (2006) surveys both sequential pooling designs and nonadaptive group
testing. Rao, Rao and Sinha (2006) obtained improved bounds on the number of group
tests necessary for both adaptive and nonadaptive GTDs. They established that when a
group of 2n items have at most two defective items, any nonadaptive GTD needs at least
2n group tests for identifying all defective items, and the optimal nonadaptive GTDs can
be constructed using generalized Petersen graphs. In the same context, they presented an
adaptive multistage GTD with a maximum of 2n group tests, and constructed a family
of two-stage adaptive GTDs. Rao, Sinha and Rao (2013) gives a comprehensive review
of both adaptive and non-adaptive GTDs, exposing hidden combinatorial and probabilistic
challenges and offering a storehouse of unsolved problems.

We leave to the reader to apply these advanced GTDs to the COVID-19 detection
problem. We describe below a situation where a group that tested positive in the first-stage
is subjected to another group testing before conducting individual tests.

5.1. A second-stage group testing

According to our proposed two-group-testing protocol, if two successive group tests are
both negative, we declare the entire group negative. But when the first or the second group-
test turns out positive, then we test every member of the group individually. As mentioned
in Section 3, if the group size is big (say, bigger than 10), it is more efficient to apply GTMs
on this group, before moving on to individual testing, and harvest additional savings.

Suppose that a university estimated the prevalence of COVID-19 among its 25,000
students, faculty and staff members to be very low, say 0.1% or 0.001, and accordingly chose
g = 49 (using Eq. (11)). The number of infected individuals in each group of 49 has an
approximate Poisson(0.049) distribution. Hence, about 25 groups are likely to test positive;
and within each group that tests positive, with a very high probability (about .9757) exactly
one member is positive, with a low probability (about .0239) two members are positive, and
with a negligible probability (about .0004) more than two members are positive.

Therefore, instead of testing individually every member of a positively tested group,
as our proposed first-stage two-group-test protocol recommends, the employer can update
the prevalence (for each positively tested group) to be 1/25 = .04, or more conservatively to
be 2/25 = .08, and adopt a second-stage group testing with g = 7 (again using Eq. (11) or
Figure 3). Then with a high probability (.9757) it will take 13 group tests to identify one
positive subgroup, or with a low probability (.0239) it will take 12 group tests to identify
two positive subgroups, or with a negligible probability (.0004) it will take at most 11 group
tests to identify more than two positive subgroups.

It may not be worth applying the same logic to the one (or two or three) subgroups
of size 7 that tested positive during the second-stage group testing because an individual’s
nasal swab specimen can be divided into about four or five sub-specimens while still retaining
tractability of COVID-19 infection. It will be best to simply apply an individual test on every
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member of the latest positively tested subgroup using the fifth sub-specimen, if any, or collect
fresh new specimens from them. Thus, overall the 49 individual tests are reduced on average
to about .9757 ∗ (13 + 7) + .0239 ∗ (12 + 2 ∗ 7) + .0004 ∗ (11 + 3 ∗ 7) = 20.15 tests, achieving
a 59% reduction on costs after first-stage testing.

To summarize, the first stage two-group-test protocol requires about 2 ∗ d25000/49e −
25 = 997 tests. Thereafter, (i) a second stage individual testing would involve 25∗49 = 1225
tests, for a total of 2222 tests. But (ii) a second stage two-group-test followed by a third
stage individual testing would involve about 25 ∗ 20.15 = 504 tests. Thus, strategy (i)
saves 91% compared to testing all 25000 people individually, and strategy (ii) additionally
saves 721 tests, or 2.9%. Finally, strategy (ii), when compared to strategy (i), harvests a
721/2222 = 32.4% saving across all tests in all stages combined.

6. Implications of Group Testing for COVID-19 Detection

Economic shutdown causes a tremendous loss in GDP (gross domestic product). On
the other hand, reopening the economy necessitates frequent and mass-scale testing of all
employees. Although the latter cost is relatively smaller than the former cost, if employers
have to bear all the cost, then a cost effective way to carry out these tests is imperative.
Group testing, with a follow-up test for the group if the first group test is negative (or when
two group tests are negative), is a promising methodology to mitigate the challenge.

We have shown significant savings when prevalence is known with a high degree of
certainty. We have also demonstrated that the quality of diagnostics made using the group
testing protocol with two-group-tests is reasonably close to that of the individual testing
protocol. The quality can be increased slightly (at the cost of reducing savings) by us-
ing a three-group-tests protocol before declaring the group negative. Also, there can be a
second-stage group testing followed by individual testing to reap additional savings. Until
testing sensitivity improves, employers should implement group testing together with other
strategies, such as symptom monitoring and contact tracing.

Uncertainty about prevalence reduces savings only marginally if prevalence can be
estimated well. As more information becomes available to estimate prevalence better, higher
savings are anticipated. Also, as the sensitivity of the test improves—when researchers
discover better tests—the optimal group sizes will rise yielding additional savings. Moreover,
such better tests will reduce complexity of testing and discomfort to the employees. For
instance, saliva-based tests may become a suitable alternative to nasal swabs. Let us look
forward to those better days until a vaccine or a cure becomes available and affordable.
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ANNEXURE

Here we document the R codes used to draw Figures 1–4.

### Fig 1. Optimal group size (Perfect test)
gs=function(the){b=3

for (i in 4:40){
if (i*(i-1)*(1-the)ˆ(i-1)*the<1){b=i}
else{break} }

b}

theta=seq(0.001, .123, .001)
gsp=rep(3,123)
for (j in 1:123){gsp[j]=gs(j/1000)}
plot(theta, gsp, type=’s’, las=1, lwd=2, ylim=c(0,35),

ylab=’’, xlab=expression(theta),
main=’Optimal Group Size: Perfect Test’)

### Fig 2. Savings (Perfect test)
thet=c(theta,seq(.124,.400,.001))
save=100*c((1-theta)ˆgsp-1/gsp, (1-seq(.124,.400,.001))ˆ3-1/3)
plot(thet, save, type=’l’, las=1, lwd=2, ylim=c(-10,100),



294 JYOTIRMOY SARKAR [Vol. 18, No. 1

ylab=’%’, xlab=expression(theta),
main=’Percentage Savings: Perfect Test’)

lines(thet, 100*((1-thet)ˆ12-1/12), col=’green’)
lines(thet, 100*((1-thet)ˆ8-1/8), col=’red’)
lines(thet, 100*((1-thet)ˆ4-1/4), col=’blue’)
abline(c(0, .400),c(0,0), lty=2)
text(0.1, 8,’g=12’, col=’green’); text(0.09, 25,’g=8’, col=’red’)
text(0.20, 10,’g=4’, col=’blue’); text(0.25, 20,’g=g*’, col=’black’)

### Fig 3. Optimal group size (Imperfect test)
tau=.70; eta=.99;
(mult=etaˆ2+tau*(2-tau)-1)
gs=function(the){b=3

for (i in 6:80){
if (i*(i-1)*(1-the)ˆ(i-1)*the<2/mult){b=i}
else{break} }

b}

theta=seq(0.001, .190, .001)
gst=rep(6,190)
for (j in 1:190){gst[j]=gs(j/1000)}
plot(theta, gst, type=’s’, las=1, lwd=2, ylim=c(0,35),

ylab=’’, xlab=expression(theta),
main=’Optimal Group Size: Imperfect Test’,
sub=paste(’sensitivity =’, tau, ’ and specificity =’, eta) )

par(new=TRUE)
plot(theta[1:123], gsp, type=’s’, las=1, ylim=c(0,35),

xlab=’’, ylab=’’, xaxt=’n’, yaxt=’n’, lty=1, col=’green’)

### Fig 4. Savings (Imperfect test)
thet=c(theta,seq(.104,.190,.001))
save=100*c(1-tau*(2-tau)+(1-theta)ˆgst*mult-2/gst,

1-tau*(2-tau)+(1-seq(.104,.190,.001))ˆ6*mult-1/3)
plot(thet, save, type=’l’, las=1, lwd=2, ylim=c(-10,100),

ylab=’%’, xlab=expression(theta),
main=’Percentage Savings: Imperfect Test’,
sub=paste(’sensitivity =’, tau, ’ and specificity =’, eta) )

lines(thet, 100*(1-tau*(2-tau)+(1-thet)ˆ32*mult-1/16), col=’green’)
lines(thet, 100*(1-tau*(2-tau)+(1-thet)ˆ16*mult-1/8), col=’red’)
lines(thet, 100*(1-tau*(2-tau)+(1-thet)ˆ8*mult-1/4), col=’blue’)
abline(c(0, .200),c(0,0), lty=2)
text(0.05, 8,’g=32’, col=’green’); text(0.04, 30,’g=16’, col=’red’)
text(0.11, 13,’g=8’, col=’blue’); text(0.02, 80,’g=g*’, col=’black’)
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Abstract 

As the COVID-19 pandemic spread worldwide, it has become clearer that prevalence of 
certain comorbidities in a given population could make it more vulnerable to serious outcomes 
of that disease, including fatality. Indeed, it might be insightful from a health policy perspective 
to identify clusters of populations in terms of the associations between their prevalent 
comorbidities and the observed COVID-19 specific death rates. In this study, we described a 
mixture of polynomial time series (MoPTS) model to simultaneously identify (a) three clusters 
of 86 U.S. cities in terms of their dynamic death rates, and (b) the different associations of 
those rates with 5 key comorbidities among the populations in the clusters. We also described 
an EM algorithm for efficient maximum likelihood estimation of the model parameters. 

Keywords: Mixture of regressions; EM; Death rate; Comorbidities; COVID-19. 
 
1. Introduction 

COVID-19 is an acute, respiratory disease due to novel coronavirus SARS-CoV-2, and 
similar to previous diseases such as Severe Acute Respiratory Syndrome (SARS) and Middle 
East Respiratory Syndrome (MERS), it can lead to respiratory failure and death (CDCa, 2019). 
In the absence of any proven medical treatment for COVID-19, and in the face of acute shortage 
of critical care capacity, including ventilators, during peaks of incidence, as was witnessed in 
some countries such as Italy, it is of critical importance for any local administration to evaluate 
and stratify the risk levels in terms of its population comorbidities. 

As per current understanding (CDCb, 2020), individuals at-risk for severe illness from 
COVID-19 include people who are or have: (a) 65 years and older, (b) living in nursing home 
or long-term care facilities, (c) chronic lung disease or moderate to severe asthma, (d) serious 
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heart conditions, (e) immuno-compromised, (f) severe obesity, (g) diabetes, (h) chronic kidney 
disease undergoing dialysis, (i) hemoglobin disorders, and (j) liver disease.  

Early retrospective studies from China, Italy, and the U.S. revealed the prevalence of 
comorbidities in exacerbation of disease resulting in poor outcomes. Retrospective analysis of 
1,590 confirmed COVID-19 cases between December 11, 2019 and January 31, 2020 across 
31 provinces/autonomous regions in China indicated that 25.1% of the cases had at least one 
comorbidity. Specific prevalence included hypertension (16.9%), other cardiovascular diseases 
(53.7%) and diabetes (8.2%), whereas asthma, COPD, kidney diseases, immunodeficiency 
were below 1% (Guan et al., 2020). In a larger study across China, 72,314 patient records until 
February 11, 2020 were examined of which 44,672 were confirmed cases and further evaluated 
for comorbidities. (Feng et al., 2020) More than 50% of the records were missing data on 
comorbidities. Of available data on confirmed cases, comorbidities included hypertension 
(12.8%), diabetes (5.3%), and less than 4% for cardiovascular disorders, chronic respiratory 
disease, and cancers.  

The case-fatality ratio (CFR) is a useful indicator of survival prognosis among critically 
ill patients. During the peak of COVID-19 infections in China, the highest CFR was 14.8% 
among patients over age 80 years. CFR for patients with comorbid conditions was 10.5% for 
those with cardiovascular disease, 7.3% for diabetes, 6.3% for chronic respiratory disease, 6% 
for hypertension and 5.6% for cancer, when compared to 0.9% for patients with no comorbid 
conditions. CFR for critical cases was 49% indicting the need to mitigate risks earlier in the 
infection. A meta-analysis of 6 COVID-19 studies indicated hypertension, diabetes, COPD, 
cardiovascular disease, and cerebrovascular disease as major risk factors for COVID-19 
patients (Wang et al., 2020). Another meta-analysis of pooled data from 8 studies in China, 
indicated a higher prevalence of hypertension and diabetes among patients with severe cases 
of COVID-19 disease (Yang et al., 2020). 

As the pandemic spread, Italy was next to experience large caseloads and CFR. COVID-
19 cases peaked in March to 3000-6500 new cases and 350-900 deaths daily. Comorbidities 
observed in deceased patients as of April 29, 2020 included hypertension (69.2%), diabetes 
(31.8%), cardiovascular conditions (22%), COPD (16.9%), obesity (11.6%) among others 
(Statista, 2020). In China and Italy, hypertension, diabetes, cardiovascular conditions, chronic 
respiratory disease accounted for the top comorbidities associated with severe outcomes (Chen 
et al., 2020). 

The first COVID-19 case in the U.S. was reported from Washington State on January 31, 
2020. Since then, the virus spread to the east coast and the rate of infections in New York 
exceeded every other state. As of April 30, 2020, New York had more than 30% of all the U.S. 
cases. A retrospective analysis of 5,700 records of patients hospitalized with COVID-19 in the 
New York City area revealed that while 6.1% of the patients had no comorbidities, and 6.3% 
had 1 comorbidity, as high as 88% had more than one comorbidity. This study further indicated 
that older patients, men, and those with pre-existing hypertension and/or diabetes were highly 
prevalent among those hospitalized for COVID-19 (Richardson et al., 2020). This pattern was 
similar to observations from China and Italy. In yet another observational cohort study at two 
New York hospitals, as of April 28, 2020, 39% of patients who were critically ill with COVID-
19 had died, and similar to studies in China and Italy, hypertension and cardiopulmonary 
comorbidities were found to be associated with increased mortality (Cummings et al., 2020). 

In this study, we modeled COVID-19 death rates and key comorbidities for 𝑁 = 86 U.S. 
cities. We used a mixture of regressions modeling approach to simultaneously identify the 
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clusters of cities in terms of their dynamic death rates, which had different associations with 
the prevalence of 5 key comorbidities among the populations in those clusters. We provided an 
EM algorithm for efficient maximum likelihood estimation of the model parameters. While the 
use of mixture of regressions models is well-known, [e.g., Jones and McLachlan (1992) and 
references in McLachlan and Peel (2000)], we think that the combination of finite mixtures, 
linear regression and polynomial modeling of time series makes our approach ideally suited 
for the present problem. We described our mixture of polynomial time series (MoPTS) model 
and the datasets in the next section, followed by the modeling results and discussion. 
 
2. Materials and Methods 
 
2a.  Datasets 
 

Comorbidities Data: The Centers for Disease Control and Prevention (CDC) has 
conducted each year, since 1984, the Behavioral Risk Factor Surveillance System (BRFSS), a 
cross-sectional representative telephone survey of U.S. adults (18 years or above) regarding 
their health conditions and behaviors. BRFSS now collects data from all 50 U.S. states and the 
districts of Columbia, Guam, and Puerto Rico. Both landline and cellular phone numbers are 
sampled in the survey and aggregated results are presented each year (CDCc, 2020). Health 
risk questions range from infectious diseases to chronic diseases and behaviors. The fixed core 
of the survey consists of a standard set of questions used by all states to include demographics 
and current health behaviors, e.g. tobacco use. In this study, we focus on 𝑝 = 5 comorbidities 
collected by BRFSS and reported at the county level: diabetes, obesity, coronary heart disease 
(CHD), hypertension, and chronic obstructive pulmonary disease (COPD).  

COVID-19 Data: Based on cumulative COVID-19 deaths data from the Johns Hopkins 
Coronavirus Resource Center (COVID-19 U.S. cases, 2020), we compiled time series data on 
daily deaths from the disease for the U.S. counties by their 5-digit FIPS code or county name. 
Since a single county may consist of multiple cities, we include the list of all city labels within 
each aggregate group to represent a greater metropolitan area. While we denote such 
metropolitan areas as “cities” for convenience, we identify them by their underlying county 
FIPS codes. In this study, we used the data for 𝑁 = 86 cities across the U.S. which had at least 
100 reported deaths from COVID-19 by May 31, 2020. We excluded New York City from our 
clustering as it is an outlier in terms of uniquely high incidence and extreme population 
heterogeneity, which could skew the model with its own singleton cluster. For each included 
city 𝑗	(𝑗 = 1,… , 𝑁), the daily number of deaths is given as a time series of 𝑛/ = 93 time points, 
over the period starting from 29 February, 2020, up to 31 May, 2020. For compatibility, the 
COVID-19-specific death rate was standardized as the number of deaths per 100,000 people 
using population data of the cities from the U.S. Census Bureau (U.S. Census Bureau). 
 
2b.  Mixture of Regressions Model 
 

In this study, we used a mixture of polynomial time series (MoPTS) model to cluster the 
above-mentioned (𝑁 = 86) cities in terms of their dynamic death rates into an optimal number 
(𝑔) of clusters (identified by the mixture model components 𝐶4, …	𝐶5), and investigate the 
differences among the estimated regression coefficients of 5 known comorbidities (given as 5 
static city-specific covariates) across those clusters.  
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Let 𝑌/7 be the random variable representing death rate at time 𝑡	(𝑡	 = 	1,… 𝑛/) for city 
𝑗	(𝑗 = 1,… ,𝑁). It is assumed that the mean 𝜇:(𝑡) of each time series 𝑌/7 in the 𝑖th cluster 𝐶: 
follows 

 
𝑌/7 − 𝜇:	(𝑡)	~

::>	𝑁(0, 𝜎:A)	in 𝐶:	(𝑖 = 1,… , 𝑔) for all values of 𝑡	 = 	1, … 𝑛/ and 𝑗 = 1,… , 𝑁. 
Further, let 𝒙/ be a 𝑝-dimensional vector that describes static values of 𝑝 comorbidities for the 
city 𝑗 (𝑗 = 1, … ,𝑁). Also, let 𝑍/ is a component-indicator random variable to determine that 
city 𝑗 belongs to the component (or cluster) 𝐶: with probability 𝑃𝑟F𝑍/ 	= 𝑖G = 𝜋:	 such that 
𝜋: > 0 and ∑ 𝜋:

5
:K4 = 1 for 𝑖 = 	1,… , 𝑔 and 𝑗 = 1,… ,𝑁. Thus, our mixture of regressions on 

time series modeled with order 𝐷 polynomial and covariates has the form: 
 
𝑌/7 = 𝜶:N𝒙/ + ∑ 𝛽:>𝑡>Q

>K4 + 𝜀/7; 		𝜀/7~	𝑁(0, 𝜎:A) with probability 𝜋:; 𝑖 = 1,… , 𝑔        (1) 

where 𝜶: = F𝛼:4, … , 𝛼:UG
N

are regression coefficients corresponding to the 𝑝 static covariates, 
𝜷: = (𝛽:4, 𝛽:A, … , 𝛽:Q)N are coefficients corresponding to the polynomial time series.   

Let 𝒀/ = X𝑌/Y, 𝑌/4, … , 𝑌/Z[\
N
	arise from a 𝑔-component mixture of order 𝐷 polynomial 

time series with covariates model, denoted by MoPTS(𝐷, 𝑔), if it can be characterized by the 
conditional density function 

𝑓F𝑦/7_𝒙/, 𝑍/ 	= 𝑖, 𝜽:G = 𝜙F𝑦/7; 𝜶:N𝒙/ + 𝜷:N𝒕Q, 𝜎:AG,			𝑗 = 1,… ,𝑁; 𝑡	 = 	1,… , 𝑛/,							(2) 

where 𝒕Q = (𝑡, 𝑡A, … , 𝑡Q)N and 𝜽: = (𝜶:N, 𝜷:N, 𝜎:A)N. 

Under the characterization (2), we can further characterize 𝒀/ via the joint density 
function 

𝑓F𝒚/_𝒙/, 𝑍/ 	= 𝑖, 𝜽:G =e𝜋:f𝜙F𝑦/7; 𝜶:N𝒙/ + 𝜷:N𝒕Q, 𝜎:AG

Z[

7K4

5

:K4

,			𝑗 = 1, … , 𝑁.										(3) 

Using the characterization (3), we can write the log-likelihood of an IID sample 
𝒀4, … , 𝒀h as  

ℓ(𝜽) = elogme𝜋:f𝜙F𝑦/7; 𝜶:N𝒙/ + 𝜷:N𝒕Q, 𝜎:AG

Z[

7K4

5

:K4

n
h

/K4

,																												(4) 

where the parameter 𝜽 = F𝜋4,… , 𝜋5p4, 𝜽4N, … , 𝜽5NG
N

 is traditionally estimated by maximization 
of ℓ(𝜽) given by (4). However, in the absence of an analytical solution, we used an EM–type 
algorithm (Dempster et al., 1977; McLachlan and Peel 2000). Using log-likelihood criteria, we 
chose 𝐷 = 3 and 𝑔 = 3, i.e., our final fit produced a 3-component normal mixture regression 
model with the dependence of the mean on time modeled by a cubic polynomial.  

2c.  The observed information matrix  

In this section, the observed (Fisher) information matrix of MoPTS, defined as 𝐉(𝜽|𝒚) =
− stℓ(𝜽)
s𝜽s𝜽u

, where ℓ(𝜽) = ∑ ℓ/(𝜽)h
/K4 , ℓ/(𝚯) = logF∑ 𝜋: ∏ 𝜙F𝑦/7; 𝜶:N𝒙/ + 𝜷:N𝒕Q, 𝜎:AG

Z[
7K4

5
:K4 G, is 

obtained.  
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It is well known that, under mild regularity conditions, the covariance matrix of the ML 
estimates 𝚯x  can be approximated by the inverse of 𝐉(𝚯|𝒚). Thus, following Basford et al. 
(1997), we approximated 𝐉(𝚯|𝒚) as 

𝐉(𝜽|𝒚) ≈e𝒔{/𝒔{/N
h

/K4

,																																																																						(5) 

where 𝒔{/ =
sℓ[(𝜽)

s𝜽
|
𝜽K𝜽x

, and consider now the vector 𝒔{/ which is partitioned into components 

corresponding to all the parameters in 𝜽 as 
 

𝒔{/ = X�̂�/,�� , … , �̂�/,����, 𝒔{/,𝜶�
N ,… , 𝒔{/,𝜶�

N , 𝒔{/,𝜷�
N , … , 𝒔{/,𝜷�

N , �̂�/,��t, … , �̂�/,��t\
N
, 

 
where its coordinate elements for 𝑖 = 1, … , 𝑔 are given by  
  

�̂�/,�� =
𝜙Z[F𝒚/_𝒙/, 𝜽:G − 𝜙Z[F𝒚/_𝒙/, 𝜽5G

𝑓F𝒚/_𝒙/, 𝜽G
,					𝒔{/,𝚫𝒊 =

𝜋:𝐷𝚫𝒊 �𝜙Z[F𝒚/_𝒙/, 𝜽:G�

𝑓F𝒚/_𝒙/, 𝜽G
, 

 

where 𝑓F𝒚/_𝒙/, 𝜽G = ∑ 𝜋:𝜙Z[F𝒚/_𝒙/, 𝜽:G
5
:K4  and 𝚫: = 𝜶:, 𝜷: and 𝜎:A, for which 

𝜙Z[F𝒚/_𝒙/, 𝜽:G = ∑ 𝜋: ∏ 𝜙F𝑦/7; 𝜶:N𝒙/ + 𝜷:N𝒕Q, 𝜎:AG
Z[
7K4

5
:K4  and 𝐷𝚫𝒊 �𝜙Z[F𝒚/_𝒙/, 𝜽:G� =

𝜕𝜙Z[F𝒚/_𝒙/, 𝜽:G 𝜕𝚫:⁄ . Thus, 

𝐷𝜶� �𝜙Z[F𝒚/_𝒙/, 𝜽:G� = �
1

√2𝜋𝜎:
�
Z[

𝑠�� exp �−	
1
2 𝑠��� ; 

𝐷𝜷� �𝜙Z[F𝒚/_𝒙/, 𝜽:G� = �
1

√2𝜋𝜎:
�
Z[

𝑠7� exp �−	
1
2 𝑠��� ; 

𝐷��t �𝜙Z[F𝒚/_𝒙/, 𝜽:G� = �
1

√2𝜋𝜎:
�
Z[ 1
2 𝜎:

AZ[pA �𝑠�� −	𝑛/ exp �−	
1
2 𝑠���

� ; 

where 𝑠�� =
4
��
t ∑ F𝑦/7 − 𝜶:N𝒙/ − 𝜷:N𝒕QG

AZ[
7K4 , 𝑠�� =

4
��
t ∑ 𝒙/F𝑦/7 − 𝜶:N𝒙/ − 𝜷:N𝒕QG

Z[
7K4  and 𝑠7� =

4
��
t ∑ 𝒕QF𝑦/7 − 𝜶:N𝒙/ − 𝜷:N𝒕QG

Z[
7K4 . 

2d.  ML estimation  

In this section, we develop an efficient EM algorithm for maximum likelihood (ML) 
estimation of the parameters of the MoPTS model, using an incomplete-data framework. To 
compute this procedure, we use the following hierarchical representation:  

𝑌/7_𝒙/, 𝑍/: = 1		

	
𝑖𝑖𝑑
~
	
		𝑁F𝜶:N𝒙/ + 𝜷:N𝒕Q, 𝜎:AG,			𝑖 = 1,… , 𝑔.					 

𝑃𝑟F𝑍/7 	= 𝑖G = 𝜋:	(𝑖	 = 	1,… , 𝑔; 	𝑗 = 1,… ,𝑁; 𝑡	 = 	1,… , 𝑛/),																			(6)	 
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Let 𝒚 = (𝒚4N, , … , 𝒚hN)N, 𝒙 = (𝒙4N, , … , 𝒙hN)N and 𝒛 = (𝒛4N,… , 𝒛hN)N for which 𝒛/ =
(𝑧/4,… , 𝑧/5)N; 	𝑗 = 1, … , 𝑁, so considering the complete data 𝒚� = (𝒚N, 𝒙N, 𝒛N)N and using the 
hierarchical representation in (6) of the MoPTS(𝐷, g) model, the complete data likelihood, 
ignoring the constant term, is given by  

 

𝒫�(𝜽|𝒚�) =eee𝐼[:]F𝑧/7G log𝜋: + log𝑓F𝑦/7_𝒙/, 𝑍/ 	= 𝑖, 𝜽:G¡

Z[

7K4

5

:K4

h

/K4

=elog𝜋:ee𝐼[:]F𝑧/7G

Z[

7K4

h

/K4

5

:K4

−elog𝜎:ee𝐼[:]F𝑧/7G

Z[

7K4

h

/K4

5

:K4

−
1
2e

1
𝜎:A
ee𝐼[:]F𝑧/7GF𝑦/7 − 𝜶:N𝒙/ − 𝜷:N𝒕QG

A
Z[

7K4

h

/K4

5

:K4

 

where 𝐼[:]F𝑧/7G is 1 if 𝑦/7 belongs to the ith component and zero otherwise, and 
𝑓F⋅ _𝒙/, 𝑍/ 	= 𝑖, 𝜽:G was defined in (2). 

Starting from some initial value 𝜽(Y), the conditional expectation of (7), given the 
observed data, was computed using 𝜽(£) for 𝜽, can be written as 

𝑄F𝜽_𝜽(£)G =elog 𝜋𝑖ee𝛾/:7F𝜽(£)G

Z[

7K4

h

/K4

𝑔

𝑖=1

−elog 𝜎𝑖ee𝛾/:7F𝜽(£)G

Z[

7K4

h

/K4

𝑔

𝑖=1

−
1
2
e

1
𝜎:A
ee𝛾/:7F𝜽(£)GF𝑦/7 − 𝜶:N𝒙/ − 𝜷:N𝒕QG

2
Z[

7K4

h

/K4

𝑔

𝑖=1

,			

where 

𝛾/:7(𝜽) =
𝜋𝑖𝜙F𝑦/7; 𝜶:N𝒙/ + 𝜷:N𝒕Q, 𝜎:AG

∑ 𝜋𝑖𝜙F𝑦/7; 𝜶¦N𝒙/ + 𝜷¦N𝒕Q, 𝜎¦AG
𝑔
𝑠=1

.																																										

	
The posterior probability is the conditional probability that 𝑦/7 belongs to the ith component 
given 𝒙/	and 𝒚/(7) for 𝑖	 = 	1, … , 𝑔; 	𝑗 = 1,… , 𝑁 and 𝑡	 = 	1,… , 𝑛/. To perform the M-step, 
under the restriction ∑ 𝜋:

5
:K4 = 1, by constructing the Lagrangian Λ(𝜽, 𝜆) = 𝑄F𝜽_𝜽(£)G +

𝜆F∑ 𝜋:
5
:K4 − 1G, we maximize (8) in the EM algorithm by solving the equation corresponding 

to the first-order condition ∇Λ(𝜽, 𝜆) = 𝟎, where ∇ is the gradient operator, which yields the 
following updates 

𝜋{:
(£«4) =

∑ ∑ ¬[�F𝜽x(®)G
¯[
°�

±
[°�

h
	,																																																			(10) 

𝜶²:
(£«4) = ³∑ ∑ 𝛾/:7F𝜽x(£)G𝒙/𝒙/N

Z[
7K4

h
/K4 ´

p4
�∑ ∑ 𝛾/:7F𝜽x(£)G𝒙/X𝑦/7 − 𝒕QN𝜷x:

(£)\Z[
7K4

h
/K4 �	,						(11) 

𝜷x:
(£«4) = ³∑ ∑ 𝛾/:7F𝜽x(£)G𝒕Q𝒕QN

Z[
7K4

h
/K4 ´

p4
�∑ ∑ 𝛾/:7F𝜽x(£)G𝒕QX𝑦/7 − 𝒙/N𝜶²:

(£«4)\Z[
7K4

h
/K4 �	,										(12) 

(7) 

(8) 

(9) 
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𝜎{:
A(£«4) =

∑ ∑ ¬[�F𝜽x(®)GX�[p𝒙[
u𝜶²�

(®µ�)p𝒕¶u𝜷x�
(®µ�)\

t¯[
°�

±
[°�

∑ ∑ ¬[�F𝜽x(®)G
¯[
°�

±
[°�

	.																												(13) 

The steps of the above algorithm are iterated until a suitable convergence rule is satisfied, e.g., 
_ℓF𝜽x(£«4)G ℓF𝜽x(£)G· − 1_ ≤ 𝜀 for a pre-decided tolerance 𝜀. 
 

3. Results and Discussion 

Based on the log-likelihood model selection criteria, our optimal 3-component MoPTS 
model with the dependence of the mean death rate on time was modeled by a cubic polynomial. 
Thus, we identified 3 clusters of U.S. cities specified by the different associations between their 
death rates and comorbidities. Figure 1 depicts the time series of each cluster along with the 
fitted cubic polynomial models. The differences in the death rates (y-axes) across the 3 clusters 
can be noted. Table 1 lists the counties and states corresponding to these 86 cities, and their 
cluster memberships. Table 2 shows the parameter coefficients of the MoPTS (𝐷 = 3, 𝑔 = 3) 
model as estimated by the EM algorithm, along with the corresponding standard deviations. 

Cluster 1 contains 21 cities concentrated mostly in the northeastern part of the U.S. 
(Figure 2a) with death rates associated with diabetes (𝛼44) and hypertension (𝛼4¹). Cluster 2 
consists of 29 cities (Figure 2b) that are more spatially distributed than those in cluster 1, and 
has relatively weaker association with CHD (𝛼Aº), diabetes (𝛼A4) and COPD (𝛼A»). Cluster 3 
(Figure 2c), comprised of 36 cities, is the most geographically heterogeneous, which possibly 
explains why its association with the comorbidities hypertension (𝛼º¹) and COPD (𝛼º») are 
the weakest among the three clusters. Nonetheless, the results of our MoPTS model are in 
general agreement with the current understanding of the role of comorbidities in COVID-19 
outcomes (CDCb, 2020). 

While the geographical distribution of the clusters are no doubt represented by the 
populations therein and the underlying health and behavioral risk factors, environmental 
exposures, chronic conditions and comorbidities, it is important to avoid the risk of so-called 
ecological fallacy in attempting to infer individual disease outcomes based on data or results 
obtained at the level of large cities or counties. Indeed, the aim of our analysis is to provide 
insights into the existence of multiple patterns by which the current pandemic could affect the 
death rates in different metropolitan areas or counties in terms of their prevailing comorbidities. 
Such patterns could vary locally even within the same state. For instance, the disease dynamics 
as of 31 May 2020, at Allegheny county, which is located in western Pennsylvania and contains 
the city of Pittsburgh, was set apart (in cluster 3) from the other counties in the same state that 
lie more to the east and, indeed, share a different dynamic pattern (all of these are in cluster 2).  

In the future, we aim to study possible interactions between different comorbidities as 
well as potential pathways leading from such comorbidities to various COVID-19 outcomes 
that were observed in diverse populations globally. With further availability of electronic health 
records, clinical evaluation and other microdata derived from monitoring the progression of the 
disease, more precise inferences can be drawn. Towards this, we could extend our present 
approach to time series models such as due to Hajrajabi and Maleki (2019) and Zarrin et al. 
(2019), and also the flexible class of distributions introduced by Hoseinzadeh et al. (2019), 
Moravveji et al. (2019) and Maleki et al. (2019). 
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As the pandemic progresses, we will have better understanding of the complex interplay 
of different comorbidities – acting either singly or in combination – in COVID-19 disease 
progression, especially of those leading to severe outcomes. Naturally, population differences 
between diverse geographies and societies might make such associations hard to generalize. 
Yet, certain putative risk factors, such as Type 2 diabetes or CHD, may be common among 
populations around the world. Toward this end, healthcare systems may want to develop 
pandemic resiliency with targeted communications and policies that are aimed at patients 
grouped by low to high risk categories based on their health, lifestyles, and environments. Such 
risk stratification would enable healthcare systems to prepare for effectively treating critical 
cases of the disease and minimizing fatality during both this pandemic as well as those in the 
future based on the known prevalence of comorbidities within the populations they serve. 
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APPENDIX 

 
Table 1: Estimated parameters of the MoPTS (𝑫 = 𝟑,𝒈 = 𝟑) with standard deviations. 

𝑪𝟏 Est. S.D. 𝑪𝟐 Est. S.D. 𝑪𝟑 Est. S.D. 
𝝅𝟏 0.244186 4.235e-01 𝜋A 0.33721 3.683e-02 𝜋º 0.418604 5.012e-02 

a𝟏𝟏 2.09397 8.311e-02 aA4 0.54520 1.321e-01 aº4 –0.02475 1.074e-03 

𝜶𝟏𝟐 –1.32063 3.242e-02 𝛼AA –0.13055 2.032e-02 𝛼ºA –0.03225 2.034e-02 

𝜶𝟏𝟑 –2.66249 4.101e-01 𝛼Aº 0.65799 1.721e-02 𝛼ºº –0.02447 2.984e-03 

𝜶𝟏𝟒 1.62983 3.422e-03 𝛼A¹ –0.14953 2.032e-03 𝛼º¹ 0.06790 3.352e-03 

𝜶𝟏𝟓 –0.29323 3.012e-02 𝛼A» 0.52714 2.857e-02 𝛼º» 0.03763 2.405e-02 

𝜷𝟏,𝟏 –1.85318 6.037e-02 𝛽A,4 –0.73512 9.063e-02 𝛽º,4 –0.08560 7.342e-03 

𝜷𝟏,𝟐 0.14396 3.755e-02 𝛽A,A 0.048204 4.234e-03 𝛽º,A 0.00883 8.311e-03 

𝜷𝟏,𝟑 –0.00136 4.937e-05 𝛽A,º –0.00039 9.043e-04 𝛽º,º –0.00006 1.003e-05 

𝝈𝟏𝟐 574.38301 2.223e01 𝜎AA 75.21687 0.389e01 𝜎ºA 16.30303 0.232e01 
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Table 2: Three clusters of 86 U.S. cities identified by the 3 components of the MoPTS 
model. The county and the state (including District of Columbia) of each city are shown. 

Cluster 1 (21  members) Cluster 2 (29 members) Cluster 3 (36 members) 
Fairfield, Connecticut 
Hartford, Connecticut 
New Haven, Connecticut 
Dougherty, Georgia 
Jefferson, Louisiana 
Orleans, Louisiana 
Essex, Massachusetts 
Hampden, Massachusetts 
Middlesex, Massachusetts 
Norfolk, Massachusetts 
Plymouth, Massachusetts 
Suffolk, Massachusetts 
Macomb, Michigan 
Oakland, Michigan 
Wayne, Michigan 
Essex, New Jersey 
Hudson, New Jersey 
Mercer, New Jersey 
Passaic, New Jersey 
Union, New Jersey 
Westchester, New York 

Arapahoe, Colorado 
Denver, Colorado 
Weld, Colorado 
Washington, District of Columbia 
Cook, Illinois 
DuPage, Illinois 
Lake, Illinois 
Will, Illinois 
Lake, Indiana 
Marion, Indiana 
Caddo, Louisiana 
East Baton Rouge, Louisiana 
Baltimore City, Maryland  
Bristol, Massachusetts  
Worcester, Massachusetts 
Genesee, Michigan 
Hennepin, Minnesota 
St. Louis City, Missouri 
Camden, New Jersey 
Erie, New York 
Lucas, Ohio 
Mahoning, Ohio 
Berks, Pennsylvania  
Lackawanna, Pennsylvania 
Lehigh, Pennsylvania 
Northampton, Pennsylvania 
Philadelphia, Pennsylvania 
King, Washington 
Milwaukee, Wisconsin 

Jefferson, Alabama 
Mobile, Alabama 
Maricopa, Arizona 
Pima, Arizona 
Los Angeles, California 
Orange, California 
Riverside, California 
San Bernardino, California 
San Diego, California 
Santa Clara, California 
Adams, Colorado 
Jefferson, Colorado 
New Castle, Delaware 
Broward, Florida 
Lee, Florida 
Miami Dade, Florida 
Palm Beach, Florida 
DeKalb, Georgia 
Fulton, Georgia 
Kane, Illinois 
Polk, Iowa 
Jefferson, Kentucky 
Ramsey, Minnesota 
Clark, Nevada 
Hillsborough, New Hampshire 
Onondaga, New York 
Cuyahoga, Ohio 
Franklin, Ohio 
Hamilton, Ohio 
Summit, Ohio 
Allegheny, Pennsylvania 
Shelby, Tennessee 
Dallas, Texas 
Harris, Texas 
Tarrant, Texas 
Snohomish, Washington 
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Figure 1: Time series plots (grey) of 86 U.S. cities belonging to clusters 1 (a), 2 (b) and 3 
(c) based on 𝒈 = 𝟑 mixture components, superimposed with the fitted MoPTS model 
(red) for each city. The x-axis denotes time and y-axis COVID-19 death rate. The clusters 
show marked differences in their respective ranges of death rates (y-axes) over time.  
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Figure 2. Geographical distribution of the U.S. cities in clusters 1 (a), 2 (b), and 3 (c) based 
on MoPTS model. On a map, a bubble’s location shows the latitude and longitude of a 
city C, its size is proportional to the COVID-19-specific death rate at C as on May 31, 
2020, while its shading is proportional to the prevalence of the leading comorbidity in the 
cluster to which C belongs. 
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Abstract 

To simultaneously model the change point and the possibly nonlinear relationship in the 
Covid-19 data of the US, a continuous second-order free knot spline model was proposed. 
Using the least squares method, the change point of the daily new cases against the total 
confirmed cases up to the previous day was estimated to be 04 April 2020. Before the point, 
the daily new cases were proportional to the total cases with a ratio of 0.287, suggesting that 
each patient had 28.7% chance to infect another person every day. After the point, however, 
such ratio was no longer maintained and the daily new cases were decreasing slowly. At the 
individual state level, it was found that most states had change points. Before its change point 
for each state, the daily new cases were still proportional to the total cases. And all the ratios 
were about the same except for New York State in which the ratio was much higher (probably 
due to its high population density and heavy usage of public transportation). But after the points, 
different states had different patterns. One interesting observation was that the change point of 
one state was about 3 weeks lagged behind the state declaration of emergency. This might 
suggest that there was a lag period, which could help identify possible causes for the second 
wave. In the end, consistency and asymptotic normality of the estimates were briefly discussed 
where the criterion functions are continuous but not differentiable (irregular).  

Key words: Asymptotic normality; Change point; Consistency; Covid-19; Free knot; Irregular 
criterion function. 

1. Introduction 

The first case of Novel Coronavirus disease 2019 (Covid-19) was reported in Wuhan, 
China on 17 November 2019. This disease was caused by SARS-CoV-2 virus, and in about 6 
months, it has spread throughout the whole world, infected 15.5 million people, and killed more 
than 635,000 (https://covid19.who.int/). In the United States, there are 4 million confirmed 
cases, and 143,000 deaths by 25 July 2020. Many states have ordered their residents to stay at 
home and keep social distancing to slowdown the rapid spread of the virus, so that the health 
care system will not be overwhelmed. The trend of daily new cases in the US appeared to be 
flattened in the early April. Here, we first fitted the data with the change point model (Bai, 
1997; Julious, 2000) to identify the possible date for the trend change. 

The first case in US was reported on 21 January 2020 in Washington State. By the end 
of February, several more confirmed cases were recorded there. By the end of March, the 
number of confirmed cases quickly went up to about 6,000. On 29 February 2020, the Governor 
declared the state emergency. A few weeks later, the daily new cases stabled and slowly started 
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decreasing. Similar patterns could also be observed in other states. By fitting the state data with 
a change point model, we found that the change point was correlated with the date when the 
state emergency was declared. Thus, we believed that one main possible cause for the change 
point could be the declaration of state emergency. Once people started to protect themselves 
more carefully, the effect of the protection would be noticeable after 2-3 weeks. Knowledge 
about this delay period would help us identify the causes if the trend changes again. 

In this study, we used the data collected by New York Times Company. The data is stored 
at GitHub (http://github.com/nytimes/covid-19-data/blob/master/). It contains the number of 
cumulated cases at the county level, state level, and country level, starting from 21 January 
2020. We downloaded the data up to 18 June 2020 for this study. 

2. Change Point Model and Data Fitting Procedure 

First, we fitted the data at the county-level. Displayed in Figure 1A is the plot of the 
number of daily new cases against the total number of cases up to the previous day. Noticeably, 
there is a change point between 28 March and 05 April 2020, around which an increasing 
relationship of the daily new cases against the total cases was progressed to decreasing. 
Specifically, at first, the number of daily new cases was drastically increasing with the total 
number of cases up the previous day. Then after some critical point, the increasing relationship 
turned to decreasing but at a slow rate. This seems to be no surprising. When Covid-19 broke 
out, a great number of people got infected within a short period of time. Meanwhile, measures 
such as social distancing and using of personal protective equipment were taken, the spreading 
was slowed down. Motivated by these plots, we chose to use a change point model to fit the 
data. 

 

A B C  
 

Figure 1: The scatter plot of the data. The y-axis is the daily new cases, and the x-axis is the 
total cases up to the previous day. A: the scatter plot; B: the scatter plot superimposed with the 
fitted linear model (1); C: the scatter plot superimposed with the fitted quadratic model (2). 

In a linear change point model, the expected value 𝐸(𝑦$)	 of the number 𝑦$ of daily new 
cases is expressed as a linear function of the total number 𝑥$,	of cases up to the previous day, 
i.e., 

𝐸(𝑦$) = 𝛽+ + 𝛽-𝑥$ + 𝛽.(𝑥$ − 𝛿)1,			𝑖 = 1,… , 𝑛                                      (1) 

where	𝛿 is an unknown change point, and 𝑥1: = max(𝑥, 0)  is the positive part of 𝑥. Here 𝛽+	is 
the intercept, which is expected to be very close to zero (there should be almost no new case if 
there is no confirmed cases), 𝛽- is the rate of infection before the change point, which can be 
interpreted as how many persons will be infected by each patient every day; 𝛽.	can be 
interpreted as the effectiveness of the protective measures taken. Treating 𝛿  as known, we 
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estimated the parameters beta by the least squares method. To estimate the change point 𝛿, we 
searched all possible values of the change point and compared the corresponding sum of 
squared residuals (SSE). The estimate of change point is the one corresponding to the smallest 
SSE. The data in Figure 1A was fitted to the linear model with one change point, with the daily 
new cases as the response and the total number of cases up to the previous day as the predictor. 
Listed in Table 1 are all the possible change points with corresponding SSE values. 

Table 1: The possible change points and corresponding SSE from linear model 

Date 𝛿 SSE× 10<= 
2020-03-28 102835 1.34 
2020-03-29 123730 1.23 
2020-03-30 142406 1.14 
2020-03-31 163873 1.08 
2020-04-01 188425 1.05 
2020-04-02 215176 1.08 
2020-04-03 244636 1.17 
2020-04-04 277279 1.34 
2020-04-05 312519 1.61 

From the Table 1, the estimate of the change point is 01 April 2020, which is consistent 
with our observation. The results of all other parameter estimates are listed in Table 2. With 
this change point, the fitted equation is: 

𝐸(𝑦) = 495 + 0.1662𝑥 − 0.1722(𝑥 − 188425)1 

= F 495 + 0.1662𝑥,32942 − 0.006𝑥,			
				𝑥 ≤ 188425, 𝑖. 𝑒. , before	01	April	2020
𝑥 > 188425, 𝑖. 𝑒. , after	01	April	2020  

In this equation, 𝛽U+  is not significantly different from zero, which was consistent with our 
intuition: 𝛽+ should be very close to zero. 𝛽U- = 0.1662 indicated that before the change point, 
each patient had 16.6% chance to infect another healthy person every day. 𝛽U. = −0.1772 
suggested that after the total number of confirmed cases reached to 188,425, the slope of the 
linear trend is V𝛽U- + 𝛽U.W = −0.006. This showed that the daily new cases were decreasing 
after 01 April 2020, but at a very slow rate.  

Displayed in Figure 1B is the scatter plot of the data superimposed with the fitted lines, 
using 01 April 2020 as the change point. The simple linear model fit data well, except that there 
are some noticeable non-linear features for both before and after the change point. This 
motivated us to fit the data with a continuous quadratic change point model: 

𝐸(𝑦$) = 𝛽+ + 𝛽-𝑥$ + 𝛽-.𝑥$. + 𝛽.(𝑥$ − 𝛿)1 + 𝛽..(𝑥$ − 𝛿)1.                               (2) 

where 𝛽- is the initial rate when there is only a small amount of confirmed cases; 𝛽-. is the 
correction factor for the non-linear feature before the change point; 𝛽. and 𝛽.. indicate the 
effectiveness of the prevention measures after the change point. Our study exhibited in this 
model that the LSE is asymptotic normal. The estimation method is the same as described 
above, and the possible change points and their corresponding SSE are listed in Table 3. 

In this model, the change date is 04 April 2020, and all other parameter estimates are 
listed in Table 2. The fitted equation is: 
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𝐸(𝑦) = 290 + 0.2247𝑥 − 3.898 × 10<X𝑥. − 0.01845(𝑥 − 277279)1
+ 3.919 × 10<X(𝑥 − 277279)1.  

= F 290 + 0.2247𝑥 − 3.898 × 10<X𝑥.,
35531 − 0.01106𝑥 + 2.028 × 10<=𝑥.,

								 				before	04	April	2020after	04	April	2020  

The superimposed plot is shown in Figure 1C. The quadratic model appeared to be a better fit 
to the data. To confirm this, we performed ANOVA test to test if the linear model is significant. 
The ANOVA test result in Table 4 indicated that the full model is appropriate. Another question 
that arises is - should we still pick 01 April 2020 as the change point as suggested from the 
linear model? The ANOVA test result in Table 4 suggested 04 April 2020. Possibly the linear 
model is somewhat oversimplified, as it ignores the curve features before and after the change 
point, which could lead to restrictions on selecting the change point due to its lack of flexibility. 
Thus, we would suggest 04 April 2020 as the change point for the US.   

Table 2: Parameter estimates from model (1)-(3) 

Model (1): 𝐸(𝑦$	) = 𝛽+ + 𝛽-𝑥$ + 𝛽.(𝑥$ − 𝛿)1 

Estimator Estimated value Std Err t* P (t > t*) 
𝛽U+ 495 335 1.474 0.143 
𝛽U- 0.1662 0.0037 44.533 0.000 
𝛽U. −0.1722 0.0041 −41.685 0.000 

Model (2): 𝐸(𝑦$) = 𝛽+ + 𝛽-𝑥$ + 𝛽-.𝑥$. + 𝛽.(𝑥$ − 𝛿)1 + 𝛽..(𝑥$ − 𝛿)1.  

Estimator Estimated value Std Err t* P (t > t*) 
𝛽U+ 290 323 0.898 0.371 
𝛽U- 0.2247 0.00146 15.356 0.000 
𝛽U-. −3.898×10-7 5.56×10-8 −7.01 0.000 
𝛽U. −0.01845 0.01798 −1.025 0.307 
𝛽U.. 3.919×10-7 5.53×10-8 7.091 0.000 

Model (3): 𝐸(𝑦$) = 𝛽+ + 𝛽-𝑥$ + 𝛽-.𝑥$. + 𝛽.(𝑥$ − 𝛿)1 + 𝛽..(𝑥$ − 𝛿)1. +weekly effect 

The residual has AR (1) pattern 

Estimator Estimated 
value 

Std Err t* P (t > t*) 

𝛽U+ 132 197 0.671 0.504 
𝛽U- 0.2871 0.0161 17.825 0.000 
𝛽U-. −5.143×10-7 4.37×10-8 −11.77 0.000 
𝛽U. -0.0128 0.011 −1.158 0.249 
𝛽U.. 5.17×10-7 4.36×10-8 11.87 0.000 

Monday effect −10130 1586 −6.385 0.000 
Tuesday effect −8960 1595 −5.618 0.000 

Wednesday effect −7848 1602 −4.9 0.000 
Thursday effect −4933 1611 −3.062 0.003 

Friday effect −3513 1557 −2.256 0.026 
Saturday effect −5379 1566 −3.44 0.001 
Sunday effect −10090 1577 −6.397 0.000 
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Table 3: The possible change points & corresponding SSE from the quadratic model (2) 

Date Value of 𝛿 SSE× 10<= 
2020-03-28 102835 1.2719 
2020-03-29 123730 1.1982 
2020-03-30 142406 1.1266 
2020-03-31 163873 1.0520 
2020-04-01 188425 0.9893 
2020-04-02 215176 0.9446 
2020-04-03 244636 0.9190 
2020-04-04 277279 0.9111 
2020-04-05 312519 0.9112 
2020-04-06 337984 0.9163 
2020-04-07 367599 0.9285 
2020-04-08 399388 0.9454 

 

In Figure 1A, one notices that besides the trend, the variation of daily new cases exhibited 
strong weekly effect: during the weekend, the number was small, and during the middle of a 
week, the number was high. Here, the plot of the residual after 18 March 2020 is shown in 
Figure 2A. The plot indicated that there was an oscillation pattern. The auto-correlation 
function (ACF) plot of the residual is shown in Figure 2B. From the ACF plot, the weekly 
effect was apparent: the residual was highly positive correlated on 7 days and 14 days. 

Table 4: The ANOVA test results 

Full model: Quadratic model (2); reduced model: linear model (1) 

Model SSE DF SSE, reduced F* P (F > F*)  
Full 0.9111× 10= 143    
Reduced 1.05 × 10= 145 68849507 10.81 0.00043 

 

Full model: Quadratic model (2); reduced model: change date is 01 April 2020 
 

Model SSE DF SSE, reduced F* P (F > F*)  
Full 0.9111× 10= 143    
Reduced 0.9893× 10= 144 78144937 12.26 0.00061 

 

Full model: Quadratic model (3); reduced model: Quadratic model (4) 
 

Model SSE DF SSE, reduced F* P (F > F*)  
Full 0.3793× 10= 141    
Reduced 0.5202× 10= 136 140938174 10.10 0.0000 
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A B  
 

Figure 2: The residual plot (A) and ACF plot (B) 

 

Table 5: The possible change points and corresponding SSE from model (3) 

Date Value of 𝛿 SSE× 10<Y 
2020-04-01 188425 4.348 
2020-04-02 215176 4.102 
2020-04-03 244636 3.899 
2020-04-04 277279 3.793 
2020-04-05 312519 3.801 
2020-04-06 337984 3.885 
2020-04-07 367599 4.023 
2020-04-08 399388 4.187 

 

To address the weekly effect, we include the weekday-indicator in the model for the data 
collected after 27 March 2020: 

 𝐸(𝑦$) = 𝛽+ + 𝛽-𝑥$ + 𝛽-.𝑥$. + 𝛽.(𝑥$ − 𝛿)1 + 𝛽..(𝑥$ − 𝛿)1.  

+V∑ 𝛽[\ ⋅ 𝟏{Weekday$ = 𝑗}X
\f- W ⋅ 𝟏{𝐷𝑎𝑡𝑒$ ≥ 27	𝑀𝑎𝑟𝑐ℎ	2020}                      (3) 

Another model for the weekly effect to use the periodic sine and cosine functions: 

𝐸(𝑦$) = 𝛽+ + 𝛽-𝑥$ + 𝛽-.𝑥$. + 𝛽.(𝑥$ − 𝛿)1 + 𝛽..(𝑥$ − 𝛿)1.  

+o𝛽p sin o2𝜋 ⋅
Weekday$

7 t + 𝛽u cos o2𝜋 ⋅
Weekdayw

7 tt ⋅ 𝟏{𝐷𝑎𝑡𝑒$ ≥ 27	𝑀𝑎𝑟𝑐ℎ	2020}			(4) 

It can be seen that that model (4) is a reduced model of model (3): 𝛽[\ = 𝛽p sin x
.\y
X
z +

𝛽u cos x
.\y
X
z , 𝑗 = 1,… ,7. Thus, we can use the ANOVA to test if model (4) is significant. The 

ANOVA test result in Table 4 supported the full model (3). For the model (3), the possible 
change point and the corresponding SSE is listed in Table 5, and the result still showed that 04 
April 2020 was the change point. 
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Figure 3: The ACF plot (A) and PACF plot (B) for residue from model (3). 

The data was fitted to the weekly effect model (3), and the ACF and partial ACF (PACF) 
plot of resulted residuals were shown in Figure 3. The PACF plot indicated that the residuals 
had auto-regression pattern {AR (1)}. The data was then fitted with the weekly-effect model 
with AR (1). The results are listed in Table 2 and shall be discussed in next section. 

The data from individual state was fitted using the following model,  

𝐸(𝑦$) = 𝛽+ + 𝛽-𝑥$ + 𝛽.(𝑥$ − 𝛿)1 + 𝛽..(𝑥$ − 𝛿)1.                               (5) 

Here we removed the second order term before the change point, and our motivation was that 
this model is more sensitive to the change point based on our theoretical study. The results are 
listed in Table 6 and shall be discussed in next section. 

Table 6: The results for individual state data 

Model (5): 𝐸(𝑦$) = 𝛽+ + 𝛽-𝑥$ + 𝛽.(𝑥$ − 𝛿)1 + 𝛽..(𝑥$ − 𝛿)1.  

The average delay-time between the date to declare state emergency and change point was 21.8 days 
with the standard deviation of 5.2 days. 

State Name Change point 𝛽U- Date to declare 
state emergence1  

Alabama 4/2/2020 0.133 3/13/2020 
Arizona 3/28/2020 0.229 3/11/2020 
California 3/30/2020 0.161 3/4/2020 
Colorado 3/25/2020 0.256 3/10/2020 
Connecticut 4/5/2020 0.151 3/10/2020 
Delaware 4/5/2020 0.166 3/12/2020 
D. C. 3/31/2020 0.175 3/11/2020 
Florida 4/2/2020 0.156 3/1/2020 
Illinois 3/25/2020 0.296 3/9/2020 
Indiana 3/30/2020 0.220 3/6/2020 
Iowa 4/8/2020 0.168 3/9/2020 
Kansas 3/26/2020 0.289 3/9/2020 
Kentucky 4/6/2020 0.119 3/9/2020 
Louisiana 4/1/2020 0.276 3/11/2020 
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Maine 3/27/2020 0.106 3/15/2020 
Maryland 4/2/2020 0.186 3/5/2020 
Massachusetts 3/27/2020 0.328 3/10/2020 
Michigan 3/31/2020 0.205 3/11/2020 
Mississippi 4/2/2020 0.115 3/4/2020 
Missouri 3/31/2020 0.185 3/13/2020 
Nebraska 4/8/2020 0.156 3/13/2020 
Nevada 3/28/2020 0.221 3/12/2020 
New Hampshire 3/28/2020 0.173 3/13/2020 
New Jersey 3/29/2020 0.237 3/9/2020 
New Mexico 4/6/2020 0.120 3/11/2020 
New York 3/22/2020 0.436 3/7/2020 
North Carolina 3/26/2020 0.243 3/10/2020 
Ohio 4/2/2020 0.144 3/9/2020 
Pennsylvania 4/3/2020 0.187 3/6/2020 
Rhode Island 4/8/2020 0.157 3/9/2020 
South Carolina 3/31/2020 0.168 3/13/2020 
South Dakota 4/8/2020 0.254 3/13/2020 
Tennessee 3/30/2020 0.143 3/12/2020 
Texas 4/5/2020 0.141 3/13/2020 
Utah 3/27/2020 0.229 3/6/2020 
Virginia 3/31/2020 0.189 3/12/2020 
Washington 3/26/2020 0.159 2/29/2020 

1: the date of the declaration of state emergency is from wikipedia.org 
(https://en.wikipedia.org/wiki/U.S._state_and_local_government_response_to_the_COVID-
19_pandemic) 

3. Results and Discussions 

For the US data, from Table 2 the fitted equation is given by 

𝐸(𝑦) = 132 + 0.287𝑥 − 5.143 × 10<X𝑥. − 0.01278(𝑥 − 277279)1
+ 5.170 × 10<X(𝑥 − 277279)1. + weekly	effect 

= F 132 + 0.287𝑥 − 5.143 × 10
<X𝑥. + weekly	effect,

43424 − 0.01248𝑥 + 2.7 × 10<=𝑥. + weekly	effect,
			 				before	04	April	2020after	04	April	2020  

Here, 𝛽U-	= 0.287 suggested that at the early stage when the total number of confirmed cases 
was small, each patient had 28.7% chance to infect another healthy person each day. Since a 
Covid-19 patient usually recovered within 2 weeks, R0 value can be estimated by 
0.287 × 14 = 4.01, which was consistent with the published results (median value 5.7 with 
95% confidence interval: 3.8 - 8.9, Steven Sanche, et. al., 2020). 𝛽U-.	< 0 indicated that even 
before the change point, the rate was decreasing from 0.287. In fact, the rate at 04 April 2020 
can be calculated as 0.287 − 5.143 × 10<X × 277279 = 0.144, which was only half of the 
original rate. In our study of the state data, we found that several states had their change points 
in late March. This could be the due to the reason that the rate was decreased to 0.144, as 
several states had already slowed down. 

For the whole US data, the change point was 04 April 2020. Because the median 
incubation time of Covid-19 was 4-5 days, implying that what led to the change point should 
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have played the role at least one week before 04 April 2020. This seems to indicate that the 
change point could be resulted from the issuance of National Emergency on 13 March 2020. If 
it was true, it suggested that the effect of people’s behavior would be reflected by the change 
point about 21 days later. The same lag effect was also observed at the state level. 

Listed in Table 5 are the fitting results for the data from individual states. Washington 
State was the first with the outbreak of Covid-19. The scatter plot of the data superimposed 
with the fitted curve is shown in Figure 4A. Before the change point, the daily new cases were 
increasing. After 26 March 2020, however, the number started to decrease. But the number 
seemed to comeback recently. The estimate was 𝛽U-= 0.154, indicating that the initial rate in 
Washington States was less than the average rate (0.287) of the US. The state emergency was 
declared on 29 February 2020, and the change point was on 26 March 2020, thus it showed 
about 25-day delay.  

A B  

C D  
Figure 4: The scatter plot of state data. The y-axis is the number of daily new cases, and the 
x-axis is the total number of cases up to the previous day. A: Washington State. B: New York 
State. C: California State. D: Texas State.  

New York State was a hot spot in March. The plot is shown in Figure 4B. The estimate 
𝛽U- is equal to 0.436, which is the highest among all states, which could be due to its high 
population density and heavy public transportation. The state emergency was declared on 07 
March 2020 and the change point was 22 March 2020, which lagged behind 15 days. After 22 
March 2020, the daily new cases stayed with high value and then dropped down. This seemed 
to indicate that the Covid-19 appeared to be controlled.  

The plot of data from California State is shown in Figure 4C. The state emergency was 
declared on 04 March 2020 and the change point was 30 March 2020, which lagged behind 
about 26 days. However, after the change point, the daily new cases were only slowing down 
and still kept increasing. To further control Covid-19, more efforts would be needed. The plot 
of data from Texas is shown in Figure 4D. The state emergency was declared on 13 March 
2020 and the change point was 05 April 2020. For Texas, the lag time was 22 days. 

As we discussed before, the estimate 𝛽U- for each state was proportional to R0 for that state 
before any prevention measures were used. Some states, similar to New York State, like 
Massachusetts and Illinois, have big metropolitan areas (Boston in MA, and Chicago in IL) 
with high population density and heavily public transportation. Thus, the estimate 𝛽U- of these 
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states were relatively higher than the rest. Other states, like Mississippi and New Mexico, have 
no such big cities, and usually had lower estimate 𝛽U-.  

Overall, the data from most states showed a change point pattern. Before the point, the 
daily new cases were proportional to the total cases, similar to the whole US data. By 
comparing the change point and the date when the state emergency was declared in Table 6, 
we found that the average delay-period is 21.8 days. This suggested that if there is another 
change point, what happen 3 weeks before would likely be the causes of the change. 

4. Consistency and Asymptotic Normality 

Here, we present consistency and asymptotic normality results and omit the proofs. What 
is novel here is that we model the change point and the possible non-linear relationship 
simultaneously, whereas a typical change point model involves in only (𝑥 − 𝛿)1. This is a 
continuous second-order free spline model with one knot. 

To prove asymptotic normality, we have to deal with the irregular criterion function 
V𝑦$ − 𝜷}𝒛𝒊(𝛿)W

.
, in which the truncated power function 𝑥1 is not differentiable. Thanks to 

Theorem 5.23 of van der Vaart (1998), we have obtained a quick result at the price of 
boundedness Assumption 4. In other words, with careful elaboration, we believe this 
assumption (and some of others as well) can be relaxed to the boundedness assumption of the 
knot parameter 𝛿 as in the case of consistency, see Wu, et. al. (2019).  

Consider that (𝑥-, 𝑦-), (𝑥., 𝑦.),… , (𝑥�, 𝑦�) satisfy the second-order free spline model, 

𝑦$ = 𝛽+ + 𝛽-𝑥$ + 𝛽.𝑥$. + 𝛽[(𝑥 − 𝛿)1 + 𝛽�(𝑥 − 𝛿)1. + 𝜖$, 𝑖 = 1,… , 𝑛, 

where 𝜖-, 𝜖.,… , 𝜖� are i.i.d. random errors with 𝐸(𝜖$) = 0	and	𝑉(𝜖$) = 𝜎. < ∞, 𝑥-,𝑥.,… , 𝑥� 
are assumed to be non-random, both 𝛽	and	𝛿 are unknown parameters to be estimated.  

Denote 𝜷 = (𝛽+, 𝛽-, 𝛽., 𝛽[, 𝛽�)} , 𝜽 = (𝜷}, 𝛿)}, and	𝒛𝒊(𝛿) = (1, 𝑥$, 𝑥.., (𝑥 − 𝛿)1,
(𝑥 − 𝛿)1. )}. Using these symbols, we can write  

𝑦$ = 𝜷}𝑧$(𝛿) + 𝜖$, 𝑖 = 1,… , 𝑛. 

We estimate 𝜽 = (𝜷}, 𝛿)} by the least squares estimate (LSE)	𝜽� = V𝜷�}, 𝛿UW
}
, that is,  

							𝜽� = argmin
𝜽
𝑆�(𝜽) , 𝑤ℎ𝑒𝑟𝑒		𝑆�(𝜽) = 𝑆�(𝜷}, 𝛿) =

1
𝑛�

V𝑦$ − 𝜷}𝒛𝒊(𝛿)W
.
.

�

$f-

															(6) 

For 𝛿 ∈ ∆⊂ 𝑅 fixed, the minimization (6) simplifies to the usual LSE problem. Let 𝒁(𝛿) 
be the 𝑛 × 5  matrix consisting of 𝒛𝟏(𝛿), 𝒛𝟐(𝛿),… , 𝒛𝒏(𝛿)  as its rows, and let 𝒚 =
(𝑦-, 𝑦., … , 𝑦�)}. If 𝒁(𝛿) has full rank 5, then the LES 𝛽U(𝛿) is given by  

𝛽U(𝛿) = [𝒁}(𝛿)𝒁(𝛿)]<-𝒁}(𝛿)𝒚.																																																							(7) 

As a result, the minimization (6) becomes minimizing the new objective over 𝛿 ∈ Δ: 

𝛿U = argmin
�∈�

𝑆��(𝛿) , 𝑆�(𝜷}(𝛿), 𝛿) =
-
�
∑ V𝑦$ − 𝜷}(𝛿)𝒛𝒊(𝛿)W

.�
$f- . 
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Assumption 1. There exists a compact subset Δ of ℝ and a matrix function	𝑴(𝛿-, 𝛿.),  
𝛿-, 𝛿. ∈ Δ, such that 

1
𝑛�𝒛𝒊(𝛿-)𝒛$(𝛿.)}

�

$f-

→ 𝑴(𝛿-, 𝛿.), 

uniformly in 𝛿-, 𝛿. ∈ Δ, that 𝑴(𝛿, 𝛿) is positive definite on Δ, and that 𝑻(𝛿) = 𝑴(𝛿+, 𝛿+) −
𝑴(𝛿+, 𝛿)𝑴<𝟏(𝛿, 𝛿)𝑴(𝛿+, 𝛿) has a unique zero solution at 𝛿 = 𝛿+. 

Assumption 2. For large	𝑛, sup
-¡$¡�

{|𝑥$|} ≤ 𝑀£ < ∞ for some constant 𝑀£.  

Note Assumption 1 ensures that the maximizer is well-separated and unique. It is a 
typical assumption for establishing consistency of M-estimators, see Chapter 5 of Van der 
Vaart (1998), Yu and Ruppert (2002) and Wu, et al. (2019).   

Theorem 1.  Assume Assumptions 1 and 2. Then the LSE 𝜽� converges in probability 
the	true	value	𝜽𝟎 = (𝜷𝟎}, 𝛿+) of parameter, i.e.,𝜽� → 𝜽𝟎, in probability. 

Remark. If 𝑋$  are random, consistency still holds provided that 𝜖$  and 𝑋$  are 
independent with 𝐸𝑋. < ∞, and the convergence in Assumption 1 is modified to convergence 
in probability. 

We need the following assumptions to assure asymptotic normality. 

Assumption 3. 𝑋-, 𝑋., … , 𝑋�  are i.i.d. with a common continuous density function 𝑓, 
𝑋$	and 𝜖$ are independent for all i, and  𝐸(𝑋Y) < ∞. 

Because 𝑥1 is not differentiable, asymptotic normality was proved using the empirical 
process theory. This requires the square-integrability of the envelope function, which is a 
polynomial of 𝑥 of fourth degree, leading to finite 8th moment assumption.     

Assumption 4. There exists a neighborhood of	𝜽𝟎, such that ∀𝜽 ∈ 𝑁(𝜽𝟎), ‖𝜽‖ ≤ 𝐵+ <
∞ for some	constant	𝐵+ > 0. 

Let 𝜇(𝜽) = 𝐸V𝑺�(𝜷}, 𝛿)W, �̇�(𝜽) =
°
°𝜽
𝜇(𝜽) be the 6-dimensioinal derivative vector  and 

𝑽(𝜽𝟎) = �̈�(𝜽) = °³

°𝜽°𝜽´
𝜇(𝜽) be the 6-by-6 matrix of second partial derivatives. 

Assumption 5. �̇�(𝜽𝟎) = 𝟎 and the matrix 𝑉(𝜽𝟎) is nonsingular. 

Theorem 2. Assume Assumptions 3-5. If the LSE is consistent, i.e.,  𝜽�𝒏 → 𝜽𝟎 in 
probability, then  𝜽�𝒏 is asymptotically linear,  

√𝑛V𝜽�𝒏 − 𝜽𝟎W = −𝑽<𝟏(𝜽𝟎)
1
√𝑛

��̇�𝜽𝟎(𝑋𝒊, 𝑌$)
�

$f-

+ 𝑜¹(1)	 

where �̇�»(𝑥, 𝑦) =
°

°(𝜷´,�)´
V𝑦 − 𝜷}𝒛(𝛿)W

.
. Hence, 𝜽�𝒏	is	asymptotically	normal,	 

√𝑛V𝜽�𝒏 − 𝜽𝟎W ⟹ 𝑁 x0,𝑽<𝟏(𝜽𝟎)𝐸½�̇�𝜽𝟎(𝑋-, 𝑌-)�̇�𝜽𝟎(𝑋-, 𝑌-)
}¾𝑽<-(𝜽𝟎)z. 
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5. Future study 

During the preparation of this paper, we have noticed that there was a second outbreak 
in the US at the end of June. Our approach can be easily generalized to multiple change points. 
Currently, we work on the theoretical development in the framework of time series model with 
multiple change points. 
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Abstract 

Covid-19 is an incessant pandemic which is widespread worldwide. Various epidemic 
models have been used for forecasting the covid-19 cases in India. In this paper we have tried 
to estimate quality adjusted life year (QALY) for the covid-19 infected patients from 26 
March, 2020 till 28 May, 2020 in different states of India. A regression equation for time 
varying reproduction number has been defined using the basic Susceptible-Infective- 
Recovered (SIR) model, which is further used to obtain the utility function. The average 
QALY per month for each state has been computed on the basis of the proposed utility 
function. Various states are categorised as severe, moderate and controlled regions for the 
covid-19 pandemic based on QALY values. 

Key words: QALY; Utilities; TSIR; Exponential regression; India; Covid-19. 

 1.      Introduction  

Pandemic has always attracted global attention due to widespread devastation caused to 
health of human beings as well as economy of a nation. Dazak et al. (2018) have estimated 
that around 1.67 million yet to be discovered viral species from key zoonotic families exist in 
mammal and bird hosts. More than 50 percent of these viral species have the potential to 
cause severe infections via transmission to humans. COVID-19 has a faster spread rate than 
its ancestors like SARS-COV and MERS-COV but lower mortality rate as stated by 
Giordano et al. (2020). In India covid-19 cases are widespread in all the states. The 
government had imposed a series of lockdown in five different phases across the country in 
order to further prevent the spread of virus through community transmission.  

 
Researchers are using various mathematical models in order to study the crucial 

epidemiological properties of this epidemic. Akshaya et al. (2020) have stated how different 
forecasting techniques have played important roles in capturing the probability of infection 
and reproduction rate. Wu et al. (2020) have indicated that 86% of the infected individuals 
are expected to remain asymptomatic which are the main sole for spreading the infection 
under community transmission. Biswas et al. (2020) have stated on the basis of Euclidean 
network that an infected individual can infect another individual with distance (l), rate of 
infection (𝛿) and probability proportional to 𝑙$% . In the early days of outbreak, government 
was keen on tracing contacts of persons who were closely related to the infected individuals. 
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Those individuals were isolated in order to prevent the further spread of disease. Ghosh et al. 
(2020) analysed the case counts in India using standard epidemiological models and projected 
on the basis of crisis at present. 

 
Ranjan (2020) reported that the early action of lockdown in India has a favourable 

effect in limiting the epidemic size. Deo et al. (2020) have estimated the reproduction number 
which was significantly reduced due to lockdown measures. Thus, lockdown not only 
prevented the rise in the number of cases but also created substantial economic loss to the 
weaker sections of the society. Chatterjee et al. (2020) have performed a review of the 
pandemic with the current evidence. They highlighted the key areas where research needs 
attention in order to create critical intelligence for the prevention of its spread. Ferguson et al. 
(2020) figures out South Korea, Taiwan and New Zealand among the few countries who have 
precisely managed to fight back against the virus.  

 
In this paper we have tried to estimate QALY for the covid-19 infected patients from 26 

March 2020 till 28 May 2020. We have estimated QALY by time series modelling of 
epidemiological model namely, Susceptible Infective Recovered (SIR) model with the 
exponential form. It enables us to estimate the utilities which in turn help us to compute the 
Quality Adjusted Life Year (QALY) per month for each state. This quality of life approach is 
first and foremost attempt in the time of pandemic which is carried over different states of 
India. 

2.     Methodology 

2.1. Epidemic SIR model linked with exponential regression 

Researchers have done a lot of manifold classifications based on SIR models during the 
covid-19 pandemic for different countries. Jewell et al. (2020) describes the underlying 
principles and value of projections in pandemic models. The early models relates to the 
region when virus had been circulating in a community. Meanwhile their projections were not 
robust and reliable. All these models have one thing in common that is the peak which is 
predicted on the basis of the number of infectives. Prakash et al. (2020) have replaced this 
peak as an artefact of plateau and described it with the help of persistence number. This peak 
acts as a plateau which grows flat and last for many weeks with no downward trend due to 
increase in the number of containment zones.  

SIR models encapsulate the number of susceptibles to the number of infectives, further 
to the number of recovered and death cases for a disease. It is also known as the 
compartmental model in epidemiology. Wu et al. (2020) have defined variants of SIR models 
for policy decisions in China. As human to human transmission occurs there is high rise in 
the number of infectives. It is deducible that the susceptibles are more likely to get infected 
and people in the infected stage are either likely to enter the stage of recovered cases or death. 
The infectious period determined by Ma (2020) states that it is exponentially distributed with 
mean (1 𝛾⁄ ). Also, Wallinga et al. (2006) have introduced a nonparametric method to 
develop reproduction number from exponential growth rate. 

The flow of individuals from susceptible to infective to recover as well as to death 
cases have been monitored with the help of system of non-linear differential equations, which  
are defined as: 
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= −-.)
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      (1) 
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%*
= -.)
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− 𝛾𝐼      (2)     

                                                  %1
%*
= 𝛾𝐼                                                             (3)                                                       

                                                             𝑅3 =
-
4
                                                                         (4) 

where S = S(t) is the total number of confirmed cases in a particular state, I = I(t) is the 
number of active positive cases, R = R(t) denotes the number of recovered individuals. 𝛽 is 
the transmission rate, 𝛾is the recovery rate. The reproduction number (𝑅3) can be rewritten as 
the ratio of transmission rate to recovery rate as given in equation (4). When the disease is 
transmitted from one to person to another under the assumption that the whole population is 
vulnerable to the exposure of infection, this rate has a steady increase. The individuals are not 
vaccinated because the infection erupted for the first time with no way to control the spread. 
This number reproduces itself in the case of communicable infection. When  𝑅3 > 1 then the 
situation of epidemic results and if 0 < 𝑅3 < 1 then the infection will eventually die out 
soon. 

2.2. Regression equation for time varying reproduction number (𝑹𝒕) 

We redefine reproduction number (𝑅*	)	as a function of t in order to depict the time 
dependency of the SIR model for the study of disease progression. Under the assumption, 
S+I+R = N which is the total population for a state. The initial conditions are defined as S(t)≥
0, I(0)=0, R(0)=0 converge to an equilibrium.  

 Using equations (1) to (4) we can redefine 𝛽 and 𝑅= as: 

                       𝛽 =	>%.
%*
+ %1

%*
@ /
.)

                                                              (5)
    

                                             𝑅= = >.
AB1A

1A
@ /
)
= >∆.(*)

∆1(*)
− 1@ /

)
= E/

)
                                           (6) 

where 𝐼A, 𝑅A  are the partial derivates of infective and recovered cases respectively (Derivation 
is given in appendix), and	𝐶 = >∆.(*)

∆1(*)
− 1@	is calculated as the ratio of change in number of 

infectives to change in number of recovered cases. The values of 𝑅= follows exponential 
distribution (observed on the basis of AIC values). Thus, we can link the parameters obtained 
from the above equation (6) to the exponential form by means of link function: 
                                                            𝑅= = 𝐴𝑒J*                                                                          (7) 
where	𝐴 = E/

)
 and 𝛼 is the parameter of the exponential model.  

2.3.   Utility function  

In economic theory, utility is defined as a production function of demand and supply. 
It is differentiated with respect to time in order to get the preference value for a consumer at a 
point of time. Borrowing the same concept into health preference for different states of India, 
we define utility as a function of confirmed, recovered cases and 𝑅*. The production function 
for utility is defined in a multiplicative form as: 
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																																																							𝑈* = 𝑘𝐴*𝐵*                                                                           (8)                          

where  𝐴* =
O
)(*)

  , 𝐵* = 𝑅* and the constant k gives the ratio of estimated coefficient of 
variable C to the number of active infective cases. 

 Then the utilities for different states can be estimated by: 

   𝑈(𝑡) = QR*STU*VW	XYVZZSXSV[*	YZ	\U]SU^_V	E	∗	1a
QR*STU*VW	XYVZZSXSV[*	YZ	UX*S\V	XURVR∗)(*)

                                   (9)        

    The state-wise utility values are calculated using equation (9). These are further multiplied 
with the average length of stay in hospitals in order to get the QALY values over a period of 
3 months.  

3.      Data 

                   The study includes data for the daily number of cases from different states of India. The 
daily case counts for the covid-19 infected patients from 26 March, 2020 till 28 May, 2020 
has been obtained from the websites of Ministry of Health and Family Welfare (MOHFW, 
Government of India), Covid19India organisation, worldometer India tracker. Among the 28 
states and 8 union territories, we have included 20 states and 5 union territories in our dataset. 
The remaining states and union territories have been excluded due to non-availability of data 
records for the duration of 3 months (March-May). The count for a daily case was 
accumulated on a weekly basis. These were further aggregated on monthly basis. The Table 4 
for different values of 𝑅* is given in appendix which has been taken from COVID-19 India 
organisation data operations group. The data for different states with total number of 
confirmed, active, recovered and death cases is presented below in Table 1.  

Table 1: State wise data of COVID-19 cases as on 28 May 2020 

State Confirmed Recovered Deaths Active 
Andhra Pradesh 8929 4307 106 4516 
Bihar 7808 5631 51 2126 
Chandigarh 406 316 6 84 
Chhattisgarh 2255 1421 11 823 
Delhi 59746 33013 2175 24558 
Gujarat 27317 19357 1664 6296 
Haryana 10709 5557 161 4991 
Himachal Pradesh 702 419 7 263 
Jammu and Kashmir 5956 3382 82 2492 
Jharkhand 2089 1406 11 672 
Karnataka 9150 5618 138 3390 
Kerala 3173 1659 22 1490 
Ladakh 837 134 1 702 
Madhya Pradesh 11903 9015 515 2373 
Maharashtra 132075 65744 6170 60147 
Manipur 841 250 1 591 
Odisha 5303 3720 21 1562 
Puducherry 383 149 8 226 
Punjab 4074 2700 99 1275 
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4.      Implementation and Results 

Ma et al. (2014) have used exponential curve at the time of onset but as the spread 
increases it tries to flatten out in due course of time. Ghosh and Mondal (2020) have 
identified the number of corona positive cases in the month of March by extrapolation of 
exponential growth model. They have used low time axis values on the basis of sigmoid 
function whose growth is saturated with an assumption of 10b or 10c values in different 
states. In the early month of March till late May there is a deviation in the number of cases 
from exponential growth to non-exponential growth. Prakash et al. (2020) have indicated that 
the number of daily new cases increases as the number of cumulative infections. Ma (2020) 
in the initial growth phase of cumulative number of cases has derived a linear relationship 
with time by using a log linear scale. Since an epidemic grows exponentially in an initial 
phase. Guerrero (2020) forecasted the spread of virus by using logistic and SIR model 
combination. Giordano et al. (2020) have defined eight stages of an infection and called the 
model as SIDARTHE.  

Assuming that the entire population across all the states have equal likely chance of 
being susceptible to infection, the best distributional fit to the reproduction number (𝑅*) in all 
the states is determined on the basis of Akaike Information Criterion (AIC) values using the 
fitdistrplus package in the R programming language as shown below in Table 2. 

Table 2: Potential form of distributions with AIC values 
 

Distribution Log Likelihood AIC 
Normal –46.36955 88.7391 

Exponential –31.01179 60.02358 
Log Logistic –46.01647 88.0329 
Log Normal –39.34114 74.68229 

Weibull –45.80388 87.60776 
Gamma –41.745 79.4915 

   
The model having least AIC value is the best model. From Table 2, we can choose the 

distribution on the basis of least AIC value and maximum log likelihood value. Regardless of 
their random movement within the population, exponential distribution best fit the data. The 
model equation (7) indicates that  

 
𝑅*~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(9.397762). 

 
After taking logarithm of the equation (7) and running the regression we get: 
 
𝑙𝑜𝑔𝑅* = −1.80 + .0813	𝑙𝑜𝑔𝑁 − 0.268	𝑙𝑜𝑔𝐶 − 0.150	𝑙𝑜𝑔𝑆 + 9.3977t + 𝜀														(10) 

where 𝜀 is the random error component which follows normal distribution. 

Rajasthan 14997 11652 349 2996 
Tamil Nadu 59377 32754 757 25866 
Telangana 7802 3731 210 3861 
Uttar Pradesh 17731 10995 550 6186 
Uttarakhand 2344 1500 27 802 
West Bengal 13945 8297 555 5093 
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The value of coefficient of determination for the above model is 0.9075. This implies 
that 90.75% of the total variation in the number of reproduction number which varies by time 
is explained by the set of confirmed, recovered and active cases. Then we differentiate the 
model equation in order to get the utilities for each state. This analytic model (in equation 10) 
serves to be better choice for estimation of quality of life for covid-19 patients. It eliminates 
the drawback of solving the differential equations again and again along with differentiating 
the likelihood function.  

5.      Quality Adjusted Life Year (QALY) 

Quality Adjusted Life Year (QALY) is a metric used by health economists to evaluate 
new and innovative healthcare treatment for any particular disease. It is an important 
measurement of health outcome which gives the quality adjusted life years for an individual 
or group of individuals. Drummond et al. (1997) have introduced the quality of life which 
can be quantified by using the concept of utility. Whitehead and Ali (2010) have combined 
the effects of health care interventions on mortality as well as morbidity. Their definition of 
QALY goes around a single index termed as common currency enabling comparison across 
different disease areas which can further be extended to different states. Thus, QALY is a 
summary measure which incorporates the impact on quantity as well as quality of life. 

QALD (Quality Adjusted Life Days) for childbirth and maternity service in India have 
also been estimated by Grover et al. (2019). These QALDs are estimated for different 
quintiles which are classified on the basis of usual monthly per capita expenditure. Deo and 
Grover (2020) have defined utility as a function of longitudinal covariate which is 
significantly associated with a disease progression. In this paper we estimate QALY by 
linking the utility function with the conventional epidemiological models. On the basis of 
utility function and average length of stay in hospital (ALOS) QALY’s for different states 
can be estimated by: 

																	𝑄𝐴𝐿𝑌 = 𝑈𝑡𝑖𝑙𝑖𝑡𝑦	 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑙𝑒𝑛𝑔𝑡ℎ𝑜𝑓𝑠𝑡𝑎𝑦𝑖𝑛ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙																																						(11) 

ALOS in the hospital has been accumulated from a weekly data base. Using the 
datasets of total confirmed cases, recovered cases, deaths and active cases given in Table 1, 
we have estimated QALY for the corona virus affected patients for various states as given in  
Table 3 below: 

Table 3: QALY’s based on different states of India 
 
State 𝑹𝐭 𝑼𝐭 ALOS 𝑸𝐌 
Andhra Pradesh 0.15 2.215 13.17 0.317 
Bihar 0.12 4.115 8.04 0.360 
Chandigarh 0.06 5.415 13.54 0.797 
Chhattisgarh 0.11 3.070 5.856 0.295 
Delhi 0.13 2.726 12.646 0.375 
Gujarat 0.13 4.861 10.21 0.539 
Haryana 0.08 2.404 9.582 0.250 
Himachal Pradesh 0.08 2.990 6.81 0.221 
Jammu and Kashmir 0.13 2.678 13.01 0.379 
Jharkhand 0.17 3.483 1.16 0.44 
Karnataka 0.09 3.024 15.22 0.500 
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There is a huge variation in QALY per month (𝑄�)	values across different states of 
India. It indicates that few states are on the verge of better quality of life with QALY value 
closer to 1 than other states which are in worse condition with QALY value close to 0. QALY 
provides a better tool to policy makers for identifying how preventive measures implemented 
in various states have impacted differently. They help us to conclude on those states of India 
whose QALY value is close to 1 thus, indicating adequate lockdown and preventive measures 
which were taken timely in order to curb the virus. Thus the disease progression and QALY 
variation will help the policy makers to initiate new frameworks for states with lower quality 
of life for corona virus affected regions. One way of representation through QALY is done by 
means of classifying the states with values greater than 0.5 or less than it. 

Classification I: QALY values > 0.5 

States: Chandigarh, Gujarat, Karnataka, Kerela, Madhya Pradesh, Odisha, Puducherry, 
Punjab, Rajasthan 

Classification II: QALY values < 0.5 

States: Andhra Pradesh, Bihar, Chhattisgarh, Delhi, Haryana, Himachal Pradesh, Jammu and 
Kashmir, Jharkhand, Ladakh, Maharashtra, Manipur, Tamil Nadu, Telangana, Uttar Pradesh, 
Uttarakhand, West Bengal 

Thus from the above classification we can observe that there are 16 states which needs 
more preventive measures and strict lockdown guidelines in order to get better QALY values. 
While classification I indicates that these states also need to follow continued guidelines 
under covid-19 since their QALY values are not so much closer to one.  

6. Discussion 

India is a densely populated country with restricted infrastructure for healthcare 
systems in order to tackle a pandemic. With due demands of hospital beds, the state and 
central government are working towards creation of new corona isolation wards, medical 
equipment like ventilators, testing kits, personal protective equipment (PPE) kits, sanitizers, 
masks etc. Ranjan (2020) clearly states that the immediate action of lockdown imposed by 

Kerala 0.07 2.386 10.26 0.66 
Ladakh 0.01 1.336 25.77 0.374 
Madhya Pradesh 0.16 5.620 8.23 0.503 
Maharashtra 0.13 2.460 13.7 0.366 
Manipur 0.06 1.594 2.26 0.39 
Odisha 0.11 3.804 13.22 0.547 
Puducherry 0.06 1.899 9.1 0.88 
Punjab 0.11 3.580 16.55 0.644 
Rajasthan 0.12 5.608 11.09 0.676 
Tamil Nadu 0.17 2.572 10.74 0.300 
Telangana 0.12 2.264 10.91 0.268 
Uttar Pradesh 0.11 3.211 13.48 0.471 
Uttarakhand 0.08 3.274 9.7 0.345 
West Bengal 0.13 3.068 10.05 0.335 
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the Indian government proved to be fruitful in early spread of infection as compared 
worldwide. 

Salman and Salem (2020) have also listed the age group and immunity developed due 
to BCG vaccination which has favoured lower mortality rate in India. Also the testing rate is 
lower in India as compared to other countries which under estimates our number of positive 
cases. Testing of samples was done in India with restrictions. It majorly targets those 
individuals which show severe symptoms of prolonged high fever, acute respiratory 
syndrome patients, people travelling from high risk countries with their immediate contacts, 
symptomatic health care workers/professionals. People with mild to moderate symptoms are 
advised for home quarantine with few general medications of fever, multivitamins, cough 
syrups, immunity booster food etc. 

Ferguson et al. (2020) reveals that if all the countries adopt social distancing, testing 
and isolation of infected cases then the global death would cut down by 1.9 million by the 
end of 2020. Mair (2020) has stated how the different economic situations will change due to 
corona virus. In order to prioritise the protection of livelihoods we have to respond towards 
the pandemic with extreme combinations. The vaccination introduced for this infection need 
to be made by keeping in mind about its cost effectiveness for our population. Grover and 
Aggarwal (2020) have proposed cost effectiveness analysis on the basis of health outcome 
DALY. Shankar et al. (2020) have stated the mitigation strategy on how to closely monitor 
the effective reproduction number below one which is useful to prevent the spread.  

States which lie in severe category further require lockdown measures as well as strict 
adherence to the guidelines of prevention to covid-19. For allay of our estimation procedures 
we have limited our models by considering homogenous distribution of population across all 
the states. It fails to capture the variations in population density for rural as well as urban 
India. Due to non-availability of data based on age, gender, occupation, travel history etc we 
could not resort to stratification on the basis of different predictors. Mandal et al. (2020) have 
stated that the probability of an infected air traveller coming back to India as the final 
destination which further import the risk in Delhi, followed by Mumbai, Kolkata, Bengaluru, 
Chennai, Hyderabad, Kochi. Menon (2020) highlights the differences among the states in 
terms of population density. Mumbai has higher population density with closer contacts in 
terms of transmission from one person to another than in comparison to spare populated 
Arunachal Pradesh.      

The city of Maharashtra, Mumbai appears similar to epicentre Wuhan in China due to 
high call in the number of COVID-19 cases but the slum area Dharavi has placed an 
extraordinary example of combating with the virus. Due to excessive testing and following 
the guidelines for the prevention under covid-19 there has been speedy decline in the number 
of deaths and active cases. Masih (2020) list Kerala as the first state in the country to report a 
corona virus case. They had maximum influx of students returning from China as a carrier. 
But their health infrastructure followed district monitoring, risk communication, and 
engagement of health professionals with aggressive testing.  

Singhal (2020) has listed the laboratory parameters such as white blood cell count, 
lymphocyte count, platelet count, procalcitonin etc which can be assessed for the estimation 
of quality of life when the virus hits the body. The scope of estimation for QALY can further 
be extended for patients who are elderly with underlying co-morbidities such as hypertension, 
diabetes, cardiovascular disease etc in order to study the variations with adverse outcomes. 
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These epidemic also teach us lessons how to build a stronger healthcare infrastructure with 
good investment and community engagement.  

7.    Conclusions  

Azad and Poonia (2020) have listed short term forecasts for the infection spread across 
the Indian states. On the similar lines, Ghosh et al. (2020) have divided the states into three 
different zones based on daily infection rate (DIR) as severe, moderate and controlled. We 
have considered exponential regression alongwith SIR model on the dataset of different states 
and the analysis done by Ghosh et al. (2020) goes in conjunction with each other, thus fitting 
the scenario of infections precisely and robustly. We further establish a link between the 
states in terms of DIR and 𝑄�.  

States with an increasing trend in DIR such as Maharashtra (𝑄� = 0.36); Delhi (𝑄� =
0.37); Bihar (𝑄� = 0.36); Andhra Pradesh (𝑄� = 0.31); Uttar Pradesh (𝑄� = 0.47); 
Haryana (𝑄� = 0.25); Tamil Nadu (𝑄� = 0.30); West Bengal (𝑄� = 0.33); Chattisgarh 
(𝑄� = 0.29); Himachal Pradesh (𝑄� = 0.22); Jammu and Kashmir (𝑄� = 0.37); Jharkhand 
(𝑄� = 0.44); Ladakh (𝑄� = 0.37); Manipur (𝑄� = 0.39); Telangana (𝑄� = 0.26); 
Uttarakhand (𝑄� = 0.34); Thus all the above states are densely populated with high DIR 
values and lower QALY values (less than 0.5). They belong to the category of severe states 
affected by covid-19. 

States with decreasing trend in DIR and non-increasing growth in active cases such as 
Gujarat (𝑄� = 0.53); Madhya Pradesh (𝑄� = 0.50); Karnataka (𝑄� = 0.5); Odisha (𝑄� =
0.54);  These states are termed as moderate regions. 

States with decreasing trend in DIR and decreasing growth in active cases such as Kerala 
(𝑄� =0.66); Chandigarh (𝑄� = 0.79); Rajasthan (𝑄� = 0.67);	Punjab (𝑄� = 0.64); 
Puducherry (𝑄� = 0.88); and higher QALY values (greater than 0.5) will lie under controlled 
regions against covid-19.  
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      APPENDIX 

1.  Formulation of 𝑹𝒕 

Using the identity from numerical analysis which links the difference operator in     
finite differences as: 

                                                                   (1 + 𝛿)[ = 1 + ∆                                               (12)       

                                                     𝛿 = ∆
[
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 Substituting the above identity in equation (6) for single term and ignoring higher   
order difference operators, we get 
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𝛿𝐼 = ∆
[
𝐼. 

     The equation (6) can be rewritten as: 
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2. Formulation of the utility function 
 

The utility function has been defined as the production function of susceptible, 
recovered and 𝑅*. 

																																																					𝑈* = 𝑓(𝑆, 𝑅, 𝑅*)                                                         (15) 

The marginal utility from equation (6) and (7) is obtained as : 

𝛿𝑅*
𝛿𝑡 =

𝐶𝑁
𝑆 𝑒J*𝛼 

𝛿𝑅
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(−1)
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𝛿𝑅*
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Thus we can conclude that, 

 
𝑈*	 ∝

O
)
 , 𝑈*	 ∝ 	𝑅*                                                     (16) 

 

3. 𝑹𝒕 values for different states of India 
 

The values of 𝑅* were accessed from covid-19 India 2020 tracker with different time 
points i.e., t = 7, 14, 21,...., 70 days are presented below in Table 4. 

 
Table 4: The values of	𝑹𝒕 

State R1 R2 R3 R4 R5 
Andhra Pradesh 0.188 0.245 0.245 0.08 0.145 
Bihar 0.107 0.115 0.12 0.072 0.137 
Chandigarh 0.068 0.092 0.079 0.012 0.053 
Chhattisgarh 0.165 0.188 0.047 0.103 0.104 
Delhi 0.134 0.154 0.22 0.107 0.131 
Gujarat 0.132 0.152 0.106 0.165 0.144 
Haryana 0.06 0.063 0.119 0.081 0.076 
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Himachal Pradesh 0.024 0.057 0.178 0.088 0.087 
Jammu and Kashmir 0.127 0.229 0.128 0.1006 0.135 
Jharkhand 0.148 0.167 0.189 0.222 0.245 
Karnataka 0.171 0.146 0.07 0.055 0.084 
Kerala 0.15 0.139 0.057 0.02 0.058 
Ladakh 0.002 0.0039 0.006 0.015 0.011 
Madhya Pradesh 0.197 0.258 0.182 0.136 0.162 
Maharashtra 0.179 0.1387 0.15 0.127 0.130 
Manipur 0.055 0.0619 0.064 0.075 0.080 
Odisha 0.043 0.062 0.227 0.094 0.112 
Puducherry 0.056 0.0727 0.147 0.029 0.061 
Punjab 0.284 0.111 0.082 0.09 0.077 
Rajasthan 0.12 0.125 0.166 0.138 0.122 
Tamil Nadu 0.26 0.297 0.244 0.08 0.149 
Telangana 0.309 0.146 0.158 0.076 0.103 
Uttar Pradesh 0.096 0.115 0.146 0.09 0.115 
Uttarakhand 0.059 0.084 0.145 0.05 0.082 
West Bengal 0.145 0.192 0.143 0.113 0.123 
State R6 R7 R8 R9 R10 
Andhra Pradesh 0.156 0.178 0.117 0.189 0.120 
Bihar 0.145 0.131 0.118 0.107 0.099 
Chandigarh 0.137 0.128 0.119 0.114 0.112 
Chhattisgarh 0.053 0.062 0.065 0.062 0.060 
Delhi 0.104 0.094 0.085 0.080 0.085 
Gujarat 0.131 0.121 0.112 0.105 0.099 
Haryana 0.144 0.134 0.123 0.114 0.106 
Himachal Pradesh 0.076 0.073 0.071 0.067 0.064 
Jammu and Kashmir 0.087 0.075 0.070 0.067 0.071 
Jharkhand 0.135 0.121 0.110 0.102 0.096 
Karnataka 0.199 0.187 0.146 0.122 0.118 
Kerala 0.084 0.076 0.071 0.068 0.068 
Ladakh 0.058 0.051 0.045 0.042 0.041 
Madhya Pradesh 0.011 0.017 0.020 0.021 0.021 
Maharashtra 0.162 0.145 0.130 0.120 0.111 
Manipur 0.130 0.124 0.115 0.109 0.104 
Odisha 0.076 0.054 0.048 0.032 0.018 
Puducherry 0.112 0.104 0.104 0.105 0.102 
Punjab 0.061 0.054 0.051 0.051 0.055 
Rajasthan 0.077 0.089 0.088 0.082 0.075 
Tamil Nadu 0.122 0.110 0.101 0.094 0.088 
Telangana 0.149 0.139 0.134 0.126 0.118 
Uttar Pradesh 0.103 0.090 0.080 0.074 0.069 
Uttarakhand 0.115 0.106 0.097 0.090 0.085 
West Bengal 0.082 0.073 0.066 0.062 0.070 
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Abstract
We have analyzed the time-series for the number of active cases of COVID-19 pandemic

in India, as well as, in other countries around the world using a variety of statistical fitting
procedures. We obtain robust estimates of the exponential growth rate for the number of
active cases, which is then used for calculating the reproduction number of the epidemic.
We estimate the basic reproduction number of COVID-19 epidemic in India to be R0 ∼
1.82 ± 0.02, a value that lies at the lower end of the spectrum of values of different regions
around the world where there have been major outbreaks of the disease. We have also
investigated the change in the effective reproduction number over time, particularly following
the introduction of unprecedented non-pharmaceutical interventions such as the stay-at-
home order (lockdown) imposed over the entire country from 24 March 2020, and continued
at varying levels of strictness, and with regional variations, up to the present (July). We
observe that the reproduction number showed a large reduction within a couple of weeks of
the imposition of lockdown, suggesting that this measure played a role (along with others
such as compliance with physical distancing rules in public and use of masks) in reducing
the rate of spreading of the contagion, although it was unable to break the chain of infection.
We also note that there is considerable regional variation across India in the dynamics of the
epidemic, with different regions registering rise and fall in the growth rate of the disease at
different times.

Key words: COVID-19; Corona virus; Reproduction number; Epidemiological dynamics;
Pandemic.

AMS Subject Classifications: 92D30, 62M10

1. Introduction

The rapid spread of Coronavirus disease 2019 (COVID-19), that results from infection
with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogen, has in
the few months following its initial identification in December 2019 (Wang, et al., 2020) not
only brought to mind recent pandemics such as the 2009 swine flu pandemic that is believed
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to have affected around 11% − 18% of the world population (see Kelly, et al., 2011), but
also raised the specter of it eventually growing to rival the 1918-20 “Spanish Flu” pandemic.
Believed to be one of the deadliest pandemics in recent history, the 1918-20 pandemic caused
between 15 million (Spreeuwenberg, et al., 2018) and 50 million deaths (Johnson and Mueller,
2002), with a third of these occurring in British-ruled India (Reyes, et al., 2018). Indeed,
in scale, COVID-19 has already surpassed the other two coronavirus epidemics of recent
times, viz., the 2002-04 SARS outbreak and the 2012-14 MERS outbreak. Compared to
the 8439 cases that were reported for SARS worldwide (WHO, 2003), and the even smaller
2500+ cases of MERS from 2012 till date (WHO, 2020a), there have already been, as of 15
July 2020, over 13 million confirmed cases of COVID-19 and 574,466 deaths (WHO, 2020b)
spread across more than 200 countries and territories.

In the absence of any possibility that a vaccine for COVID-19 will be available in
the immediate future, the epidemic is also proving to be a testing ground for extreme non-
pharmaceutical interventions that different countries have implemented in order to contain
the spread of the disease. The principal among these are the stay-at-home orders (colloquially
referred to as lockdowns) imposed on the populace of several countries around the world by
their governments [see Wikipedia (2020) for a list] after its apparent success in containing
the initial outbreak of the disease in Hubei province of China [Lai, et al. (2020)]. Such
unprecedented measures have provoked controversy, not least in India where an initial 21-day
lockdown was initiated on 24 March 2020 with the stated purpose of bringing the epidemic
to an end by breaking the chain of infection through enforced distancing [see India Today
(2020)]. While the physical isolation of individuals through such measures is very likely to
restrict the likelihood of transmission of the pathogen from infected to susceptible individuals,
there are high social and economic costs accompanying such a measure. Lockdowns also affect
different sections of the population asymmetrically, and can result in aggravating existing
inequalities in society - making it unsuitable for prolonged use. Thus, following the initial
period of nationwide lockdown in India, it is now primarily being applied in a more restrictive
manner at specific locations where the number of active cases is increasing in a particularly
alarming rate, to ensure that the medical infrastructure is not overwhelmed by the rising
number of infected individuals who need to be hospitalized.

To gauge the efficacy of such non-pharmaceutical interventions, it is imperative to un-
derstand the epidemiological dynamics of this novel infectious disease - particularly, as it
manifests in diverse manners at different locations. In this paper, the transmissibility of
COVID-19 has been investigated with special focus on India, but also considering many
other locations around the world where there have been major outbreaks. For this purpose,
we have estimated at each location the reproduction number of the disease (the basic repro-
duction number R0 and effective reproduction number R are defined in the next section),
which measures how rapidly the number of active cases of the disease changes over time
(active cases refers to the individuals who are infected with the disease at a given time and
who can potentially infect others by passing the pathogen to non-infected individuals, e.g.,
via contact). As can be easily explained using the mathematical theory of epidemics, the
reproduction number has to be greater than 1 for an epidemic to occur, and the larger the
number, the faster the disease will spread. Although several studies have already appeared
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that compute the basic/effective reproduction numbers for different locations at different
times, as the numerical value of the reproduction number typically depends to an extent on
the exact model used to estimate it from data, most of these numbers that appear in different
studies cannot be compared to each other. Thus, in order to compare the epidemiological
dynamics of COVID-19 across different geographical regions and temporal phases of the epi-
demic, the corresponding values of R0 and R need to be calculated in a consistent manner
across both space and time. With this aim in view, in this paper the reproduction numbers
for the epidemic have been calculated not only for India but also for several countries where
there have been major outbreaks, as well as, for different regions within India. This allows
us to obtain an understanding of the spatio-temporal diversity in the spreading dynamics of
the disease within India, apart from that between India and other parts of the world. The
paper is organized as follows. In Section 2, we briefly describe the sources of the data used
for the analysis and the method of calculating the key epidemiological parameters R0 and
R. In Section 3, the international situation is discussed with analysis of the epidemiological
dynamics for the world as a whole and that of selected countries. In Section 4, we focus
on India with data for the entire country, as well as for individual states and districts. We
conclude with a discussion on the limitations of the study and its implications in Section 5.

2. Data Sources and Methods

Data aggregated for the world as a whole and at the level of each country affected by the
epidemic was obtained from CSSE (2020), an online data repository on GitHub of COVID-19
cases worldwide that is operated by the Johns Hopkins University Center for Systems Science
and Engineering. Information about the cumulative number of confirmed cases, deaths and
recovered cases are updated daily, beginning from 22 January 2020. The data is collated
from a large number of sources, such as various national government health departments,
as well as, from the World Health Organization (WHO), the US and European CDCs and
aggregating sites such as WorldoMeters. Disaggregated data for India was obtained from
COVID19-India (2020), a crowdsourced database of COVID-19 cases. Its volunteers collate
information from health bulletins issued periodically by various governmental organizations,
as well as other sources, and compile the obtained numbers to create district-level and state-
level daily time-series for confirmed cases, recovered cases, deaths, active cases and number
of individuals tested for the disease. At the state-level, data is available from 14 March
2020, while for the bulk of the districts the time-series information is obtainable from 21
April 2020 onwards.

We consider the time-evolution of the number of active cases, i.e., the number of in-
dividuals who remain infected with the virus on a particular date, which is obtained by
subtracting the cumulative number of deaths and recoveries announced up to that date from
the cumulative number of confirmed cases till then. During the initial phase of an epidemic,
the number of infected individuals is expected to increase exponentially with time, as is the
case for any multiplicative process (such as, a chain reaction) where the value adopted by a
variable at each instant is obtained by multiplying the value at the immediately preceding
instant by a constant factor. This is easy to see from the mathematical models of epidemi-
ological dynamics that stem from the pioneering work of Kermack and McKendrick (1927)
[for an example of how such theoretical modeling can accurately describe the empirical data
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from influenza epidemics see Spicer and Lawrence (1984)]. In the most basic setting, one can
divide the entire population comprising N individuals into three compartments, correspond-
ing to those who are susceptible to contracting the disease (S), those who are at present
infected (I), and those who have recovered or are removed by death (R). Neglecting any
demographic changes during the period that one is considering, the time-evolution of the
number of individuals in each compartment can be described by the system of differential
equations:

dS
dt

= −βSI, dI
dt

= βSI − γI, dR
dt

= γI, (1)

where the parameters β is the rate of infection transmission through contact between an
infected and a susceptible individual, while γ is the recovery rate (= τ−1, i.e., the reciprocal
of the time duration during which a person is free to pass on the infection to others). It
is easy to see that as the total population is conserved (S + I + R = N), only two of
the equations are independent. Furthermore, at the earliest stage of the epidemic, we can
assume the susceptible population size to be effectively equal to the total population N ,
and thus a constant. Thus, we are left with a single differential equation that describes
the evolution of I. Normalizing the variables by the total population size N and solving
the equation, we see that the fraction of infected individuals in the population i(= I/N)
will evolve from its initial value i0 as i(t) = i0 exp({Nβ − γ}t) = i0 exp({[R0 − 1]/τ}t).
Here the parameter R0 = Nβ/γ is the key epidemiological parameter basic reproduction
number, which is defined as the average number of secondary infections that results from
a primary infection at the earliest stage of the epidemic, i.e., before a significant fraction
of the population has been exposed to the disease. Note that the expression of R0 remains
unchanged even if we augment this basic model with an additional compartment E for the
subpopulation of exposed individuals who have been infected but are not infectious, taking
into account the latent or pre-infectious period after an infection.

Thus, R0 can be estimated from the empirical time-series of the number of infected
individuals (i.e., the active cases) by accurately fitting it to an exponential growth curve,
viz., i(t) ∼ exp(λt), and obtaining the most reliable estimate for λ. Using the equivalence
λ = (R0 − 1)/τ , and equating τ with the generation time, i.e., the mean interval between
a person getting infected by another individual (the “infector”) and the time at which the
“infector” was infected, R0 can be calculated from the data. We have used a generation time
of 5.2 days that was estimated by Ganyani, et al. (2020) from the Singapore cluster of cases.
The fitting procedure is carried out using a nonlinear least squares approach implemented by
the function fit in MATLAB R2009b software (Mathworks (2009)). We have also obtained
the 95% confidence bounds using the function confint which does the calculation through QR
decomposition of the Jacobian. To assess the quality of fitting, we calculate the correlation
coefficient r between the logarithm of the number of active cases and time, as well as the p-
value indicating the measure of significance. We only use those estimates of λ for calculating
R0 for which r > 0.99 and p ≤ 0.002. We have earlier shown in Jesan, et al. (2011) that
using the above fitting procedure yields values of R0 that are consistent with those calculated
using alternative methods, such as bootstrapping. To aid fitting when the data exhibits large
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fluctuations we have performed smoothing using a 3-day moving average.

Once the epidemic has had time to penetrate substantially into the population and/or
containment measures put in place have had a discernible effect, it is no longer possible to
view the process as a contagion freely infecting every contact of an infected person. At this
stage, we speak of the growth rate in terms of the time-dependent effective reproduction
number, R. As in the case of R0, R is also defined as the mean number of infections arising
from a single infected individual (with the difference that now we can no longer assume the
population to be almost entirely susceptible to the disease). Thus, it can be estimated using
the above technique provided that the susceptible population does not decrease perceptibly
over the period in which the estimation is being done. Also, similar methods can be applied
to calculate the reproduction number at different spatial scales. Obviously the smaller the
area being considered the smaller is the total population, so that it becomes more likely that
there will be discernible changes in the susceptible population as the epidemic progresses
and consequently one has to be more careful in using the above procedure.

3. COVID-19: International Scenario

The outbreak of a novel disease (to be named COVID-19 eventually) came to the
attention of public health authorities towards the end of December 2019 with the occurrence
of a large number of pneumonia cases of unknown causes in Wuhan, the capital of Hubei
province in China. Huang, et. al. (2020) have traced the earliest human infected case
to 01 Dec 2019, although it is likely that the virus had been circulating in the population
even earlier. Subsequently, the extremely rapid rise of the number of infections made the
authorities impose unprecedented city-wide stay-at-home orders (lockdown) in Wuhan and
other cities in the province on 23 January 2020. Less restrictive measures for ensuring
physical distancing were introduced in several other locations in China. As a consequence,
there was discernible decrease in the rate of growth in infections and from 17 February 2020,
the number of active cases began to decline. However, as is evident from the time-series
shown in Figure 1 (left), the active case count for the entire world started to increase again
from 5 March 2020. This resulted from the focal point of the epidemic shifting outside
China (where it continued to decline) to countries such as Italy and the United States of
America. Indeed, by 8 March 2020, the total number of active cases of the disease outside
China exceeded that from China for the first time, and while there have been subsequently
resurgences of COVID-19 cases in China, these have been fairly limited in size. With the
rapid spread of the epidemic across different countries in Europe and the Americas, apart
from Asia, on 11 March 2020, the World Health Organization (WHO) declared the COVID-
19 outbreak to be a global pandemic.

Figure 1 (right) shows the reproduction number R estimated from the time-series of the
total number of active cases across all countries by using a moving window having different
starting dates (t) and interval lengths (∆t). The choices of t and ∆t for which the correlation
coefficient r between time and logarithm of the number of active cases (that measures how
closely the curve describing the number of active cases fits an exponential function) is greater
than 0.998 are indicated within the black dotted contour lines (the regions within the blue
dotted lines have r > 0.995). The corresponding measure of significance is p < 0.001. As
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Figure 1: (Left) The time-series for the number of active cases of COVID-19 for
the entire world (the data for China and the rest of the World are also shown
separately) and (right) the estimated reproduction number R over time windows
with different starting dates (t) and temporal intervals (∆t).

the data source we have used does not have information for the period prior to 22 January
2020, we cannot estimate the basic reproduction number. We note that R was 2.02 ± 0.16
between 23-27 January 2020, but then decreased to 1.85 ± 0.13 (02-05 February 2020) and
subsequently to 1.31± 0.06 (07-10 February 2020). Throughout the second half of February
R appeared to be equal or less than 1 so that, even though there were countries such as Italy
and United Kingdom that had large outbreaks during the period, it still seemed possible that
the disease can be contained and prevented from becoming a global pandemic. However, it
started rising again in March, increasing from 1.18±0.04 (06-09 March 2020) to 1.66±0.02 (09
March-01 April 2020) - possibly resulting from the large number of outbreaks that occurred
across countries in Europe and Latin America, as well as, USA and South Africa, at this
time. From the month of April onward, however, we have seen a steady decrease in the global
R, from 1.25 ± 0.01 (03-13 April 2020) to 1.16 ± 0.01 (12-21 April 2020) and 1.12 ± 0.01
(20-28 April 2020), notwithstanding the fact that new territories have been affected by the
disease. Over the last couple of months, R has stood at 1.065 ± 0.001 (28 April-08 July
2020) which probably reflects the success of European countries in containing the epidemic
and the fact that in USA, despite the large absolute number of cases, the growth rate has
decreased substantially.

As the United States of America has the highest number of confirmed cases and is
therefore contributing to the value of R for the entire world more than any other country,
in Figure 2 we specifically look into how the situation has evolved there, beginning from
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Figure 2: (Left) The time-series for the number of active cases of COVID-19 for
United States of America and (right) the estimated reproduction number R over
time windows with different starting dates (t) and temporal intervals (∆t).

Figure 3: The 95% confidence intervals (represented by the vertical extent of the
colored bars representing different nations) for the basic reproduction number
R0 estimated for COVID-19 outbreak in 22 countries across the world with the
horizontal extent of the colored bars indicating the time period used for the
estimation.
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late January. The first case of COVID-19 in USA was reported on 19 January 2020 from
Snohomish County in Washington state (Holshue, et al., 2020). Following this, as seen from
Figure 2 (left), the number of active cases rose only slightly to reach double digits and
remained steady at fairly low numbers (∼ 10) for the entire month of February. However,
between 03-26 March 2020, the number of cases rose rapidly marking the advent of the
epidemic with a basic reproduction number R0 = 2.63± 0.05. The case fatality ratio (CFR)
was also high at this early period, peaking at 0.114. It is to be noted, however, that there is
a high degree of heterogeneity in the disease incidence across the country, with the state of
New York (followed by California, Florida and Texas) accounting for a large fraction of the
cases.

As the epidemic unfolded, the value of the effective reproduction number has undergone
several changes as can be seen from Figure 2 (right). Between 27 March-4 April 2020, the
number reduced from the value of R0 (mentioned above) to 1.68± 0.03. It further reduced
to 1.38 ± 0.02 during 4-11 April 2020, 1.18 ± 0.01 during 11-26 April 2020, 1.10 ± 0.01
during 30 April-10 May 2020, and reached its lowest value so far R = 1.05± 0.01 in the first
half of June (1-18 June 2020). In more recent periods, it has marginally increased back to
1.10 ± 0.01 (22 June-1 July 2020). The trajectory of the epidemic in USA as described by
these reproduction numbers is qualitatively similar to that seen for India (described below),
with an initial period of extremely rapid spread lasting for about a month followed by gradual
reduction in the transmission, with R eventually settling to a value just higher than 1 about
four months after the outbreak established itself in the local population.

To see how much variation there is across geographical regions in the rate at which the
epidemic has spread, in Figure 3 we graphically represent the 95% confidence intervals of
the basic reproduction number for several countries where there have been major outbreaks
of COVID-19, along with the period corresponding to the initial phase of growth of the
epidemic (over which R0 has been estimated). China is not included because as mentioned
earlier, the data sources being used do not include information on the initial phase of the
outbreak in China. The two letter symbols associated with each colored bar indicate the
different countries (see Table 1, which provides the numerical values of R0 for these and
several additional countries). Note that all the countries which are currently in the top 15
in terms of confirmed cases have been included.

Even a cursory glance at Figure 3 is sufficient to establish a few exceptional features
underlining the diversity in COVID-19 epidemiological dynamics in different locations. While
the bulk of the countries investigated have had their R0 values lying between 2 and 2.8,
there have been exceptions such as Iran, which had an unusually high R0. In contrast, R0
for countries in South Asia such as Sri Lanka, Pakistan and Nepal (see Table 1) have been
very low, with the notable exception of Bangladesh which had a R0 of around 3. The R0
for India, while higher than its southern and western neighbors, is still at the lower end of
the range of values for the basic reproduction number that we have estimated for different
countries.

4. COVID-19: The Situation in India

Having discussed the international situation, we now focus on how the epidemic has
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Table 1: Basic reproduction numbers (R0) estimated for COVID-19 outbreaks
in different countries

Region Country R0 95% CI r p Period Peak CFR
North USA (US) 2.63 [2.58, 2.68] 0.998 < 0.001 03-26 Mar 2020 0.114
America Mexico (MX) 2.29 [2.23, 2.35] 0.999 < 0.001 15-22 Mar 2020 0.124

Canada (CA) 2.23 [2.20, 2.27] 0.998 < 0.001 07-28 Mar 2020 0.082
South Brazil (BR) 2.53 [2.47, 2.59] 0.995 < 0.001 26 Feb-29 Mar 2020 0.070
America Peru (PE) 2.77 [2.70, 2.85] 0.998 < 0.001 08-20 Mar 2020 0.042

Chile (CL) 2.76 [2.70, 2.82] 0.998 < 0.001 04-21 Mar 2020 0.022
Europe Italy (IT) 2.70 [2.62, 2.78] 0.999 < 0.001 23 Feb-01 Mar 2020 0.145

Spain (ES) 2.66 [2.60, 2.71] 0.998 0.001 29 Feb-Mar 17 2020 0.122
UK (GB) 2.13 [2.10, 2.17] 0.995 < 0.001 18 Feb-29 Mar 2020 0.155
France (FR) 2.10 [2.03, 2.16] 0.995 < 0.001 06-20 Mar 2020 0.159
Belgium (BE) 1.94 [1.90, 1.99] 0.998 < 0.001 13-23 Mar 2020 0.165
Netherlands (NL) 1.96 [1.91, 2.00] 0.995 < 0.001 07-28 Mar 2020 0.129
Germany (DE) 2.41 [2.35, 2.47] 0.995 < 0.001 29 Feb-21 Mar 2020 0.047
Austria (AT) 2.49 [2.44, 2.53] 0.998 < 0.001 29 Feb-20 Mar 2020 0.040
Russia (RU) 2.08 [2.04, 2.11] 0.995 < 0.001 05 Mar-14 Apr 2020 0.015

Africa South Africa (ZA) 2.43 [2.38, 2.48] 0.998 < 0.001 11-27 Mar 2020 0.022
Middle Iran (IR) 3.51 [3.41, 3.61] 0.999 < 0.001 25 Feb-03 Mar 2020 0.079
East Turkey (TR) 4.75 [4.52, 4.97] 0.998 < 0.001 14-21 Mar 2020 0.028

Saudi Arabia (SA) 2.06 [2.01, 2.12] 0.996 < 0.001 12-27 Mar 2020 0.015
South India (IN) 1.82 [1.80, 1.83] 0.998 < 0.001 4 Mar-15 Apr 2020 0.036
Asia Pakistan (PK) 1.48 [1.46, 1.49] 0.998 < 0.001 21 Mar-08 Apr 2020 0.024

Bangladesh (BD) 3.04 [2.91, 3.17] 0.998 < 0.001 04-10 Apr 2020 0.128
Sri Lanka (LK) 1.52 [1.45, 1.59] 0.995 < 0.001 19-24 Mar 2020 0.037
Nepal (NP) 1.48 [1.47, 1.49] 0.995 < 0.001 25 Mar-1 Jul 2020 0.007

developed in India. The first confirmed case of COVID-19 in India was recorded when an
Indian student at Wuhan returned to Kerala on 30 January 2020. Subsequently two more
Indian students returning from Wuhan were also tested to be positive for the disease in early
February 2020. All of them subsequently recovered without having passed the infection to
anybody else in India. However, the situation altered beginning from 02 March 2020, when an
Indian citizen who had traveled to Austria tested positive in East Delhi, who was soon found
to have infected six of his family members in Agra (all of whom tested positive on March
4). In a parallel development, after a member of an Italian tourist group tested positive on
03 March 2020, 16 other members of the group were found to have contracted the infection
on the next day. Thus, with 22 new infected individuals being detected on 04 March 2020,
the number of COVID-19 cases in India crossed single digits for the first time (see Figure 4).
Following this the number of new cases steadily rose [see Figure 5 (left)], alarming the public
health authorities into considering implementing extreme non-pharmaceutical intervention
measures such as those successfully employed to control the epidemic in China. A “Janata
curfew” (People’s or self-imposed curfew) for 14 hours on 22 March 2020, a Sunday, tested
the feasibility of imposing a nation-wide lockdown, and it was followed up by a stay-at-home
order implemented from 24 March 2020. Figure 4 shows also the composition of the new
cases reported each day between those returning from abroad and those who contracted it
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Figure 4: Initial phase of the COVID-19 epidemic in India, showing the first
1635 confirmed cases and distinguishing between infections that were imported
from abroad, either by returning Indians or visiting foreign citizens, and those
that occurred among the local population.

locally, and we note that, after 24 March 2020, the bulk of the cases were of the latter kind.
It suggests that by this time, the disease had established itself in the local population.

Figure 5 shows how the reproduction number for the disease has evolved in India in
response to the various measures that were successively put in place. Specifically, we indicate
the various stages of the lockdown (differing in terms of the severity of the measures imposed
to ensure social distancing) that was imposed from 23 March 2020, viz., Phase 1 (23 March-
14 April 2020), Phase 2 (15 April-3 May 2020), Phase 3 (4-17 May 2020), and Phase 4 (18-31
May 2020), followed by Unlock 1 (1-30 June 2020) and Unlock 2 (1-31 July 2020) which is
still underway. In the initial stage between 04 March-15 April 2020 over which the R0 value
is estimated, the number of active cases rose from 25 to 10485. After this period, the rate
of spreading lessened to a large extent and the effective reproduction number between 14
April-16 May 2020 was estimated to be 1.28 ± 0.01, which is a reduction of 30% from the
value of R0(' 1.82). To understand the significance of this change in R, we note that had
the epidemic continued with its initial growth rate for much longer, then we would have been
very likely to have crossed 1 million active cases before the middle of May (see Figure 6). This
would have undoubtedly put enormous stress on the medical infrastructure of the country.

The reduction in R may be attributed at least partially to the imposition of the lock-
down and other related measures (such as, asking people to wear masks in public, etc.),
especially as the deviation from the initial trend can be observed from the data by 06 April
2020 (see Figure 6), i.e., after approximately two weeks following the imposition of Phase



2020] EPIDEMIOLOGICAL DYNAMICS OF COVID-19 IN INDIA 343

Figure 5: (Left) The time-series for the number of active cases of COVID-19 for
India and (right) the estimated reproduction number R over time windows with
different starting dates (t) and temporal intervals (∆t). The periods of different
stay-at-home orders (referred to as Lockdown and Unlock) are indicated.

1 of the lockdown. The duration of this lag between an intervention and its manifestation
in terms of changes in the number of cases is because a person infected with SARS-CoV-2
can take up to 14 days to manifest symptoms, upon which time they can be tested and
then quarantined. Until this time, such individuals may be freely circulating in the popula-
tion and aiding in the transmission of the pathogen. Thus, the bulk of the confirmed cases
that were reported in the days immediately following the lockdown imposition would have
resulted from infections that took place in the period prior to it.

Between 16-28 May 2020, the value of R slipped further to 1.22 ± 0.01, followed by a
marginal decrease to R = 1.21 ± 0.01 during 29 May-11 June 2020. Subsequently, during
12 June-11 July 2020, R reached its lowest value (up till the time of writing) of 1.13± 0.01.
However, this continually decreasing trend in R was then broken and the most recent value
was estimated to be 1.19± 0.01 between 11-20 July 2020. As already hinted in the previous
section, this trajectory of the spreading dynamics, decrease in R for four months followed
by a slight upward turn, resembles that of USA. Taking into account the approximately
two-week delay between an event involving a population and its effect manifesting in the
epidemiological data, the present rise in R can be possibly related to the relaxation of
lockdown norms in the second half of June.

To obtain a better understanding of the temporal variation in the epidemiological
dynamics, we should consider more spatially detailed information. As seen from the pie chart
in Figure 7, the disease has not affected all regions of the country uniformly. Maharashtra



344 SITABHRA SINHA [Vol. 18, No. 1

Figure 6: The progress of COVID-19 epidemic in India between 04 March-27
May 2020 showing the daily number of active cases (circles) in logarithmic scale.
Log scale is used to visualize the quality of fit of the data to an exponential
curve, that manifests as a straight line in such a scale. The red dotted curve
indicates the projected increase in active cases in April and May had the epidemic
continued to progress according to the rate given by the basic reproduction
number of 1.82. The 95% confidence intervals are indicated by the shaded regions,
and the period under lockdown by the colored horizontal bar on top.

Figure 7: Pie chart showing the percentage contribution of the different states
of India to the total number of confirmed cases of COVID-19 till 11 July 2020.
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Figure 8: Progress of the epidemic in Indian states having the highest number of
active cases on 05 July 2020 (in decreasing order, left to right & top to bottom).

has contributed to almost a third of the entire burden of the country, and along with Tamil
Nadu and Delhi, are the three states which account for about 60% of all confirmed cases till
date. On the other hand, both Kerala and Punjab, which were some of the first states to
be affected, surprisingly had less than 1% of the total number of confirmed cases till July.
Figure 8 also suggests a substantial amount of spatio-temporal heterogeneity in the manner
in which the epidemic has evolved across the country, with the disease peaking early in west
(e.g., Maharashtra) and north (e.g., Delhi), followed by the south (e.g., Karnataka) and
much later by the east (e.g., West Bengal and Assam). While many of the states show a
trajectory similar to that for the country, viz. a rapid growth phase initially, followed by
a slowing of the spreading while continuing to be an epidemic (i.e., R > 1), certain states
like Tamil Nadu and Haryana exhibit multiple rounds of growth and decay of the epidemic.
Thus, between 12-30 April 2020, Tamil Nadu had a value of R around or less than 1, so that
the number of active cases were decreasing over time indicating that more recoveries were
happening than new infections. 1 However, the appearance of a cluster of cases originating in
the Koyambedu wholesale market in Chennai towards the end of this period resulted in the

1We would like to note here that R ∼ 1 does not necessarily imply that the number of active cases has
remained constant, for instance, because the number of new infections reported each day is exactly balanced
by the number of infected individuals who are recovering daily. Rather, the growth is slower than exponential
(sub-exponential), e.g., following a trend that fits a polynomial trend.
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Figure 9: The basic/effective reproduction numbers for the states of India having
the highest number of active cases as on 05 July 2020, estimated from the time-
series of the number of active cases by using a moving window having different
starting dates and interval lengths (∆t).

number of infections across the state to increase rapidly and R rose to 2.01± 0.10 between
30 April-07 May 2020. Subsequently, it decreased to 1.56 ± 0.06 between 06-13 May 2020
and then further to 1.31± 0.03 during 30 May-04 June 2020.

A perusal of the evolution of the reproduction number for the individual states (see
Figure 8 where the horizontal line in each panel indicates the date of imposition of the
national lockdown) shows the diversity of outcomes as COVID-19 has spread through India.
Not surprisingly, the R value for the state of Maharashtra has largely driven that for the
entire country, as it accounts for the largest share of COVID-19 cases among the states, even
though it may not have had the highest value of R among them. To see why this is the case,
consider a hypothetical situation where a country has an epidemic raging in two of its states
with two very different values of R, e.g., 2 in state A and 4 in state B. Consider also that at
a given time, state A has 1000 active cases, while state B has 50 cases. After a time period
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Figure 10: The basic/effective reproduction numbers for the districts of Tamil
Nadu having the most confirmed cases as on 15 July 2020, estimated from the
time-series of the number of active cases by using a moving window having
different starting dates and interval lengths (∆t).

corresponding to one generation interval, state A will have 2000 active cases, while state B
will have 200 cases (as per the definition of R). Thus, the effective reproduction number for
the country as a whole will be 2.2, a value that is quite close to the R for state A which has
the bulk of the active cases even though the epidemic is spreading much slower there than in
state B. Note that if the growth rate for the two states remain unchanged, state B will soon
surpass state A in terms of active cases and from that point onward will have its R value
dominating the national R.

Similar heterogeneity is observed at an even finer spatial scale when we consider the
evolution of the epidemic in each district of a state. Figure 10 shows the estimated repro-
duction numbers for twelve districts in Tamil Nadu that have had the highest number of
confirmed cases. It can be easily observed that there has been much more temporal variabil-
ity in the epidemiological dynamics at this more spatially resolved scale. Most districts show
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multiple flare-ups of the epidemic growth rate because of local spreading events, followed by
periods during which R has substantially decreased. We also note that the growth is far from
being synchronized across a state. For example, while Madurai district had R of 1.41± 0.04
during 04-09 July 2020, at around the same time Chennai had the epidemic under effective
control so that R was less than 1 (we estimate R as 0.78± 0.02 in the slightly later period of
10-14 July 2020). While data for spatial resolution higher than this is not publicly available,
it seems reasonable to conclude that the spatio-temporal heterogeneity will be even more
pronounced at that scale, not the least because of the relatively stronger daily fluctuations
in the number of cases. In contrast, at the level of a state, and more so for a country as large
as India, a self-averaging process occurring through rises in some regions being balanced by
dips in others, decreases the fluctuations and aids the statistical analysis.

5. Discussion

While the reproduction number is not the only possible metric one can associate with
an epidemic, nor does it necessarily contain all relevant information about the epidemic, it
is nevertheless extremely informative about the dynamical process by which the disease is
spreading (Heesterbeek, 2002). Its value is determined by multiple factors associated with
demography and social structure of the population in which the disease is spreading, as well
as, the biology of the pathogen, viz., (i) the generation time (which can be considered as
the period over which an infected individual passes the pathogen to others), (ii) the mean
number of contacts between susceptible and infectious individuals, (iii) the probability of
an infection resulting from such a contact, and (iv) the size of the susceptible population
(Sinha, 2020). Typically, not all of these factors may be known for an epidemic. Thus,
estimating R from empirical data can provide us with a means of making inferences about
such factors. The basic reproduction number is also of practical importance from a public
health perspective, as using the estimated value of R0 we can estimate the overall burden of
the disease, as well as, in the event of availability of a vaccine for the disease, the fraction
of population who will need to be vaccinated to achieve herd immunity. It is for these
purposes that it is imperative to accurately estimate R0. We note in passing that the basic
reproduction number for the pandemic is in the same range as the infamous Spanish Flu
pandemic of 1918-19 [as estimated by Mills, et al. (2004)].

To conclude, it should be stressed that the estimated value of R0 is at the lower end of
the values reported for different regions in which the outbreak of COVID-19 has resulted in
a large number of infected cases. Indeed, this seems to be true for most countries from the
South Asian region (barring the notable exception of Bangladesh). Preliminary analysis of
physical and climatic factors done by us appears to rule out the direct role of these in making
R0 for India low. While reliability of the available epidemiological data may be an issue, it
is unlikely that this alone can be the explanation, because under-reporting, as long as it is
done consistently at the same level over time, will not significantly alter the estimated value
of R. The possibility that genetic or physiological features of the South Asian population
may be responsible is a hypothesis that needs further investigation. One of the intriguing
questions that arise from the analysis is the fact that the growth rate of the disease has
continued to be low despite a large degree of relaxation that has happened in the lockdown
norms. As India is still very far from achieving herd immunity, and there appears to be no
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evidence that the pathogen has shown any change in its ability to infect, it is possible that
the voluntary adherence to public hygiene has been responsible. If true, this may suggest
that, under certain conditions, citizens can be mobilized to engage in a mass effort to achieve
desirable public health outcomes.
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