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Abstract 

When a pandemic strikes a population, not everyone is similarly affected.  Some people are 

more susceptible to a disease than others, and the question is: why?  A person with a “good” innate 

immune system potentially has better defense mechanisms to confront or respond to an infection 

than those who do not have good immune system.  Understanding the underlying heterogeneity in 

immunity is a question of scientific interest. There are potentially numerous reasons for 

heterogeneity within a population, such as, genetics, environment, socioeconomics, and so on. It 

is well-established that microbiome plays an important role in inflammation and immune response. 

In this article we summarize the findings of Chen et al. (2021), on the role of microbiome in the 

HIV infection and AIDS, who demonstrated that changes in gut microbiome takes place months 

before the onset of HIV infection and years before the HIV patients progressed to develop AIDS.  

Given the findings of that study, one may speculate a similar phenomenon for other infectious 

diseases, such as the novel coronavirus (COVID-19).   

 

Key Words: Alpha Diversity; Beta Diversity: Differential Abundance; HIV infection; Infectious 

diseases; Microbiome.  

 

1. Background 

 

Human health is dependent on complex interactions between our genome, the external 

factors, and the internal environment over time.  The external environment broadly includes 

chemicals to which we are exposed, the air we breathe, our water supply, diet, physical activity, 

and other factors.  The internal environment includes hormones, the microbiome and microbial 

biproducts such as the short chain fatty acids, various metabolites, and so on. The interaction of 

gene by external factors over time as been extensively studied in the literature. During the past 

decade, researchers began to recognize the important role played by the microbiome on human 

health.  Humans are estimated to have 45.6 million bacterial genes in oral and gut microbiome 

alone (cf., Tierney et al., 2019), which is about 2000-fold more than human genes. Therefore, the 

microbiome is sometimes referred to as the "second genome", or another "organ" of human body 
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(cf., O'Hara and Shanahan, 2006, Relman and Falkow, 2017, Hurst, 2017).  It is now well-

established that the microbiome is involved in metabolism, immune response, and inflammation. 

Gut microbiome also regulate mood (Sampson and Mazmanian, 2015, Steenbergen et al., 2015), 

anxiety, cognition, pain, aging, and a host of other factors of human health and behavior. It is not 

surprising that numerous diseases such as allergies, asthma, obesity (Turnbaugh et al., 2009), 

Crohn’s disease (Gevers et al. 2014), inflammatory bowel diseases, and HIV are associated with 

alterations in the microbiome (Lozupone et al., 2013).  

 

The role of the microbiome on human health and disease has been demonstrated for many 

other diseases.  For example, in the general population, there is greater microbial diversity among 

people with no asthma than those with asthma, with a greater abundance of taxa such as 

Faecalibacterium prausnitzii, Sutterella wadsworthensis and Bacteroides stercoris, and microbial 

byproducts such as short chain fatty acids, acetate and butyrate (Wang et al., 2018). Conversely, 

there is a greater abundance of pro-inflammatory bacteria such as Clostridium bolteae, Clostridium 

ramosum, Clostridium spiroforme and Eggerthella lenta among people with asthma (Wang et al., 

2018). Gut microbiome is also involved in the production of immunoglobulin E (IgE) (Cahenzli 

et al., 2013) and are associated with lung functions such as forced expiratory volume (FEV) 

(Begley et al., 2018). Furthermore, as seen in recent literature (Vila et al., 2020, Weersma and 

Zhernakova, 2020), medications potentially affect the gut microbiome, which in turn impacts the 

efficacy of treatments (Weersma and Zhernakova, 2020). 

 

We use the terms “taxa”, “bacteria”, and “microbe” interchangeably. Often the terms 

“microbiome” and “microbiota” are used in the literature interchangeably although these two are 

distinct terms.  Microbiota refers to the taxa describing various organisms whereas microbiome is 

a broader term that includes microbiota and their genes.    

 

Given the recent, and ongoing COVID-19 pandemic, some natural questions to ask are: What 

is the effect of the microbiome on infectious diseases such as COVID-19, HIV, etc.? What caused 

some people to be more susceptible to acquiring a disease than others? Are there generally 

significant differences between the gut microbiome of people who acquire a disease and those who 

do not? 

 

The role of the microbiome in infectious diseases is well-documented in the literature, with 

several review articles and Perspectives written on this subject in recent years, e.g., Harris et al., 

(2017), Libertucci and Young (2019), Cai et al., (2021), Giovanni et al. (2021), Harper et al. 

(2021), and Hussain et al. (2021). Interactions between the human microbiome and pathogens, and 

the role of microbiome in stimulating the host immune system to defend against pathogens and 

hence protect against infections is well-characterized in these review articles. Interest in this area 

has increased with the recent pandemic to understand the mechanistic role of the microbiome for 

developing prebiotics, probiotics, fecal microbiome transplantation (FMT), and other treatments 

for infectious diseases.  For example, according to Yeoh et al. (2021) the gut microbiota plays an 

important role in modulating markers of host immune system such as the cytokines and 

inflammatory markers, and thus plays a crucial part in lessening the severity of COVID-19.   

 

Although the existing literature suggests a change in the gut microbial composition after the 

onset of a disease among infected people, the question remains whether people with gut dysbiosis 
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are prone to develop a disease if exposed to an infection.  This question is difficult to answer 

because it is not a common practice to collect stool samples in the general population to investigate 

who in the future gets a disease and who does not.  The prospective Multicenter AIDS Cohort 

Study (MACS) provided an opportunity for Chen et al. (2021) to answer the above question in the 

context of HIV infection and AIDS. During the HIV pandemic of the 1980’s, the MACS was 

established at four centers in the United States, namely, Pittsburgh, Baltimore, Chicago, and Los 

Angeles.  The study recruited men who had sex with men (MSM) before any of the recruited 

individuals seroconverted, i.e., before becoming HIV positive (HIV+).  This cohort allowed Chen 

et al. (2021) to investigate differences in gut microbial compositions between a group of men who 

became HIV+, or developed AIDS after becoming HIV+, with those who remained HIV negative 

(HIV-). In Section 2 we briefly describe the microbiome data and methodologies for analyzing 

those data, and we summarize in Section 3 the findings of Chen et al. (2021). Concluding remarks 

are provided in Section 4.  

 

2. A Brief Overview of Statistical Methodology  

 

Observed microbiome data are count data derived from sequencing a specimen obtained 

from an ecosystem, in the present case the human gut.  Two popular technologies used to generate 

microbiome data are the technology based on 16s ribosomal RNA (16s rRNA) and the shotgun 

metagenomics.  Since 16s rRNA is highly conserved in almost all bacteria and its function has not 

evolutionarily changed (cf. Janda and Abbott, 2007), it is commonly used by researchers 

conducting microbiome surveys. Microbial count data obtained by using 16s rRNA are commonly 

referred to as “16s data.” Although 16s rRNA technology is specific for bacterial profiling, the 

shotgun metagenomics surveys not only bacteria but also sequences all genomic DNA. Thus, in 

addition to high taxonomic resolution, at the level of species and strain, the shotgun metagenomics 

allows host DNA inference, functional profiling, and metabolic pathway analysis. Since the 

shotgun metagenomics method currently is far more expensive than 16s rRNA, some researchers 

apply informatic tools, such as PICRUSt (Langille et al., 2013), to 16s data for functional profiling. 

 

In the following description, our focus is on the analysis of 16s data.  The observed 

microbiome data are a matrix of counts, with rows representing various taxa and columns 

representing the samples. Two important characteristics of these microbiome data are that  

(1) typically, a very large proportion of the entries of this matrix are zero. The zero entries may 

arise for several reasons as detailed in Kaul et al. (2017); and (2) for reasons explained below, the 

observed counts are compositional, i.e., reside in a simplex.  

 

A variety of statistical parameters are considered when comparing two or more experimental 

groups. Common parameters of interest are alpha diversity, beta diversity, taxon abundance, and 

taxon relative abundance.  The alpha diversity parameter measures the diversity within samples. 

Numerous measures of alpha diversity appear in the microbiome literature; some examples include 

Shannon’s entropy, the Gini-Simpson index, and the Chao1 index.  The beta diversity parameter 

measures diversity in taxa between samples or between groups and, similar to alpha diversity, the 

microbiome literature provides a variety of measures of beta diversity due to differing concepts of 

distances between samples. For a review of these measures of diversities, we refer to Weiss et al. 

(2017) and references therein.   
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In addition to measures of diversity, researchers are interested in identifying taxa that are 

differentially abundant between experimental groups.  This area of research, known as differential 

abundance analysis, is centered on testing the null hypothesis of equality of (relative) abundance 

of a taxon between two or more groups against various alternative hypothesis.  

 

Suppose there are 𝐺 experimental groups and 𝑛𝑖 subjects in the 𝑖𝑡ℎ experimental group 𝑖 =
1,2, … , 𝐺,  In a unit volume of an ecosystem of the 𝑘𝑡ℎ subject, 𝑘 = 1,2, . . , 𝑛𝑖 in the 

𝑖𝑡ℎ experimental group 𝑖 = 1,2, … , 𝐺, let 𝐴𝑖𝑗𝑘  denote the unobservable true abundance of the 

𝑗𝑡ℎ taxon, 𝑗 = 1,2, . . , 𝑚. Using the 16s or shotgun metagenomics technologies we obtain 𝑂𝑖𝑗𝑘, the 

observed counts of the 𝑗𝑡ℎ taxon, on the 𝑘𝑡ℎ subject in the 𝑖𝑡ℎ experimental group.  

 

Define 𝑇𝑖𝑘 = ∑ 𝑂𝑖𝑗𝑘
𝑚
𝑗=1 , sometimes called the library size of the 𝑘𝑡ℎsubject in the 

𝑖𝑡ℎ experimental group. Due to sample collection methods and technology, 𝑇𝑖𝑘 , in practice, is 

highly variable among subjects. Also, within each subject 𝑘, as the sample collection and 

preparations change, the observed counts 𝑂𝑖𝑗𝑘 are assumed to change proportionally.  Thus, the 

observed counts 𝑂𝑖𝑗𝑘 within each subject are compositional and hence are in a simplex.  

Statisticians often convert these observed counts to relative abundances, 𝑅𝑖𝑗𝑘 = 𝑂𝑖𝑗𝑘 𝑇𝑖𝑘⁄ , so that 

∑ 𝑅𝑖𝑗𝑘
𝑚
𝑗=1 = 1.  One may view the observed counts 𝑂𝑖𝑗𝑘 as an unknown fraction (or multiple) 𝑐𝑖𝑘 of 

the true abundance 𝐴𝑖𝑗𝑘 . The population abundance parameter of interest is 𝜇𝑖𝑗 = 𝐸(𝐴𝑖𝑗𝑘), 𝑖 =

1, 2, … , 𝑚, 𝑗 = 1,2, … , 𝐺. Unfortunately, this parameter 𝜇𝑖𝑗cannot be estimated unbiasedly unless 

the bias due to the nuisance parameter  𝑐𝑖𝑘 is eliminated. Suppose that  𝜆𝑖𝑗𝑘 = 𝐴𝑖𝑗𝑘/ ∑ 𝐴𝑖𝑗𝑘
𝑚
𝑗=1  

denotes the relative abundance of the 𝑗𝑡ℎ taxon, 𝑗 = 1,2, . . . , 𝑚, on the 𝑘𝑡ℎ subject, 𝑘 = 1,2, . . . , 𝑛𝑖, 

in the 𝑖𝑡ℎexperimental group, 𝑖 = 1,2, … , 𝐺, then 𝜆𝑖𝑗𝑘 can be estimated by the observed relative 

abundance of 𝑅𝑖𝑗𝑘.  For this reason, as an alternative to 𝜇𝑖𝑗 , researchers sometimes are interested 

in making inferences about the mean relative abundance 𝜃𝑖𝑗 = 𝐸(𝜆𝑖𝑗𝑘).  Although it is natural to 

study the relative abundance because it does not involve the nuisance parameter 𝑐𝑖𝑘, but from a 

clinical or scientific point of view, the relative abundance parameter may be difficult to interpret.  

Consider the two ecosystems in the toy example provided in Tables 1a and 1b.  Table 1a consists 

of the abundances of five taxa in 

the two ecosystems.  The counts of 

the first four taxa are identical 

across the two ecosystems, with 

only Taxon 5 differentially 

abundant between the two 

ecosystems. Often researchers are 

interested in identifying Taxon 5, the differentially abundant taxon. However, if one were to 

consider relative abundances (Table 1b), all five taxa have differential relative abundances 

between the ecosystems. Although it is mathematically correct that the relative abundances differ 

between the ecosystems, clinically or scientifically it may not be a useful piece of information.  

Thus, there are reasons to prefer to test for equality of abundances rather than the equality of 

relative abundances of taxa between ecosystems. However, it is a challenging problem to test for 

equality of abundances between two or more ecosystems because of the nuisance parameter 

mentioned above. Several methods have been proposed in the literature to eliminate the bias due 

to the unknown nuisance parameter.  Some methods commonly used in the literature include 
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ALDEx2 (Fernandes et al., 2014), ANCOM (Mandal et al., 2015), ANCOM-BC (Lin and 

Peddada, 2020), and RNA-seq-based methods such as edgeR (Robinson et al., 2010), DESeq2 

(Love et al., 2014). 

 

Although the above methods are among the popular methods for conducting differential 

abundance analysis, they are rapidly getting outdated with several new methods introduced in the 

literature on a regular basis (Zhou et al., 2021, Hu et al., 2022).  Recently, Nearing et al. (2022) 

conducted an exhaustive numerical study involving 38 different 16s data sets to evaluate different 

available methods for differential abundance analysis and they concluded that ALDEx2 and 

ANCOM-II produce the most consistent results. However, these authors did not include LiNDA 

(Zhou et al., 2021) or LOCOM (Hu et al., 2022) which were perhaps not available at the time 

Nearing et al. (2022) was published.  

 

3. The Findings of Chen et al. (2021) 

 

Using the stool and blood samples collected from men during their first clinical visit in the 

1980’s by MACS, Chen et al. (2021) investigated the differences in microbial compositions of 

men who developed HIV infection at a future time and those who did not.  Furthermore, they also 

investigated differences in the microbial compositions among those who developed AIDS at 

different time points in the future.  

 

The study consisted of 265 participants 

who were HIV negative (i.e., did not 

seroconvert, denoted as negative controls 

(NC)) at the beginning of the study, and 

among these 156 remained HIV- but 109 

seroconverted, i.e., became HIV+, within 

about six months after the first samples were 

collected (denoted as seroconverters (SC)). 

Of the 109 who seroconverted, 32 of them 

developed AIDS within 5 years, 31 

developed AIDS between 5 to 10 years and 

46 took more than 10 years to develop AIDS.   

The data are summarized in the schematic 

provided in Figure 1.  Chen et al. (2021) 

compared the SC and the NC groups using their microbiome data collected at the first visit when 

all of them were HIV-, the SC group did not yet seroconvert.  Similarly, they compared the 

different AIDS groups (G1, G2 and G3) using their microbiome data collected at the first visit 

when all of them were HIV-.  

 

Using ANCOM-BC for differential abundance analysis of microbiome and some standard 

regression-based methods for other data collected in the study, such as alpha diversity, cytokines 

data, ratio of CD4/CD8 counts, and short chain fatty acids data, Chen et al. (2021) made several 

interesting and important discoveries. At the baseline, or the first visit, when all 265 men in the 

sample are HIV negative, not surprisingly Chen et al. (2021) did not find differences in the ratio 

of CD4/CD8 between those who became HIV+ in the future versus those who stayed HIV-. 
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However, as expected, by the next visit when some became HIV+, the CD4/CD8 ratio was 

significantly different between the two groups of men at the second visit.  Although there was no 

significant difference in the alpha diversity at the baseline between men who later became HIV+ 

and those who remained HIV-., very interestingly, Chen et al. (2021) did find differential 

abundance of various pro and anti-inflammatory taxa at the baseline between the two groups of 

men.  Thus, they discovered intestinal dysbiosis months before men developed HIV infection, 

characterized by increase in pro-inflammatory taxa such as Prevotella Stercorea and a reduction 

in commensal bacteria such as Bacteroides spp, Akkermansia Muciniphila, Alistipes spp, and 

Ruminococcus Spp. Not only did they see such differences at the baseline, but Chen et al. (2021) 

also discovered that ratio of Prevotellaceae to Bacteroidaceae was highly correlated with HIV 

infection at a later time point.  In view of these findings, it is not surprising that they also discovered 

elevated levels of circulating cytokines IL-6, LBP, sCD14, sCD163, before developing HIV 

infection. Increased levels of these cytokines suggest immune response to changes in the bacterial 

composition.  There is growing evidence in the literature demonstrating the important roles played 

by short chain fatty acids produced by the gut microbiota. Propionate is one such short chain fatty 

acid which Chen et al. (2021) found to be positively correlated with the levels of CD4/CD8 counts.  

Taken all these findings together, it appears that differences in gut microbial composition could be 

in the pathway of a person developing HIV infection. Chen et al. (2021) also found significant 

increase in pro-inflammatory bacteria and a significant decrease in the anti-inflammatory 

commensal bacteria at baseline among those who developed AIDS soon after becoming HIV+ 

compared to those who were either slow to develop or never developed AIDS. 

 

4. Conclusions  

 

Although the focus of Chen et al. (2021) was on understanding the role of microbiome in 

HIV infection and the development of AIDS, their work together with emerging literature cited in 

this paper, suggests that gut microbiome may potentially play an important role in other infectious 

diseases, including COVID-19.  There appear to be differences in the composition of gut 

microbiome in people who later became HIV+ than those remained HIV-, and those who rapidly 

developed AIDS versus those who did not. Before one can assert about other infectious diseases, 

more carefully planned studies similar to MACS’ HIV/AIDS study are needed. The MACS study 

provided a unique opportunity because, at the beginning of the study none of the men were HIV+, 

but over time some became HIV+, and the comparisons of microbiome data were performed before 

anyone became HIV+.  Such studies are not easy to conduct, unless it becomes a common practice 

to collect microbiome samples routinely, for example during the annual physical exams.  Another 

possibility is to collect stool samples from subjects when they have an infectious disease and again 

obtain stool samples after they are fully recovered from their disease. Of course, such a design 

assumes that the subjects gut microbiome did not change permanently once a person is infected.   

 

From a statistical perspective, these data and this line of research provide opportunities to 

develop statistical methods for analyzing these complex data.   
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