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Abstract  
 

In the present paper we are presenting three series of row-column design for partial 

triallel cross which have been obtained through row- column designs of complete diallel 

cross method (4). These designs require only           experimental units. i.e.,      
  th

 crosses in comparison to complete triallel cross designs. These designs can be used to 

improve the quantitative traits of economic and nutritional importance in crops and animals. 

It has been established that the three-way hybrids are more stable than pure lines and single 

cross hybrids and exhibits individual as well as population buffering mechanisms because of 

the genetic base. 

 

Key words: Row-column design, partial triallel cross, mating design. 
 

 

1. Introduction  
 

Mating design involving multi–allele cross         lines play very important role to 

study the genetic properties of a set of inbred lines in plant breeding experiments. Most 

commonly used mating designs are diallel or a two-way cross       . Suppose there are   

inbred lines and it is desired to perform a diallel cross experiment involving         
     crosses of the type                 for               , this type of mating design is 

called complete diallel cross (CDC) method (4) of Griffing (1956) . When we arrange these 

             crosses in row-column set up the mating design becomes row-column 

design for CDC method (4).  

 

 Triallel crosses form an important class of mating designs, which are used for 

studying the genetic properties of a set of inbred lines in plant breeding experiments.  For   

inbred lines, the number of different crosses for a complete triallel experiment is      
               of the type                               . Rawlings and 

Cockerham (1962) were the first to introduce mating designs for triallel crosses. Triallel cross 

(TC) experiments are generally conducted using a completely randomized design (CRD) or a 

randomized complete block (RCB) design as environmental design involving      crosses.  

 

Even with a moderate number of parents, say     , in a TC experiment, the number 

of crosses becomes unmanageable to be accommodated in homogeneous blocks. For such 

situations, Hinkelmann (1965) developed partial triallel crosses (PTC) involving only a 

sample of all possible crosses by establishing a correspondence between PTC and generalized 
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partially balanced incomplete block designs (GPBIBD).  Ponnuswamy and Srinivasan (1991) 

and Subbarayan (1992) obtained PTC using a class of balanced incomplete block (BIB) 

designs. Let n denote the total number of crosses (experimental units) involved in a triallel 

experiment. It is desired to compare the lines with respect to their general combining abilities, 

the specific combining abilities being not included in the model. 

 

 Other research workers who contributed in this area are Arora and Aggarwal (1984, 

1989), Ceranka et al. (1990). More details on TC experiments can be found in Hinkelmann 

(1975) and Narain (1990). 

 

 In this paper we are presenting methods of construction of three series row-column 

designs for PTC experiments through row-column designs of CDC experiment method (4) of 

Sharma and Tadesse (2017).   

   

2. Preliminary 
 

 Let   be a row-column design with   rows and   columns for CDC method (4)                 

involving   lines and       .  For the data obtained from  , we postulate the following 

model.  
 

         
     

     
                                                               

 

where   is an       vector of observed responses,   is the general mean  ,   and   are 

column vectors of       parameters,   row effects and   column effects, respectively, 

  
      ,   

         
       are the corresponding design matrices, respectively and   

denotes the vector of independent random errors having mean   and covariance matrix     . 

  

Let         
  be the       incidence matrix of lines    rows and         

  be 

the       incidence matrix of treatments    columns and     
      .  Let     denote the 

number of times the  th
 cross appears in the design  ,                and similarly      

denote the number of times the  th
 line  occurs in  design  ,            . Under (3.1), it can 

be shown that the reduced normal equations for estimating the     effects of lines, after 

eliminating the effect of rows and columns, in design   are  

                                                                               

 where            

 

      
 

 
      

  
 

 
      

  
      

 

   
  

 

 

and 

 

     
 

 
     

 

 
     

 

  
    

 

   is a       information matrix of the treatments and        
          ,     

               is the number of times line   occurs in row   of  ,          ,      is the 

number of times the cross   occurs in column  .     is the replication vector of lines in design 

 .    is a       vector of adjusted treatments (crosses) total.   is a       vector of 
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treatment (line) totals,   is a       vector of rows totals,   is a      vector of columns 

totals, respectively, in design  .   is a grand total of all observations in design  . 
 

Now we will show a connection between row- column CDC designs method (4) and 

PTC row- column designs through nested balanced incomplete block designs of Preece 

(1967). 

 

Let us consider a nested balanced incomplete block design   with parameters 

       ,   ,   ,   ,      , and  . If we identify the treatments of   as lines of a CDC 

experiment method (4) and perform crosses among the lines appearing in the same sub block 

of   and considering these   sub blocks as single block, we get a block design    for a CDC 

experiment method (4) involving   lines with          crosses, each replicated    
               times in          blocks with block size         .  

  

From the above design we can derive the row-column design     for CDC experiment 

method (4), if we consider the arrangement of          crosses in          blocks and 

        rows and each cross is replicated                    times in arrangement.  

Such a design             ; also, for such a design         or 1for              , 

              and  

                       
          

       
     

                                   

 

 A row-column PTC designs can be derived from      by attaching  th
 line with each 

cross in  th
 column provided   th

 line does not appear in  th
 column, where              ; 

             . Hence we get a row-column PTC design    for a PTC experiment involving 

  lines with          triallel crosses, each replicated                   times, and 

         blocks, each of size        . Such a design           ; and, for a design 

               for              ,               and  

 

    
      

     
     

        

       
     

                                            

 

The     given by (2.4) is completely symmetric. 

 

                                                                                                 
 

And using    each elementary contrast among     effects is estimated with a variance 

 

2

)3(

)1(2













pp

p
                            (2.6) 

 

3. Method of Construction 
 

Series 1: Let         ,       be a prime or a prime power and   be a primitive 

element of the      . Consider the following m initial blocks. 
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As shown by Dey et al. (1986), these initial blocks, when developed in the sense of 

Bose (1939), give rise to a nested balanced incomplete block design with parameters     
    ,                      . By arranging the above m blocks into single 

block as given below and developing the single block over       . 

 

 
          

            
                   

 

We obtained an optimal block design for diallel crosses with minimal number of 

experimental units with parameters         ,          ,      , and    . This 

diallel cross design can be converted into row-column partial triallel cross design with 

parameters       ,        ,       , and     by attaching  th
 line with the 

crosses in  th
 block in which  th

 line does not appear at all, where                   .  

 

Example 1: Let    . We get the following two columns. 

 

 
           

                    
  

 

Now we convert the both columns in single column as given below. 

 

 

     
          

      
          

  

 

where   is a primitive element of        and the elements of        are           
     ,             . Adding successively the non-zero elements of        to the 

contents of the single column, the CDC design method (4) is obtained with parameters 

            and    , where the lines have been relabeled 1-9, using the 

correspondence    ,                                   
        :       

   

 Now attaching the           elements, respectively, with the crosses of the 9 blocks 

because these elements do not appear in the respective blocks of the above design.  

Considering rows as row blocks, we obtain row-column design for triallel cross with 

parameters                  and    , which fulfill the all conditions for PTC design.  

 

The design is given below.  

 

Row-column partial triallel cross design 
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Series 2: Let                be a prime or a prime power and   be a primitive 

element of the Galois field of order  ,      . Consider the initial blocks 

 

                                                            

 

Dey et al. (1986) showed that these initial blocks, when developed give a solution of a nested 

incomplete block design with parameters                              
             . 

 

 Now arranging the above initial   blocks into single block as given below  and 

developing       , will yield an optimal CDC design method (4) with parameters   
                     and    .  

 

 

          

            

             

                   

 

This design can be converted into row-column partial triallel cross design with 

parameters                          and     by the procedure described 

above in Series 1.  

 

Example 2: Let    . Then we get the following two initial blocks. 

 

 

      
     
      

      
     
     

  

 

Now we arrange these two blocks in a single block as given below. 

 

 
 
 
 
 
 
      
      
     
     
      
      

 
 
 
 
 

 

 

Now developing the above block        , we obtain optimal CDC design with 

parameters                     and    . Following the procedure of Example 1, we 

can obtain row-column design for PTC with parameters                     and    . 

Series3: Let                 be a prime or a prime power, then cyclically developing 

the following m columns  

 

                                                                        
 

yields an optimal CDC design method (4) with parameters                    
      .  A row-column PTC design with parameters                    , and 

      can be obtained by the procedure described in Example 1. 
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Example 3: Let      . Then       and developing the following columns        
 

 

     
     
     

  

 

yields optimal CDC design with parameters           , and       and    . A PTC 

design with parameters            ,     and     can be obtained by the procedure 

given in Example 2.                

                 

Note: The   columns form a nested balanced incomplete block design with parameters 

 

                                              

 

Block designs for CDC method (4), with       , which can be obtained from NBIB designs 

of Morgan et al. (2001), are listed below in Table 2. Using these designs row-column partial 

triallel cross designs can also be constructed. 

 

Table 1: Block design for complete diallel crosses method (4) with        generated by 

using NBIB designs of Morgan, Preece and Rees (2001) 

 

S. No.                                          Source 

1 7 7 6 MPR 2 

2 9 18 4 MPR5w 

3 9 9 8 MPR8 

4 11 11 5 MPR 14 

5 13 39 4 MPR 20w 

6 13 26 6 MPR21 

7 13 13 12 MP23 
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Abstract 
 

A combinatorial arrangement of 15 unordered pairs of six elements in 6 x 6 square with 

empty diagonals and off-diagonal cells having three disjoint unordered pairs, such that in each 

row and in each column all the 15 unordered pairs occur once only, is presented. This 

arrangement is called triangular Room square of order six. 



Key words: 6  6 squares with empty diagonals, triangular designs, Room squares 

______________________________________________________________________________ 

 

1. Introduction  
 

Combinatorial arrangements have drawn the attention of mathematicians   as long back as 

Kirkman’s School Girl Problem (1850), see Dey (2010), pp.47. Some relevant definitions in the 

context of the paper follow as: 

  

Block design 
 

An equi-replicate, equi-block size, incomplete block design is an arrangement of v 

elements into b blocks such that: each block contains k (<v) distinct elements and each element 

occurs in r blocks. 

 

Triangular design  
       

Let there be v = n(n–1)/2 elements(n ≥5) which are arranged in an n  n array such that   

the positions on the principal diagonal are left blank, the n(n–1)/2 positions above the principal 

diagonal are filled with the v elements and the positions below the principal diagonal are also 

filled with the same v elements in such a manner that the resultant arrangement is symmetric 

about the principal diagonal. Then, two treatments are called first associates if they belong to the 

same row or same column of the array, otherwise they are second associates. 

      

Alternatively, a triangular association scheme may be defined as : Let X  be a set of n 

elements, 1,2, . . . , n. Then by v = n (n1)/2 elements are denoted by pairs (i, j) = (j, i), i ≠ j, i, j 

  X. Any two elements are first associates if there is an element in common between the pairs, 
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otherwise they are second associates. Triangular designs are special class of two associate class 

partially balanced incomplete block designs. 

 

Resolvable block designs 
 

  A block design with parameters v, b, r, k is said to be resolvable, if its blocks can be 

partitioned into r sets of blocks, each set containing b|r blocks, such that every set contains each 

treatment precisely once only (see, Dey 2010). 

 

Doubly resolvable designs 
 

Following Stinson (1980) and elsewhere the definition is as follows: Let R = R1, R2, …, 

Rr and T = T1,T2,…,Tr be two resolutions of one and the  same design. These two resolutions are 

orthogonal if |Ri∩Tj| ≤ 1, 1≤ i, j≤ r.  When a design has at least two orthogonal resolutions it is 

called doubly resolvable. Let D be a doubly resolvable design with orthogonal resolution classes 

R = R1, R2, … , Rr and T = T1, T2, …, Tr. Now, form an r  r array A, where the rows are indexed 

by the elements of R and columns by the elements of T.  

     

 The (i, j)-th cell of A contains Ri∩Tj . Here, any cell will either be empty   or contain a 

block of D. Obviously this array A is row-wise as well as column-wise resolvable.   
  

     Here, a combinatorial arrangement of 15 unordered pairs of six elements in 66 square 

with empty diagonals and off-diagonal cells having three disjoint unordered pairs, such that in 

each row and in each column all the15 unordered pairs occur once only, is presented. This 

arrangement is called triangular Room square of order six.   The results obtained here might be 

of interest for possible applications in cryptography [see, Chaudhary and Seberry (1998), 

Zhelezova (2011), Topolova and Zhelezova (2014)]. For terminologies, definitions see 

Raghavarao and Padgett (2005), Dey (2010). 

 

2. The Arrangement 
 

  Given below is an arrangement of 15 unordered pairs of six elements in a 6  6 square 

with empty diagonals and off-diagonal cells having three disjoint unordered pairs, such that in 

each row and in each column all the 15 unordered pairs occur once only.                                                                                        

                                                     

Table.1: 6  6 square with empty diagonals 

- (12,34,56)   (15,24,36) (16,23,45)   (14,26,35)    (13,25,46) 

(12,34,56)   - (13,26,45) (14,25,36)    (15,23,46) (16,24,35)   

(14,25,36)   (16,23,45) - (12,35,46) (13,24,56)   (15,26,34)    

(13,26,45) (15,24,36)    (12,35,46)   - (16,25,34) (14,23,56)   

(16,24,35)    (13,25,46)   (14,23,56)   (15,26,34) - (12,36,45) 

(15,23,46) (14,26,35) (16,25,34)    (13,24,56)   (12,36,45)   - 

 

Further by the transformation: 12→1, 13→2, 14→3, 15→4, 16→5, 23→6, 24→7, 

25→8, 26→9, 34→10, 35 →11, 36→12, 45→13, 46→14, 56→15, the above arrangement may 

alternatively be viewed as a doubly resolvable, triangular design with empty diagonals. The 

parameters of this triangular design are: v =15, r = 6, k = 3, b = 30, n1 = 8, n2 = 6,      
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The triangular designs are partially balanced incomplete block designs based on two 

associate triangular association schemes. For details, see Clatworthy (1973), Dey (2010), 

Raghavarao and Padgett (2005). Tables of triangular designs may be found in Clatworthy (1973). 

      

A doubly resolvable BIBD (v, 2, 1) is a Room square. There is extensive literature on this 

topic. A doubly resolvable BIBD (v, k, ) is a Generalised Room square and vice-versa (Stinson, 

2004). Doubly resolvable, BIBD and Group divisible designs are studied by Vanstone (1980). 

The arrangement obtained above may be known as triangular Room square (TRS) of order six. 

Analogously, Room Squares based on BIB designs and Group divisible designs may be denoted 

as BIBRS and GDRS respectively. A special feature of the above triangular Rooms square is that 

the (i, j)-th cell entry Ri∩Ti  is zero, while Ri∩Tj  is 1. 

                                                           

This triangular design is reported in Clatworthy (1973) as duplicate of T16. A resolvable solution 

of this triangular design was reported in Sinha (1973).  It is not known if the resolvable solution 

of triangular design T3 given in Sinha and Dey (1982) also has a similar arrangement in 6  6 

squares with empty principal diagonal.                                              
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Abstract

When the population is rare and clustered, the traditional sampling design gives the poor
estimate of population total/ mean. In this situation, the negative adaptive cluster double sampling
(NACDS) design is useful to gather the information. It is assumed that auxiliary information is
negatively correlated with study of interest variable and auxiliary information is abundant. Hence,
information of interest variable is rare and clustered. Traditional, ratio estimator performs poor.
Hence, exponential ratio type Horvitz Thompson (HT) estimator and log ratio type HT estimator
is proposed. The performance of these two estimators are compared by using sample survey.

Key words: NACDS; HT Estimator; Ratio Type Estimators; NACS.

1. Introduction

While conducting a sample survey, a number of difficult sampling problems are encountered.
One of them is the problem in estimating the population mean/total when it is rare or geographi-
cally uneven. If the population of interest is hidden or elusive then it becomes difficult to identify
it for sampling. The researcher may find the conventional sampling design such as simple random
sampling (SRS), stratified sampling etc. as inadequate for producing data from the sampling units
while studying such type of population. If conventional sampling designs are applied to population
that are rare and clustered then usually very few units possessing the characteristic of interest are
selected in the sample. Even a very large conventional sample would be inadequate in such cases.
Due to these reasons researchers have thought about the unconventional sampling designs.

According to Thompson and Seber (1996), designs that can redirect sampling effort during a
survey in response to observed values are known as adaptive sampling designs. These designs use
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information gathered during the survey to select the succeeding sampling units. This distinguishes
adaptive sampling from conventional sampling designs.

Neyman (1938) introduced two-phase sampling (double sampling). Horvitz and Thompson
(1952) provided a general method of dealing with sampling without replacement from a finite
universe when variable probabilities of selection are used for the elements remaining prior to each
draw. They proposed an unbiased linear estimator of the population total of the variable of interest.
An unbiased estimator of the sampling variance of this estimator is also obtained. The above
estimator of population total is applicable to one-stage design. The authors presented an extension
of this method for two-stage design. But this has a serious disadvantage of the possibility of
having negative variance. Murthy (1957) has shown that corresponding to any ordered estimator
there exists a more efficient unordered estimator.

Cassel et al. (1977) reviewed adaptive designs under the term informative designs. Thomp-
son and Ramsey (1983) analyzed the situations of adaptive sampling designs. Seber(1986) de-
scribed the potential importance of adaptive designs for the estimation of animal abundance.
Thompson (1987) described the examples analyzed by him and Ramsey (1981). In this paper,
they proved a theorem for a non-adaptive design in which the entire sample is selected ahead of
time, will be optimum if and only if there is some possible selection of second phase units which is
best for every possible outcome of the first phase observations. Särndal and Swensson (1987) have
discussed estimation in the case of two-phase sampling and in the case of non-response. In this
paper, general results were given for two- phase sampling with emphasis on regression estimation
and on the problem of variance estimation. The concept of inclusion probability proportional to
size sampling plans excluding adjacent units separated by at most a distance of m ≥ 1 units is
introduced by Mandal (2008).

Thompson (1990, 1991) presented designs in which, whenever the observed value of a se-
lected unit satisfies a condition of interest, additional units are added to the sample from the neigh-
bourhood of that unit. In these designs, the selection procedure depends on observed values of the
variable of interest. Latpate et al. (2018 a) evaluated the sample size for adaptive cluster sampling.
Medina and Thompson (2004) presented a multi-phase variant of ACS. They combined the ideas
of double sampling and ACS. They called this new design as adaptive cluster double sampling. In
this design the authors assumed the availability of an inexpensive and easy to measure auxiliary
variable.

Latpate and Kshirsagar (2019) proposed negative adaptive cluster sampling (NACS) design.
In this design, the variable of interest is negatively correlated with auxiliary variable. The adap-
tive procedure is used by using auxiliary variable. The condition of adaptation is on the auxiliary
variable. The population is rare and clustered for interest variable. Because of negative correlation
between interest and auxiliary variable, there is abundance of auxiliary information. It is easy to
measure and less costly as compared to interest variable. The networks are formed for the rare
occurrence of the auxiliary variable. It means the selected network has abundant information of
interest variable. There is substantial expected sample size and cost reduction for the interest vari-
able. Also, the auxiliary information is used at estimation and design stage. They have proposed
the modified ratio and regression estimator. Latpate and Kshirsagar (2020) presented the two-stage
negative adaptive cluster sampling design. This design is a combination of two-stage cluster sam-
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pling and NACS. Also, the modified ratio and regression estimator is proposed. In this design,
auxiliary information is used at design and estimation stage.

Latpate and Kshirsagar (2018 b) presented the negative adaptive cluster double sampling
(NACDS) design. It is a combination of NACS and double sampling. In this design,they assume
that the auxiliary information is easily available and less expensive. The nature of underlined
population is rare and patchy. To exploit the auxiliary information at design and estimation stage,
auxiliary information must be abundantly available, easy to measure and less costly. The procedure
of NACDS is as follows. Let U = {u1, u2, ..., uN} be a finite population of N units. Let Y and
X be the interest and auxiliary variable respectively. They are known to be highly negatively
correlated. Let Xi and Yi, i = 1, 2, ..., N be the values of X and Y respectively associated with the
unit ui. It is assumed that the information on auxiliary variable can be obtained from all the units
selected in the sample. The goal is to estimate the population total of Y , given by τY =

∑N
i=1 Yi .

An initial sample of size n units is drawn from the population by using SRSWOR. We de-
note this initial sample drawn as S0. From S0, obtain an adaptive cluster sample S1 by using the
following procedure: Denote the condition of interest with respect to X values by CX . According
to the negative correlation the condition is reversed for adaptation. Now following the procedure
given by Thompson (1990), we add the neighbors of the units in S0 that satisfy the condition CX .
The units to the right, left, above and below a unit are called as the neighbors of that unit. If any of
these neighbors satisfy CX then their neighbors are also added to the sample. This is continued till
the neighbors not satisfying CX are obtained. The units added to the sample S0 adaptively which
satisfy the condition CX constitute a network. The units added to the sample S0 adaptively which
do not satisfy the condition CX are called as the edge units. The set of units in a network along
with its edge units is called as a cluster. The set of units included in all such clusters is called as an
adaptive cluster sample. We denote it by S1. Thus, indirectly we are assuming that the condition
CX for the additional sampling and a set of neighboring units for each ui ∈ U have been defined.
Let K denote the number of distinct clusters formed by S0. Mark the corresponding K clusters
in the Y population and drop down the edge units to get K networks. This completes the first
phase of the design. From each of these selected networks draw a sample by using SRSWOR. The
sizes of these samples may be different. Suppose mi denotes the number of units selected from the
ith selected network. Collection of all these units selected be denoted by S2. This completes the
second phase of sampling design. Now, note the values of X and Y for all the units included in S2.
This data is used to estimate the population parameter. In this design, the X value associated with
every unit in the adaptive cluster sample S1 has to be measured. Hence, the procedure does not
control the number of observations on the auxiliary variable, but only the number of observations
on the survey variable.

Bahl and Tuteja (1991) proposed the ratio and product type exponential estimators. Using
this approach, I proposed the ratio and exponential ratio type HT estimator and log ratio type
HT estimators. These estimators are useful to handle the problem of rare/clustered population.
Särandal et al.(1992) proposed ratio type estimator. But, this estimator is less precise. These two
estimators are compared by using monte carlo simulation method. The sample survey is presented
for the comparison purpose. The proposed estimators are presented in section 2. Section 3, the
sample survey is conducted by using NACDS. The results and discussion are added in section 4.
The concluding remarks are incorporated in section 5.
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2. The Proposed Estimators

The first phase sample SI of size n0 from population U is drawn by using simple random
sampling without replacement and units are added by using Thompson [1990] procedure. The first
order inclusion probabilities are as follows:

πi : probability that unit i is included in SI =
∑

i∈SI
P (SI)

πij : probability that units i and j is included in SI =
∑

i,j∈SI
P (SI)

with πii = πi and πi > 0 for all i and πij > 0 for all i 6= j.

Again, the second phase sample SII of size n1 from SI is drawn by using simple random
sampling without replacement. The second order conditional inclusion probabilities are as follows:

πi|SI
: probability that ith unit is included in SII given SI =

∑
i∈SII

P (SII |SI)
πij|SI

: probability that ith and jth units is included in SII given SI =
∑

i,j∈SII
P (SII |SI)

with πii|SI
= πi|SI

and for any SI , πi|SI
> 0 for all i and πij|SI

> 0 for all i 6= j.

The π∗ estimator can be expressed as follows (Särandal et al.[1992]).

π∗i =

{
πi ; if i ∈ SI

πiπi|SI
; if i ∈ SI and i ∈ SII

and

π∗ij =


πijπij|SI

; if i, j ∈ SI and i, j ∈ SII
πijπi|SI

; if i, j ∈ SI and i ∈ SII
πijπj|SI

; if i, j ∈ SI and j ∈ SII
πij ; if i, j ∈ SI

The HT estimator for the interest variable Y is,

(τ̂IIy)HT =
∑

i∈SII
y∗i /π

∗
i

where, y∗i the sum of the selected units at the second stage of the networks which includes the ith

unit. The HT estimator for the auxiliary variable X at second phase and first phase respectively
are,

(τ̂IIx)HT =
∑

i∈SII
x∗i /π

∗
i .

where, x∗i the sum of the selected units at the second stage of the networks which includes the ith

unit.

(τ̂Ix)HT =
∑

i∈SI
x∗i /π

∗
i where, x∗i the sum of the selected first stage of the networks which

includes the ith unit. We assume the large sample approximation to obtain the MSE.
ey =

(τ̂IIy)HT−τy
τy

ex =
(τ̂IIx)HT−τx

τx

ex′ =
(τ̂Ix)HT−τx

τx
We get
E(ey) = EI(EII(ey|SI)) = 0, E(ex) = EI(EII(ex|SI)) = 0, E(ex′ ) = EI(EII(ex′ |SI)) = 0;
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V (ey) = VI(EII(
(τ̂IIy)HT−τy

τy
|SI)) + EI(VII(

(τ̂IIy)HT−τy
τy

|SI))
= VI

( (τ̂Iy)HT−τy
τy

)
+ 1

2τ2y
EI
(∑∑

i 6=j∈SI
(πi|SI

πj|SI
− πij|SI

)( yi
π∗i
− yj

π∗j
)2
)

= 1
2τ2y

[∑∑
i 6=j∈U(πiπj − πij)(

yi
πi
− yj

πj
)2 +EI

(∑∑
i 6=j∈SI

(πi|SI
πj|SI

− πij|SI
)( yi
π∗i
− yj

π∗j
)2
)]

V (ex) = VI(EII(
(τ̂IIx)HT−τx

τx
|SI)) + EI(VII(

(τ̂IIx)HT−τx
τx

|SI))
= VI

( (τ̂Ix)HT−τx
τx

)
+ 1

2τ2x
EI
(∑∑

i 6=j∈SI
(πi|SI

πj|SI
− πij|SI

)( xi
π∗i
− xj

π∗j
)2
)

= 1
2τ2x

[∑∑
i 6=j∈U(πiπj − πij)(

xi
πi
− xj

πj
)2 +EI

(∑∑
i 6=j∈SI

(πi|SI
πj|SI

− πij|SI
)( xi
π∗i
− xj

π∗j
)2
)]

V (ex′ ) = VI(EII(
(τ̂Ix)HT−τx

τx
|SI)) + EI(VII(

(τ̂Ix)HT−τx
τx

|SI))
= VI

( (τ̂Ix)HT−τx
τx

)
= 1

2τ2x

[∑∑
i 6=j∈U(πiπj − πij)(

xi
πi
− xj

πj
)2
]

Cov(ex, ey) = CovI(EII(
(τ̂IIy)HT−τy

τy
|SI), EII( (τ̂IIx)HT−τx

τx
|SI))+

EI(CovII(
(τ̂IIy)HT−τy

τy
, (τ̂IIx)HT−τx

τx
|SI))

= CovI
( (τ̂Iy)HT−τy

τy
, (τ̂Ix)HT−τx

τx

)
+ 1

2τxτy
EI
(∑∑

i 6=j∈SI
(πi|SI

πj|SI
− πij|SI

)( xi
π∗i
− yj

π∗j
)2
)

= 1
2τxτy

[∑∑
i 6=j∈U(πiπj−πij)(

xi
πi
− yj

πj
)2+EI

(∑∑
i 6=j∈SI

(πi|SI
πj|SI

−πij|SI
)( xi
π∗i
− yj

π∗j
)2
)]

Cov(ex′ , ex) = CovI(EII(
(τ̂Ix)HT−τx

τx
|SI), EII( (τ̂IIx)HT−τx

τx
|SI))+

EI(CovII(
(τ̂Ix)HT−τx

τx
, (τ̂IIx)HT−τx

τx
|SI))

= CovI
( (τ̂Ix)HT−τx

τx
, (τ̂Ix)HT−τx

τx

)
= 1

2τ2x

[∑∑
i 6=j∈U(πiπj − πij)(

xi
πi
− xj

πj
)2

Cov(ex′ , ey) = CovI(EII(
(τ̂Ix)HT−τx

τx
|SI), EII( (τ̂IIy)HT−τy

τy
|SI))+

EI(CovII(
(τ̂Ix)HT−τx

τx
,
(τ̂IIy)HT−τy

τy
|SI))

= CovI
( (τ̂Ix)HT−τx

τx
,
(τ̂Iy)HT−τy

τy

)
= 1

2τxτy

[∑∑
i 6=j∈U(πiπj − πij)(

xi
πi
− yj

πj
)2

(i). Exponential Ratio Type HT Estimator: The exponential ratio type HT estimator for
NACDS is as follows.
τ̂RADE = (τ̂IIy)HT exp

[ (τ̂Ix)HT−(τ̂IIx)HT

(τ̂Ix)HT+(τ̂IIx)HT

]
Using the large sample approximation and neglecting the higher order terms we get. τ̂RADE =

τy
[
1 + ey +

1
2
(ex′ − ex) + 1

2
(eyex′ − eyex)− 1

8
e2
x′
+ 3

8
e2x − 1

4
ex′ex

]
τ̂RADE is a biased estimator.The bias of τ̂RADE is as follows.
Bias(τ̂RADE) = τy

(
3

16τ2x

[
EI
(∑∑

i 6=j∈SI
(πi|SI

πj|SI
− πij|SI

)( xi
π∗i
− xj

π∗j
)2
)]

− 1
4τxτy

[
EI
(∑∑

i 6=j∈SI
(πi|SI

πj|SI
− πij|SI

)( xi
π∗i
− yj

π∗j
)2
)])

The mean square error of τ̂RADE can be expressed as follows.
MSE(τ̂RADE) = τ 2y V ar

[
ey +

1
2
(ex′ − ex)

]
= τ 2y E

[
e2y +

1
4
e2
x′
− 1

2
ex′ex +

1
4
e2x + eyex′ − eyex

]
MSE(τ̂RADE) = τ 2y

[
1

2τ2y

[∑∑
i 6=j∈U(πiπj−πij)(

yi
πi
− yj
πj
)2+EI

(∑∑
i 6=j∈SI

(πi|SI
πj|SI
−πij|SI

)( yi
π∗i
−

yj
π∗j
)2
)]

+ 1
8τ2x

[∑∑
i 6=j∈U(πiπj − πij)(

xi
πi
− xj

πj
)2
]
− 1

4τ2x

[∑∑
i 6=j∈U(πiπj − πij)(

xi
πi
− xj

πj
)2
]
+
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1
8τ2x

[∑∑
i 6=j∈U(πiπj − πij)(

xi
πi
− xj

πj
)2 + EI

(∑∑
i 6=j∈SI

(πi|SI
πj|SI

− πij|SI
)( xi
π∗i
− xj

π∗j
)2
)]
+

1
2τxτy

[∑∑
i 6=j∈U(πiπj − πij)(

xi
πi
− yj

πj
)2
]
− 1

2τxτy

[∑∑
i 6=j∈U(πiπj − πij)(

xi
πi
− yj

πj
)2+

EI
(∑∑

i 6=j∈SI
(πi|SI

πj|SI
− πij|SI

)( xi
π∗i
− yj

π∗j
)2
)]]

After Simplification, the MSE of τ̂RADE is,
MSE(τ̂RADE) = τ 2y

[
1

2τ2y

[∑∑
i 6=j∈U(πiπj−πij)(

yi
πi
− yj
πj
)2+EI

(∑∑
i 6=j∈SI

(πi|SI
πj|SI
−πij|SI

)( yi
π∗i
−

yj
π∗j
)2
)]
+ 1

8τ2x

[
EI
(∑∑

i 6=j∈SI
(πi|SI

πj|SI
−πij|SI

)( xi
π∗i
− xj

π∗j
)2
)]
− 1

2τxτy

[
EI
(∑∑

i 6=j∈SI
(πi|SI

πj|SI
−

πij|SI
)( xi
π∗i
− yj

π∗j
)2
)]]

(1)

(ii). Log Ratio Type HT Estimator: The log ratio type HT estimator for NACDS is as
follows.

τ̂RADL = (τ̂IIy)HT
(
1 + log

[ (τ̂IIx)HT

(τ̂Ix)HT

])
Using the large sample approximation and neglecting the higher order terms we get. τ̂RADL =

τy(1 + ey − ex′ + ex + e2
x′
− exex′ − ex′ey + exey)

τ̂RADL is a biased estimator. The bias of τ̂RADL is as follows.

Bias(τ̂RADL) = τy
(

1
2τ2x

[∑∑
i 6=j∈U(πiπj−πij)(

xi
πi
−xj
πj
)2
]
+ 1

2τxτy

[
EI
(∑∑

i 6=j∈SI
(πi|SI

πj|SI
−

πij|SI
)( xi
π∗i
− yj

π∗j
)2
)])

The mean square error of τ̂RADL is as follows.

MSE(τ̂RADL) = V
(
τy(1 + ey + ex′ − ex)

)
= τ 2y

[
V (ey) + V (ex′ ) + V (ex)− 2Cov(ex, ex′ )− 2Cov(ey, ex′ ) + 2Cov(ey, ex)

]
MSE(τ̂RADL) = τ 2y

[
1

2τ2y

[∑∑
i 6=j∈U(πiπj−πij)(

yi
πi
− yj
πj
)2+EI

(∑∑
i 6=j∈SI

(πi|SI
πj|SI
−πij|SI

)( yi
π∗i
−

yj
π∗j
)2
)]

+ 1
2τ2x

[∑∑
i 6=j∈U(πiπj − πij)(

xi
πi
− xj

πj
)2
]
+ 1

2τ2x

[∑∑
i 6=j∈U(πiπj − πij)(

xi
πi
− xj

πj
)2+

EI
(∑∑

i 6=j∈SI
(πi|SI

πj|SI
− πij|SI

)( xi
π∗i
− xj

π∗j
)2
)]
− 1

τ2x

[∑∑
i 6=j∈U(πiπj − πij)(

xi
πi
− xj

πj
)2−

1
τxτy

[∑∑
i 6=j∈U(πiπj − πij)(

xi
πi
− yj

πj
)2 + 1

τxτy

[∑∑
i 6=j∈U(πiπj − πij)(

xi
πi
− yj

πj
)2+

EI
(∑∑

i 6=j∈SI
(πi|SI

πj|SI
− πij|SI

)( xi
π∗i
− yj

π∗j
)2
)]]

After Simplification, the MSE of τ̂RADL is,

MSE(τ̂RADL) = τ 2y
[

1
2τ2y

[∑∑
i 6=j∈U(πiπj − πij)(

yi
πi
− yj

πj
)2 + EI

(∑∑
i 6=j∈SI

(πi|SI
πj|SI

−
πij|SI

)( yi
π∗i
− yj

π∗j
)2
)]

+ 1
2τ2x

[
EI
(∑∑

i 6=j∈SI
(πi|SI

πj|SI
− πij|SI

)( xi
π∗i
− xj

π∗j
)2
)]
+

1
τxτy

[
EI
(∑∑

i 6=j∈SI
(πi|SI

πj|SI
−πij|SI

)( xi
π∗i
− yj

π∗j
)2
)]]

(2)

3. Sample Survey

A sample survey was conducted by using NACDS. The area of 400 acres in the Tamhini
Ghat, Maharashtra, India was divided into 400 plots each of size 1 acre. A random sample of 12



2019] RATIO TYPE HT ESTIMATORS FOR NEGATIVE ADAPTIVE CLUSTER DOUBLE SAMPLING 17

plots was drawn from this area by using SRSWOR. The percentage of silica content of the soil (X)
was measured on these selected plots. Silica is abundant in the soil from Tamhini Ghat to Mumbai.
But, there are intermediate patches of laterite where the occurrence of evergreen plants is more.
We considered the condition CX = {X ≤ 20} = {Percentageofsilica ≤ 20}. Further the plots in
the sample satisfying CX were located. Then the clusters were formed around these plots by using
the procedure given by Thompson (1990). Each plot with {X > 20} and selected in the initial
sample formed a cluster of size one. Here the clusters were formed by using auxiliary information
and the domain knowledge of silica content and evergreen plants. The two variables, percentage
of silica content X and number of evergreen plants Y are negatively correlated. After forming
such clusters in the X population, the edge units of clusters of size more than one were dropped
to get networks. The networks are formed by using percent of silica content. The corresponding
networks of number of evergreen plants are located. Figures 1 and 2 illustrate this methodology.

These plots formed the first phase sample S1. Let K denote the number of distinct networks
represented in this sample. A random sample of mi (say), (i = 1, 2, · · · , K) units was drawn from
the ith network among these K networks by using SRSWOR. The collection of all so selected units
formed the second phase sample S2. In our study there were 12 networks formed in S1. We took
m1 = m2 = m3 = 2,m4 = 3,m5 = 4,m6 = 2,m7 = 2,m8 = 2,m9 = m10 = 4,m11 = 3 and
m12 = 0.

This set of units formed S2. Values of the variables X and Y corresponding to the plots in-
cluded in the second phase sample were recorded together to form a bivariate data. Using this data,
the total number of evergreen plants in that area was estimated by using the proposed estimators.

4. Results and Discussion

For the computational efficiency in estimation, r number of repetitions were performed;
where r varied as 5000, 10000 and 20000. We considered the initial sample sizes as 5, 10, 15, 20
and 25 for each repetition.

The estimated population total over r repetitions is given by:

τ̂Y =
∑r

i=1 τ̂Yi
r

where τ̂Yi denotes the estimated value of an estimator of the population total of the variable Y for
the ith repetition.

The estimated mean square error of the estimator of population total of the variable Y is
given by:
M̂SE(τ̂Y ) =

∑r
i=1(τ̂Yi−τY )2

r



18 RAOSAHEB V. LATPATE [Vol. 17, No. 2

Figure 1: Silica (SiO2) percentage on the different plots in the region.

Table 1: Estimated Values of Population Total of interest variable and its SE.

No. of Repetitions Initial Sample Size Exp Ratio Estimator Ratio Estimator Log Ratio Estimator

r n τ̂RADE ŜE(τ̂RADE) (τ̂y)Ratio ŜE(τ̂y)Ratio τ̂RADL ŜE(τ̂RADL)

5 9073.83 9594.65 9555.85 10461.68 8875.46 9212.46
10 9094.24 6558.31 9206.55 6778.47 9044.51 6443.12

5000 15 9099.11 5200.63 9230.12 5373.81 9048.99 5085.60
20 9075.71 4401.83 9106.03 4595.43 9031.09 4330.44
25 9060.59 3878.48 9144.12 3992.87 8994.69 3800.33

5 9429.05 9738.40 9458.85 10383.6 9053.38 9375.20
10 9018.30 6452.53 9223.40 6738.29 8900.90 6384.41

10000 15 9055.01 5186.37 9114.49 5328.22 8936.08 5076.77
20 9096.61 4416.34 9173.93 4577.09 9012.60 4317.32
25 9082.23 3830.18 9110.27 3964.64 9014.61 3758.87

5 9189.86 9676.48 9421.81 10328.04 8812.90 9277.79
10 9071.97 6507.64 9224.23 6724.55 8962.86 6347.45

20000 15 9047.53 5197.31 9097.89 5313.16 8945.107 5112.01
20 9108.18 4406.09 9047.11 4529.84 9025.19 4316.37
25 9078.90 3868.39 9047.08 3947.24 9006.03 3781.37
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Figure 2: Number of evergreen plants observed on the plots in the population.

The estimated values are presented in Table 1. It showed that, as the initial sample size
increases, the standard error decreases. The proposed exponential ratio type HT estimator performs
better as compared to ratio estimator proposed by Särandal et al.(1992). The log ratio type HT
estimator is more efficient as compared to ratio estimator proposed by Särandal et al.(1992) and
exponential ratio type HT estimator. Even though, exponential ratio type HT estimator and log
ratio type HT estimator are biased with minimum MSE. Log ratio type HT estimator is negatively
biased and exponential ratio type HT estimator is positively biased estimator.

Remark: If there is positive correlation between X and Y . Then, exponential ratio type HT
estimator is more efficient as compared to ratio estimator proposed by Särandal et al.(1992) and
log ratio type HT estimator.

Theoretically, it clearly shows that equation 1 and 2 of MSE. The covariance term is added
in equation 1 and subtracted in equation 2.
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5. Conclusions

The auxiliary variable and interest variable are negatively correlated. The auxiliary informa-
tion is used at design and estimation stage. Using auxiliary information in NACDS, the network of
interest information is identified and random samples are selected from these selected networks.
The inclusion probabilities are evaluated. The proposed log ratio type HT estimator is efficient as
compared to traditional ratio estimator and proposed exponential ratio type HT estimator. When,
we employ this methodology for positively correlated variables. The exponential ratio type HT
estimator is efficient as compared to log ratio type HT estimator and traditional ratio estimator.
This is the important features of these estimators. These estimators can be useful for estimation
of population total for the sample surveys in ecology, environmental science, health science and
forestry.
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Abstract 

Copulas provide models to describe the dependence structure between two or more 

random variables. This study focuses on a special class of copulas namely Archimedean 

copulas which have some nice mathematical properties. The easiness of generating of 

Archimedean copula by a generator function and defining a bivariate Archimedean copula by 

a univariate function are appealing properties which make Archimedean copulas popular to 

work with them. In this study, a new generator function is proposed to generate a new one 

parameter bivariate Archimedean copula. The new copula parameter is estimated and the tail 

dependence properties are presented. In application part of the study, Archimedean copulas 

are considered to model the dependence structure of the studied data sets.  The studied data 

sets refer to   amylase levels in saliva experiment and the climate change parameters. 

Simulations to the studies are performed to generate data from the copula-based methodology 

which is implemented to estimate prediction models. Results are presented. 

Key words: Archimedean copulas; dependency; generator function; climate change; radiative 

forcing; methane; saliva experiment 
 

1. Introduction 
 

 Copula is a multivariate function of distribution functions which are themselves 

random variables.  Since copulas connect the marginal distributions to their joint distribution 

function, they can be considered a dependence model for random variables.  Abe Sklar first 

introduced copula as a term in his article Sklar (1959). For a brief introduction to copulas 

Belgorodski (2010), Frees and Valdez (1998), Genest and Favre (2007), Joe (1997), Matteis 

De(2001), Nelsen (2006), Sklar (1959), Sklar (1973) can be recommended. Applications of 

copula in finance and insurance field can be found in Belgorodski (2010), Frees and Valdez 

(1998), Embrechts et.al. (2002), Cherubini et.al. (2004). Modelling time to event data, 

competing risks problems and related subjects in survival analysis are discussed in Clayton 

(1978), Shih and Louis (1995), Wang and Wells (2000).  Traditionally, measuring and 

summarizing dependencies of random variables have centered on correlation measures. 

However, several shortcomings of the well-known correlation measures such as Pearson 

correlation, Kendall's tau in modeling dependencies are studied and presented in Embrechts 

et.al. (2002). In this manner copulas are considered as alternative measures because of the 

flexibility they possess, Embrechts et.al. (2002). For example, copula functions allow for 
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describing dependence structure of random variables independently of their marginal, and 

also allow for asymmetric dependence unlike linear correlation coefficient. 

 

Throughout the study, we focus on modeling dependencies with Archimedean copulas 

in bivariate context.  The dependence structure between two random variables is completely 

described by known bivariate distributions. Although there are many bivariate distributions in 

literature, researchers need different models which are able to capture different types of 

dependence structures.  Archimedean copulas can be generated by a generator function which 

have some particular properties. More detailed information about Archimedean copulas and 

corresponding generator functions can be found in Frees and Valdez (1998), Genest and 

McKay (1986), Genest and Rivest (1993), Hennesey and Lapan (2005), Hutchinson and Lai 

(1990), Nelsen (2006), Smith (2003). 

 

In this study, bivariate Archimedean copula along with their properties and relationship 

between copula parameter and Kendall's tau are discussed in Section (2). In sub-section (2.1), 

a new generator function is proposed to generate a new one parameter bivariate Archimedean 

copula. The properties of the proposed generator function are presented and a new one 

parameter bivariate Archimedean copula is generated. The method of moments based on 

Kendall's tau is applied to estimate the parameter of the proposed Archimedean copula. In 

sub-section (2.2), the algorithm to simulate data from the Archimedean copula is described. 

The tail behavior of the proposed copula is studied and represented by the scatterplot in sub-

section (2.3). The method for fitting copula to the data and comparing copula fits are given in 

sub-section (2.4). In section (3), copula-based methodology is considered to estimate linear 

prediction models for two data sets. Three well-known Archimedean copula Clayton, Clayton 

(1978), Gumbel, Gumbel (1960), Frank, Frank (1979) and the proposed Archimedean copula 

are employed and the prediction models are estimated by simulating data from the copulas. 

The minimum distance measure is used to specify an appropriate Archimedean copula which 

gives best possible fit to the data.  

 

2. Archimedean Copulas 
 

The bivariate cumulative distribution function H of any pair ( , )X Y  of random 

variables may be written in the form [22], [23]. 

 

( , ) ( , )H x y C u v ,  , (0,1)u v      (1) 

 

where u and v denote the marginal distributions ( )F x and ( )G y of X and Y , respectively. 

Here, C is the copula function with    
2

: 0,1 0,1C   So the equation in (1) can be rewritten 

 

( , ) ( ( ), ( )), ( ), ( ) (0,1)H x y C F x G y F x G y  .   (2) 

 

It should be noted that, if the marginals are continuous, there is a unique copula 

representation, Sklar (1973). C copula function has the following properties: 

1. C  is symmetric, ( , ) ( , ), ,    (0,  1).C u v C v u u v    

2. C  is associative ( ( , ), ) ( , ( , )) ,  ,    (0,  1)C C u v w C u C v w u v w    

3. If a is a constant, a  is also a generator of C  

4. ( ,1)C u u  and  (1, ) , ,    (0,  1).C v v u v    
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Archimedean copulas can be generated by a function that is called generator function. 

Generator function is defined as follows: 

 

Definition 1: Let   be a class of functions    : 0,1 0,   is satisfying that 

(i) (1) 0   

(ii) (0)    

(iii) '( ) 0t  , 0 1t   

(iv) ''( ) 0t  , 0 1t  . 

 

Thus,   is a continuous, strictly decreasing and convex function and always has an 

inverse, 1  . By using a defined generator function, a bivariate Archimedean copula can be 

constructed in the way which is given below: 

 

 1( , ) ( ( )) ( ( ))C x y F x G y    .     (3) 

 

If (0)    the generator function is called non-strict and is also capable of generating 

an Archimedean copula.  

 

The pseudo-inverse of non-strict generator function exists and it is defined by 
1 1

[ 1]

1

( ), 0 ( )
( )

0, (0)

t t t
t

t

 




 





  
 

  
    (4) 

Note that, an Archimedean copula that is generated by a non-strict generator function 

takes the form 

( ,  )  max( ( ,  ),  0).C u v C u v      (5) 

For Archimedean copulas, Kendal's tau can be written in copula form as follows 

 
I

= ( ,  ) ( ,  ) 1 4 ( ,  ) 1C u v dC u v E C U V    .       (6) 

This relationship is useful to estimate copula parameter. The method of moments based 

on Kendall's tau can be used to estimate copula parameter. The properties of this method and 

the estimator are studied and presented in Genest and MacKay (1986), Genest and Rivest 

(1993), Kojadinovic and Yan (2010). 

 

One of the appealing properties of Archimedean copulas is that a bivariate 

Archimedean copula can be uniquely determined by a univariate function. This univariate 

function, ( )K t , is called Kendall distribution function and defined as: 

( )
Pr( ( , ) ) ( ) , 0 1

'( )

t
C U V t K t t t

t




                    (7) 

Here, ( )K t is the distribution function of an Archimedean copula and the expression in 

(6) can be re-expressed as follows: 
1

0

( )
4 1

'( )

t
dt

t





          (8) 

In the following sub-section 2.1, a new generator function is proposed to generate a 

new bivariate Archimedean copula and the properties of the new Archimedean copula are 

studied. 
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2.1. Bivariate Archimedean copula 
 

Considering that different generator functions generate different Archimedean copulas 

and recalling the Definition 1, new generator function can be defined. 

 

The proposed new generator function,    : 0,1 0,   is defined 

(1 )( ) 1, 0, 0 1tt e t            (9) 

 

The properties in Definition 1 are checked for the proposed function as follows: 

(i) 0(1) 0 (1) ( 1) 0e       

(ii) (1 )

0
(0) lim( 1) ( 1)t

t
e e 






        

(iii) ( 1)'( ) 0, 0 1tt e t         

(iv) 2 ( 1)''( ) 0, 0 1tt e t        

 

It can be seen that, because of (0)   , the proposed function in (9) is a non-strict 

generator function. It can be used to generate an Archimedean copula. Its pseudo-inverse, 
     1

: 0, 0,1


  is defined as follows 

[ 1]

1
1 ln(1 ), 0 (0)

( )

0, (0)

t t
t

t


 






   

 
   

       (10) 

 

Definition 2:  Let  be a generator function that is defined in (6). Then 

     : 0,1 0,1 0,1C   is a bivariate Archimedean copula that is generated by  and has the 

form 

 

(1 ) (1 )1
1 ln( 1), ( ) ( ) (0)

( , )

0, .

u ve e u v
C u v

ow

    


 
    

 


   (11) 

 

The copula presented in (11) is indexed by a parameter  that is called copula 

parameter.   Recalling (7) and (8), the distribution function and the parameter estimation of 

the new bivariate Archimedean copula are given, respectively. 
(1 )

( 1)

1
( )

t

t

e
K t t

e







 


 


                                                     (12) 

1 (1 )

( 1)

0

1
4 1

t

t

e
dt

e










 


 


                                           (13) 

By solving the integral (13), 

2

1
4 1

e  




  
  

 
                                      (14) 

is obtained. Figure 1 illustrate the relationship between the parameter of the proposed copula 

and Kendall's tau. 
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Figure 1: New Copula Parameter and Kendall’s   

 

The corresponding generator and distribution functions of the studied Archimedean 

copulas in this study are presented in Table 1.  Figure 2 shows the graphs of the distribution 

functions of the studied Archimedean copulas. The bivariate Archimedean copulas along with 

the relationship between their parameters and Kendall’s tau are presented in Table 2. The 

plots of the studied copulas are illustrated in Figure 3. 
 

Table 1: Distribution Functions of Archimedean Copulas 

Family ( )t  ( )t  ( )
( )

'( )

t
K t t

t




   

Gumbel ( ln )t   1( ln )
t

t
    

 lnt t
t


  

Clayton 
 1

1t 



   1t    
 1t t

t





 
  

Frank 1
ln( )

1

te

e













 

1 te 




  
1 1

ln( ) 1
1

t
te

t e
e












 


 

NewCop. (1 ) 1te    
( 1)te     (1 )

( 1)

1t

t

e
t

e







 





 

 

 
Figure 2: Distribution Functions of Archimedean Copulas 

 



28                                   CIGDEM TOPCU GULOKSUZ AND PRANESH KUMAR                  [Vol. 17, No. 2 

 
 

Table 2: Bivariate Archimedean Copulas and the Relationship with Kendall’s   

Family Bivariate Copula Dependence 

Parameter 

Kendall’s   

Gumbel 1/(( ln ) ( ln ) )u ve
     

 1   ( 1)   

Clayton 1/(( ) ( ) 1)u v       1    2    

Frank     
 

1 1 11
ln

1

u v
e e e

e

  




  



   




   
  

    

 
    1

4
1 ( )D 


  

NewCop (1 ) (1 )1
1 ln( 1)u ve e 



     
0   

2

1
4 1

e  



  
 

 
 

 

Here, 
0

( ) 1 , 0n t

n n

n
D t e dt n






    is a Debye function. 

 
Figure 3: Plots of Archimedean Copulas 

 

The sub-section 2.2 provides a method to simulate data from Archimedean copulas. 

 

2.2. Generating random numbers from bivariate Archimedean copula 
 

Generating random numbers from copulas is important for simulation studies, 

modelling, selecting random samples, etc. In this study generated random numbers are used 

to plot a scatter plot, which is a graphical tool to detect the tail dependence.  The following 

steps are listed to generate random numbers from a bivariate copula. 

 

Let ( , )U V  be a random pair from a bivariate Archimedean copula, ( )t is the generator 

function and ( )K t defined by (8) is the distribution function of copula.  A pair of data ( , )i ix y

from a bivariate Archimedean copula can be generated by using the following procedure: 

(i) Generate two independent random variables, p and p from Uniform (0,1)  

(ii) 1( )t K q  

(iii) 1[ ( )]u p t   and 1[(1 ) ( )]v p t    

(iv) 1( )x F u  and 1( )y F v  

Repeating the above steps (i) to (iv),  n  times n  pairs of data  ( , )i ix y , 1,2,...,i n  can 

be generated. 
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Since the  inverse of the distribution function of the proposed Archimedean copula, 

( )K t which is defined in (12) doesn't have the closed form, Newton-Raphson numerical root 

finding method is applied to  solve the following equation. 

( )
0

'( )

t
t q

t





 
   

 
                     (15) 

(1 )

( 1)

1
0

t

t

e
t q

e







 

 
   
 

.                      (16) 

 

To understand the concept of the clustering of extreme event, tail dependence property 

of copulas is discussed in the following sub-section 2.3. 

 

2.3. Tail dependence properties of bivariate Archimedean copula 
 

The concept of tail dependence refers to clustering of extreme events. Modelling 

dependence of events, such as economic systems, natural hazards contexts generally exhibit 

tail dependence. It becomes very important to obtain accurate results especially in tail ends. 

The definition of tail dependence is the limiting probability that a random variable exceeds a 

certain threshold, given that another random variable already exceeds that threshold. 
 

More formally definitions of the upper and lower tail dependence of a bivariate copula 

( , )C u v are given as follows, respectively in (17) and (18). 

 
1

1 2 ( , )
Pr ( ) | ( ) lim

1
U

u

u C u u
F x u G y u

u




 
   


                  (17) 

 
0

( , )
Pr ( ) | ( ) limL

u

C u u
F x u G y u

u



     .          (18) 

 

If the above limits exist, ( ) 0U L   shows that the copula has no upper (lower) tail 

dependence. In case of, ( ) 0U L    there is upper (lower) tail dependence. The upper and 

lower tails of the new copula in (8) are examined, respectively. 

(1 ) (1 )

1

1
2 2 ln( 1)

lim 2
1

u v

U
u

u e e

u

 




 



   
 


          (19) 

(1 ) (1 )

0

1
1 ln( 1)

lim

u v

L
u

e e

u

 




 



  
   .        (20) 

 

The tail dependence coefficients of studied bivariate Archimedean copulas are listed in 

Table 3 and Figure 4 demonstrates the tail dependence of the considered copulas. The scatter 

plots visualize that Gumbel copula has an upper tail, Clayton copula has a lower tail, Frank 

copula has no tail and the proposed Archimedean copula has both lower and upper tail 

dependencies.   
 

Table 3: Tail Dependence Coefficients of Considered Archimedean Copulas 

Family 
L  U  

Gumbel 0 1/2 2   

Clayton 1/2   0 

Frank 0 0 

New Cop.   2 
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Figure 4: Scatter Plots of Considered Archimedean Copulas 

 

In the following sub-section (2.4), we describe the method of fitting copula. 
 

2.4. Fitting copula to data 
 

Genest and Rivest (1993) suggested a nonparametric approach to select the appropriate 

bivariate Archimedean copula which gives the best fit to the data.  The estimation procedure 

consists of mainly two steps. First one is to estimate the marginal distributions and the second 

one is to specify the copula function. Marginal distributions can be estimated by empirical or 

parametric ways. The procedure which is followed in this study is summarized as follows: 
 

Let 1 1( ,  )X Y , …, ( ,  )n nX Y  be a random sample from a bivariate population ( ,  )X Y  

with distribution functions ( )F x   and ( )G y , respectively. 

(i) Estimate the copula parameter. 

(ii) Obtain the empirical estimate of distribution of copula function, say ( )nK t . First, 

define the pseudo-observations, 

 

 
1

&

1

n
j i j i

i

i

I X X Y Y
T

n

 



 , 1,...,i n  and then calculate 

 

1

( )

( )
1

n

i

i
n

I T t

K t
n









, 1,...,i n  

(iii) Construct parametric estimate of 
( )

( )
'( )

t
K t t

t





   

(iv) Compare the distance between ( )nK t  and ( )K t  

Comparing ( )nK t   and ( )K t can be done in several ways. For instance, by considering 

information criteria such as Akaike Information Criterion, Bayesian Information Criterion 

and log likelihood. In this study, we follow Frees and Valdez (1998) and use the following 

minimum distance measure. 
2

( ) ( ) ( )n nMD K t K t dK t    .        (21) 
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In the following Section 3, we illustrate the applications of copulas with the help of two 

examples. 

 

3. Application 
 

In this section, we apply the new copula along with other well-known Archimedean 

copulas namely Clayton, Gumbel and Frank to fit the linear prediction models to the data 

from two examples described below. We follow the copula-based methodology as described 

and studied in Kumar and Shoukri (2008, 2007, 2011). Using the copulas, new data sets 

which have the similar dependence structure and sample sizes as in the actual data sets are 

simulated choosing the 50, 150, 250 and 350 runs. For each data set, linear prediction models 

are estimated and the %95 confidence intervals of model parameters are computed. The 

estimated prediction models from the fitted copulas are compared using the mean absolute 

prediction error (MAPE) measure.  

 

3.1. Copula applications for  -amylase levels in saliva experiment 
 

This example refers to the study of saliva content which is an enzyme called amylase 

and which hydrolyses starch into maltose. The experimental data on  -amylase levels in 

saliva are considered. The data set can be found in Brunner et al. (2004). The  -amylase 

levels in saliva are measured on different times and in a day. In this study, we have 

considered the data set which consists of the 14 measurements of  amylase levels in saliva 

taken on Thursday at 12 a.m. (independent variable, X) and 9 p.m. (dependent variable, Y).  

   

 
Figure 5: Marginal Fitting to Amylase Levels 

 

To specify the dependence structure between the amylase levels in saliva at two time 

points, i.e., between Y and X, their marginal distributions are estimated as the Log Normal 

(mean = 5.6210, sd = 0.6988) for X and the Log Normal (mean = 5.6525, sd = 0.5487) for Y, 

see Figure 5.  Kendall's Tau between two amylase levels is estimated as  = 0.64835. The 

copula parameters are estimated based on the Kendall's Tau and the minimum distance 

measure (MD) are given in Table 4. Fitted copulas are then plotted and compared in Figure 6. 

 

Table 4: Estimated Copula Parameters and Minimum Distance Measure for Amylase 

Levels 

 Clayton Gumbel Frank New Cop 

̂  3.6875 2.8438 9.3816 10.2671 

MD  0.0785 0.0312 0.0281 0.0208* 

 

It may be noted from Table 4 that the minimum distance measure (MD) for the 

proposed new copula is 0.0208 and thus, new copula is the best fit compared to the Frank, 
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Gumbel and Clayton copulas to represent the dependence structure between two amylase 

levels. New data sets (X,Y) of size 14 are simulated using the new copula 50, 150, 250 and 

350 times. For each data set, linear prediction models are estimated along with the intercept 

and slope, standard error and the % 95 confidence interval of slope. Results are listed in 

Table 5.  

 
Figure 6: Copula Fitting for Amylase Levels 

 

Table 5: Estimated prediction models and confidence intervals for amylase levels 

 Intercept Slope 

(b) 

Std.Error 

(b) 

CI 

Lower 

CI 

Upper 

CI 

Width 

Data 

Model 

73.3113 

 

0.7443 0.1011 

 

0.5462 

 

0.9424 

 

0.3962 

N ew Copula  

Simulations 

50 66.0857 0.7942 0.1460 0.5080 1.0803 0.5723 

150 67.3012 0.7741 0.1191 0.5406 1.0076 0.4670 

250 68.5123 0.7625 0.0787 0.6082 0.9167 0.3085 

350 66.4007 0.7278 0.0701 0.5904 0.8652 0.2748 

 

In Table 5, it is noted that the estimated models from the actual data set and also from 

the simulated data sets have the intercept and slope estimates in close agreement with each 

other. For instance, the estimates of intercept, slope and the %95 confidence interval width of 

the slope in actual data set are 73.3113, 0,7443 and 0.3962, respectively, while these values 

for the new data set using 350 simulations run are 66.4007, 0.7278 and 0.2748, respectively. 

With regard to the comparison of the prediction errors, it is noted from Table 6 that the mean 

absolute prediction errors (MAPE) for actual data set and the new data sets with 50, 150, 250 

and 350 simulation runs are 18.2229, 19.8664, 18.2299, 18.1937 and 16.0277, respectively.   

 

However, as expected, when the number of simulation runs increases, the estimated 

models have smaller standard errors and narrow confidence intervals of slope estimation, and 

mean absolute prediction errors. Thus, having the smallest confidence interval width of the 

model parameters and also, the prediction errors, the proposed new copula-based prediction 

model may be recommended to study the relationship between two amylase levels. 
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Table 6: Mean Absolute Prediction Errors (MAPE) of Estimated Models of Amylase 

Levels 

 MAPE 

Data Model     18.2299 

New Cop Sim.  

50 19.8664 

150 18.2299 

250 18.1937 

350 16.0277 
 

 

3.2. Copula applications for climate change indicators 
 

The second example is about the climate change indictors [Source: Earth System 

Research Laboratory, Global Monitoring Division, https://www.esrl.noaa.gov/gmd/aggi]. 

Radiative Forcing (RF) is one of the climate change indicator which measures heating effect 

caused by greenhouse gases in the atmosphere.  RF is calculated in watts per square meter, 

which represents the size of the energy imbalance in the atmosphere. Since RF (denoted by 

Y) is directly associated with the methane (CH4, one the of greenhouse gases), denoted by X, 

the prediction model of RF and CH4 will be useful to study their cause-and-effect 

relationship.   

 

We fitted the marginal distributions of RF and CH4 from the given data set as Log 

Normal (mean = 0.9449, sd = 0.1032) and Log Normal (mean = –0.7279, sd = 0.0261), 

respectively, as seen in Figure 7. Kendall's tau is estimated as  = 0.9600 and used to 

estimate copula parameters. Following the copula fitting procedure in sub-section (2.2), 

copula parameter estimates and MD measures are given in Table 7 and copulas plotted in 

Figure 8 for the comparison purpose. From Table 7, the Gumbel copula has mean distance 

value MD = 0.0110, followed by MD = 0.0128 for the new copula. Thus, for this data set, 

Gumbel copula gives the best fit followed by the new copula to model the dependence 

structure between Radiative Forcing and CH4. 

 

Using the Gumbel copula and the new copula, simulation studies are performed to 

generate data sets by having the number of simulation runs as 50, 150, 250 and 350 and the 

sample sizes 28. The prediction models are estimated and the results are listed in Table 8. 

  

 
Figure 7: Marginal Distributions for RF and CH4 
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Table 7: Estimated Copula Parameters and Minimum Distance Measure for RF 

and CH4 Levels 

 Clayton Gumbel Frank New Cop 

̂  48.0384 25.0198 98.4040 99.0667 

MD  0.0138 0.0110* 0.0162 0.0128 

 
Figure 8: Copula Fitting for RF and CH4 

 

Table 8: Estimated Prediction Models and Confidence Intervals for RF and CH4 

 Intercept Slope 

(b) 

Std.Error 

(b) 

CI 

Lower 

CI 

Upper 

CI 

Width 

DataModel –7.3891 20.6498 0.8597 18.8826 22.4170 3.5344 

50 –7.4207 20.7121 0.3404 20.0449 21.3793 1.3340 

150 –7.4957 20.8635 0.3304 20.2207 21.5160 1.5150 

250 –7.5152 20.9089 0.3244 20.2730 21.5447 1.2717 

350 –7.5095 20.8964 0.3353 20.2392 21.5536 1.3144 

NewCop 

Simulation 

 

50 –7.2123 20.2801 0.5471 19.2084 21.3529 2.1444 

150 –7.4755 20.8260 0.5189 19.2084 21.8430 2.0340 

250 –7.4574 20.7879 0.4946 19.8185 21.7574 1.9389 

350 –7.4567 20.7873 0.4929 19.8213 21.7534 1.9322 

 

Table 9: Mean Absolute Prediction Errors (MAPE) of Estimated Models of RF and CH4 

 MAPE 

Data Model     0.01924 

 Gumbel Sim.  New Cop Sim.  

50 0.01911 0.01941 

150 0.01906 0.01908 

250 0.01904 0.01909 

350 0.01903 0.01924 
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From Table 8, we note that the estimated model parameters from the actual data set and 

also from the simulated data sets are in close agreement with each other. For instance, the 

estimates of intercept, slope and the %95 confidence interval width of the slope in the actual 

data set are –7.3891, 20.6498 and 3.5344, respectively, while these values using the Gumbel 

copula and 350 simulations run are –7.5095, 20.8964 and 1.3144, respectively. With regard 

to the comparison of the prediction errors, it is noted from Table 9 that the mean absolute 

prediction error (MAPE) for the actual data set is 0.01924, while for the 50, 150, 250 and 350 

simulation runs, MAPE values are, respectively, 0.01911, 0.01906, 0.01904 and 0.01903 for 

the Gumbel copula and 0.01941, 0.01908, 0.01909 and 0.01924 for the new copula. Thus, the 

Gumbel copula followed by the proposed new copula may be recommended to model the 

dependence structure between the Radiative Forcing and CH4 and also to make predictions of 

the Radiative Forcing (heating effect) resulting from the levels of CH4. 

 

4. Conclusion 
 

In multivariate data sets, studying the dependence or specifying the pattern between 

random variables is commonly of main interest. Copulas have been used to model different 

types of dependence patterns between the random variables. Main advantage of working with 

copulas is that any kind of marginal distributions can be employed in simulating data sets. 

Therefore, copula-based methodology is an appropriate approach for modelling especially 

skewed data. Archimedean copulas are preferable in most applications due to their appealing 

mathematical properties and simple simulation algorithms. In observational studies, 

researchers may face different kinds of dependence structures and known models may be 

insufficient to represent the dependency between random pairs. Thus, to generate new and 

applicable models can be a solution. For this purpose, in this study, we have proposed a new 

generator function and discussed its properties. Based on this new generator function, a new 

bivariate Archimedean copula is constructed. Tail dependency of the new copula is 

examined. Copula based methodology is applied to prediction modeling in two applications, 

namely, to study  - amylase levels in saliva and to study effect of Methane, one of 

greenhouse gases on the Radiative Forcing (heating effect) in climate change. The results 

indicate that the new copula performs well compared to commonly used Archimedean 

copulas and can be applied in the copula based prediction models. 
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Abstract 
 

Outlier detection and robust estimation are the integral part of data mining and has 
attracted much attention recently. Generally, the data contain abnormal or extreme values 
either due to the characteristics of the individual or due to the errors in tabulation, data entry 
etc. The presence of outliers may badly affect the data modeling and analysis.  Analysis of 
semi-parametric regression with design matrix as the parameter component and covariate as 
the nonparametric component is considered in this paper. The regression estimate and the 
cross validation technique can behave very badly in the presence of outliers in the data or 
when the errors are heavy-tailed. The cross-validation technique to estimate the optimum 
smoothing parameter will also be affected badly by the presence of outliers. A robust method, 
which is not influenced by the presence of outliers in the data, is proposed to fit the semi-
parametric regression with design matrix as the parameter component and covariate as the 
nonparametric component. Robust M- kernel weighted local linear regression smoother is 
used to fit the regression function. The cross-validation technique to estimate the optimum 
smoothing parameter will also be affected badly by the presence of outliers. A robust cross-
validation technique is proposed to estimate the smoothing parameter. The proposed method 
is useful to compare the treatments after eliminating the covariate effect. The method is 
illustrated through simulated and field data.  
 
Key words: Nonparametric, robust inference, covariance. 
___________________________________________________________________________ 
 
1. Introduction 

 
The fundamental objective of statistical data analysis is to obtain data systematically 

and to make inferences or appropriate decisions based on the data. Presence of outliers or 
extreme values in the experimental data is a major concern for data analysis. Outlier is an 
observation that appears to be inconsistent with the remainder of the observations in the data 
set. Agricultural field experimental data may contain abnormal or extreme values due to 
various reasons such as genetical variations (super trees/very low yielders), loss of yield due 
to pest/ disease infestation, errors in tabulation, data entry etc. These extreme values or 
outliers, generally increase the experimental error in data analysis. Detection of outliers and 
the possible remedies are very important in data analysis.  These outliers are nuisance for the 
data analysts.  A robust method is proposed for the analysis of semi-parametric regression 
model in the presence of outliers.   

 



38 CT JOSE, KP CHANDRAN, K. MURALIDHARAN, S. SUJATHA AND B. ISMAIL     [Vol. 17 No. 2 
 

2. Model Settings and Estimators 
 

The semi-parametric or the non-parametric covariance model considered for the study 
is of the form 

Y=	Xb+	ϕ(U)+e																																																																		(1) 
 

where, Y is the observation vector, m=Xb	+	ϕ(U), is the regression function, X is the design 
matrix, b is the vector of treatment effect, ϕ(U) is the non-parametric function representing 
the relationship between	Y–Xb and the covariate U which is assumed to be a smooth function 
and e is the error term assumed to be iid with mean vector 0 and covariance matrix I. 
Backfitting algorithm (Buja et al., 1989) is used to estimate the treatment vector and 
covariate effect in the regression model and estimates are given by 
 

𝛃5 = [𝐗8(𝐈 − 𝐒)𝐗]=>𝐗8	(𝐈 − 𝐒)𝐘,   𝛟5 = 𝐒A𝐘 − 𝐗𝛃5B  and   𝐦D = 𝐗𝛃5 +𝛟5  
 

where, S is the smoothing matrix derived using local linear regression (Ruppert and Wand, 
1994).  Let Si be the ith row of the smoother matrix, then  
 

𝐒 = [𝐒> … 	𝐒G]8 
𝐒H8 = 𝐞>8A𝐙KL

8 𝐖KL𝐙KLB
=>
𝐙KL
8 𝐖KL 

 where,                                     
 

𝐙KL = N
1 (𝑢> − 𝑢H)
⋮ ⋮
1 (𝑢Q − 𝑢H)

R,   e1T	=[1	0	0] 

 
and		𝐖KL = 𝑑𝑖𝑎𝑔 X𝐾 ZK[=KL

\
] , . . . , 𝐾 ZK`=KL

\
]afor some kernel functions K and bandwidth h. 

The properties of the estimates are provided by Jose and Ismail (2001) and Rupert and Wand 
(1994). Cross validation (leave-one-out) technique is generally used to estimate the optimum 
bandwidth h. The cross validation score is given by  
 

𝐶𝑉(ℎ) =
1
𝑛f

g𝑦H −𝑚D(=H)\j
k

Q

Hl>

 

 
where, yi, i=1,…,n are the observations and  𝑚D(=H)\ is the leave-one-out estimate (estimated 
value of mi without using the ith observation) with h as bandwidth. The optimum bandwidth is 
the value of h which minimizes the cross validation score CV(h).  The estimate, 𝛃5	is 
asymptotically unbiased and its asymptotic variance is s	2(XT	X)-1 which is same as the fully 
parametric model (Opsomer and Ruppert, 1999).  Cleveland and Devlin (1988) and Hastie 
and Tibshirani (1990) discussed the estimation of error variance in linear regression 
smoothers.  An approximate estimate of the error variance is given by  
 

𝜎pk =
1

[𝑛 − 𝑝 − 2𝑡𝑟𝑎𝑐𝑒(𝐒) + 𝑡𝑟𝑎𝑐𝑒(𝐒8𝐒)]
g𝐘 − 𝐗𝛃5 − 𝛟5j

8g𝐘 − 𝐗𝛃5 −𝛟5j 

 
 
 
 

2s
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The variance of 𝛃5 is estimated by 
 

𝑉	5 A𝛃5B = 𝑑𝑖𝑎𝑔(𝐏𝐏8)𝜎pk 
 
where, P=	 (XT	(I-S)	 X)-1XT	(I-S). The significance of the covariate effect ϕ can be tested 
using the lack of fit statistic or by comparing the mean residual sum of squares (Hart, 1997; 
Jose, et al., 2009). Under the null hypothesis that the covariate effect ϕ(U)= 0,  the mean 
residual sum of squares obtained by fitting the model (1) is given by 
 

𝜎pxk = 𝐘8[𝐈 − 𝐗(𝐗8𝐗)=>𝐗]8[𝐈 − 𝐗(𝐗𝐓𝐗)=>𝐗]𝐘/(𝑛 − 𝑝 − 1) 
 
The lack of fit statistic is given by  

𝑅 =
𝜎pxk

𝜎pk 
 
The statistic R asymptotically follows an F distribution with (n-p-1), [n-p-2trace(S)+ 
trace(STS)] degrees of freedom and it can be used for testing the significance of the covariate 
effect. 
 
3. Analysis of Data in the Presence of Outliers 

 
The regression estimate and the cross validation technique can behave very badly in 

the presence of outliers in the data or when the errors are heavy-tailed (Leung, D., 2005). One 
remedy is to remove the influential observations from the data. Another approach is to use 
robust smoother, which is not as vulnerable as the usual smoothing technique. A robust M-
type estimate 𝑚D  of the regression function can be obtained by minimizing the objective 
function 

 

f𝜌}
𝑦H − 𝑚DH

𝑠 �
Q

Hl>

																																																															(2) 

 
where,  is an even function with bounded first derivative  and a unique minimum at 

zero. The derivative  is called the influence function and  is the 

corresponding weight function. Several M-type estimators have been discussed in literature 
using different types of influence functions (Huber, 1981; Rey, 1983; Hampel et al., 1986; 
Tukey, 1977). Tuckey’s biweight robust function is very popular and it is considered in this 
paper. The r, y and w functions corresponding to the Tuckey’s robust estimator is given by 
 

r(𝑥) 						=

⎩
⎨

⎧𝑐
k

6 }1 − �1 − Z
𝑥
𝑐]

k
��
�

|𝑥| ≤ 𝑐

𝑐k

6
|𝑥| > 𝑐

 

  

y(𝑥) = �		𝑥 }�1 − Z
𝑥
𝑐]

k
��
k

|𝑥| ≤ 𝑐

0 |𝑥| > 𝑐
 

 

(.)r (.)y

dx
xdx )()( ry =

x
xxw )()( y

=
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𝑤(𝑥) = �}�1 − Z
𝑥
𝑐]

k
��
k

|𝑥| ≤ 𝑐

0 |𝑥| > 𝑐
 

 
The turning constant c is picked to give reasonably high efficiency. When the errors 

are normal and x is the standardized residual, then c=4.685 produce 95% efficiency. 
 

 

 

  
Figure 1: r, y and w functions of Tuckey’s biweight robust estimate 

 
Iterated reweighted least squares technique is used to solve the minimization problem 

in eq. (2) to obtain the robust estimate of the regression function.  The estimate of the 
regression function in the kth iteration is given by  

 
𝐦D(�) = 𝐗𝛃5(�) + 𝛟5(�) 

 
𝛃5(�) = g𝐗8A𝐈 − 𝐒(�)B𝐗j

=>
𝐗8A𝐈 − 𝐒(�)B𝒀 

 
𝛟5(𝐤) = 𝐒(�)A𝐘 − 𝐗𝛃5(�)B 

 
where, S(k) is the smoothing matrix in the kth iteration derived using robust local linear 
regression. Let Si(k)be the ith row of the smoothing matrix in the kth iteration, then 
 

𝐒(�) = g𝐒>(�) … 	𝐒Q(�)j
8

 
 

𝐒H(�)8 = 𝒆>8A𝐙KL
8 𝐖KL(�)

∗ 𝐙KLB
=>
𝒁KL
8 𝑾KL(�)

∗  
 

𝐖KL(�)
∗ = 𝑑𝑖𝑎𝑔�𝑤H∗A𝑟>(�=>)B,… ,𝑤H∗A𝑟Q(�=>)B� 

 

𝑤H∗A𝑟�(�=>)B =
𝐾 ZKL=K�

\
]𝑤A𝑟�(�=>)B

∑ 𝐾 ZKL=K�
\
]𝑤A𝑟�(�=>)BQ

�l>

	 , 𝑗 = 1, … , 𝑛 

 
where 𝑤A𝑟�(�=>)Bis the value of the robustness weight function corresponding to yj in the kth 

iteration and 𝑟(�=>)� =
g��=�D�(� [)j

¡(� [)
  is the  standardized residual of the jth datum in the (k-1)th 

iteration with 𝑚D�(�=>) as the estimated value and r(0)i=0 for i=1,…,n. The Median of Absolute 
Deviation from median (MAD) is used for computing a robust estimate for the scale factor s  
and 
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where		𝑒(�=>)H = 𝑦H − 𝑚DH(�=>) 
 
The estimate of the regression function in the kth iteration is written as  
 

𝐦D(�) = 𝐗𝛃5(�) + 𝐒(�)A𝐘 − 𝐗𝛃5(�)B 
 

Iteration is continued till there is no significant improvement in the estimated values 
and the final estimate of the regression function is written as 
 

𝐦D∗ = 𝐗𝛃5∗ + 𝐒∗(𝐘 − 𝐗𝛃5∗) 
𝛃5∗ = [𝐗8(𝐈 − 𝐒∗)𝐗]=>𝐗8	(𝐈 − 𝐒∗)𝐘 

𝑉(𝛃5∗) = 𝑑𝑖𝑎𝑔(𝐏∗𝐏∗8)𝜎p∗¢ 
 
Where S* is the smoothing matrix of the final iteration, 𝐦D∗, 𝛃5∗ and 𝜎p∗ are the final estimates 
of the regression function, treatment vector and scale factor respectively and 

P*=	(XT	(I-S*)	X)-1XT	(I-S*) 
Optimum bandwidth: Let  be the final robustness weight assigned to yi and 𝑚DH(\)#  be the 
estimated value of mi with bandwidth h.  The Mean Squared Error (MSE) of the estimated 
value corresponding to the bandwidth h is given by 
 

𝑀𝑆𝐸(ℎ) =
1
𝑛f

A𝑦H − 𝑚DH(\)# Bk
Q

Hl>

 

 
The cross validation score CV (h) does not work well for the robust smoothers 

because the CV function itself is strongly influenced by the outliers (Wang and Scott, 1994). 
The cross validation score is the sum of squares of the prediction errors of the smoother at 
each of the design points. When there are outliers, the prediction errors corresponding to the 
outliers will be uncharacteristically extreme and these extreme prediction errors will inflate 
the CV(h). Therefore, similar to robust smoothing technique, the influence of extreme 
prediction errors should be minimized.  A robust cross validation score RCV (h) is defined as  
 

𝑅𝐶𝑉(ℎ) =
∑ 𝑤H#A𝑦H − 𝑚D(=H)(\)# BkQ
Hl>

∑ 𝑤H#Q
Hl>

 

 
where, 𝑤H# is the final robustness weight defined earlier, 𝑚D(=H)(\)# is the robust estimate of yi 

with h as bandwidth and without using the ith observation yi. The value of h which minimizes 
the robust cross validation score RCV (h) will be the optimum bandwidth. In the computation 
of RCV(h), the effect of outliers is controlled by taking weighted sum of squares of the 
prediction errors of the smoother at each of the design points with the robustness weight 𝑤H#.  
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4. Simulation Study 
 
A simulation study was conducted to evaluate the performance of the proposed 

method. The semi-parametric regression model considered for the simulation study is given 
by 

Y=	Xb+	ϕ(U)+e																																																																						(3) 
 

where Y is the n x 1 observation vector, m= Xb+	ϕ(U), is the regression function,  X is the 
nxk design matrix, b is the k x 1 treatment effect vector which is taken as bT =[-2 -2 0 4],  
ϕ(u)=1+2sin(πu) and the random error vector e follows N(0,	 I) and uϵ[0,1]. Based on the 
above, 100 sets of data are simulated for different values of n (100, 200, 400) and (1.0, 2.0) 
with 0%, 4% and 8% outliers. To generate data with specific percentage of outliers, the 
required number of random numbers between 0 to n are generated and the value of the 
regression function m corresponding to the data points are replaced with m+6σ. The 
Epanechnikov kernel function K(u)=0.75(1-u2) is employed in  the study. The treatment 
effect vector	𝛃8 = [𝛽>		𝛽k			𝛽�		𝛽ª], the nonparametric function ϕ and the error variance s2 are 
estimated using the method given in Section 2. Tuckey’s biweight function with the turning 
point c=4.685 is used as the robustness function. The Average Mean Squared Errors (AMSE) 
of the estimated values of , b, ϕ and m with the true values of 100 sets of simulated data for 
different values of n (100, 200, 400) and (1.0, 2.0) are given in Table 2.  The AMSE of the 
estimated parameters are calculated as follows: 
 

AMSE of  𝜎p = >
>xx

∑ A𝜎 − 𝜎p(H)B
k>xx

Hl> , 
 

AMSE of  𝛃5 = ∑ >
>xx

∑ A𝛽� − 𝛽«�(H)B
k>xx

Hl>
ª
�l>  

 
AMSE of 𝛟5 = >

>xx
∑ >

Q
∑ g𝜙A𝑢�B − 𝜙(H)A𝑢�Bj

kQ
�l>

>xx
Hl> , 

 
AMSE of 𝐦D = >

>xx
∑ >

Q
∑ g𝑚 −𝑚D(H)A𝑢�Bj

kQ
�l>

>xx
Hl>  

 
where, 𝜎p(H) , 𝛽«�(H)  ,  𝜙(H)and 𝑚D(H)are the estimated values of 𝜎	, 𝛽� , ϕ and the regression 
function m corresponding to the ith simulated data set.  The bias of the point estimates of 
𝜎p, 𝛽«�, j=1,…,4 are calculated as follows 
 

Bias of 𝜎p = >
>xx

∑ A𝜎 − 𝜎p(H)B>xx
Hl>  

 
Bias of 𝛽«� =

>
>xx

∑ A𝛽� − 𝛽«�(H)B>xx
Hl>  ,  j = 1,…,4 

 
The AMSE of the estimates are converging to zero as n increases or in other words, 

the estimated values are converging to the true values as n increases. Note that the bias of the 
point estimates 𝜎p, 𝛽«�, j = 1,…,4 are also negligible as n increases (Table 2). This indicates the 
consistency of the estimates. The MSE varies with change in the choice of bandwidths. The 
optimum bandwidth (bandwidth corresponds to the minimum MSE) depends on the curvature 
of the function. The optimum bandwidth for estimating the parameters of the model was 
obtained based on the robust cross validation technique given in Section 2. 
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The comparison of Average Mean Squared Errors (AMSE) of the estimated values of 
, b, ϕ and m with the true values of 100 sets of simulated data for different values of n 

(100, 200, 400) and (1.0, 2.0) showed that in the presence of outliers (4% and 8%) the 
robust method performs much better than the non-robust method. In the absence of outliers 
the performance of both the robust and non-robust methods is almost the same. The value of 
AMSE decreases as n increases or in other words the estimates converges to the true value.  

 
5. Application 

 
The proposed method is used to analyze the yield data (both weight of nuts and 

number of nuts) of arecanut recorded in an experiment to evaluate the effects of organic and 
inorganic fertigation in arecanut + cocoa systems conducted at Central Plantation Crops 
Research Institute, Vittal, India. The experiment consists of 6 levels of nutrition (denoted as 
β1, … ,β6) applied randomly to 12 year old arecanut palms to evaluate their effect on the yield 
of arecanut. Treatments were applied to a total of 253 arecanut palms. Pre-treatment yield 
was taken as the covariate to control the error due to palm to palm variation. The yield 
obtained after a gap of two year from the start of the experiment was taken as the response 
variable.  The estimated treatment effects and its standard errors using the linear covariance 
technique, nonparametric covariance technique as well as the robust nonparametric 
covariance technique with pre-treatment yield as covariate for both weight of nuts and 
number of nuts are given in Table 3 and 4 respectively.  Even though, there is not much 
difference in the estimated value of the treatment effects employing different methods, the 
standard error of the estimates are comparatively lower in the case of the proposed robust 
technique.  Since the outliers are present in both the extremes (high and low) and the number 
of observations is also high, the difference in treatment effects estimated using robust and 
other methods are very less. The estimated value of corresponding to the linear, 
nonparametric and robust nonparametric covariance technique for weight of nuts and number 
of nuts are also given in Table 3 and 4 respectively. The standard errors of the estimates and 
the estimated value of are less in the proposed robust method than that of the linear and 
nonparametric covariance technique.  
 
6. Conclusion 

 
Linear covariance technique is generally used for analysing the designed experiments 

having covariates, assuming a linear relationship between response and covariate.   A more 
flexible semi-parametric model is used when the relationship is not linear or unknown. The 
experimental data particularly, those from field experiments generally contains some extreme 
values or outliers due to large plant to plant variations and their presence very badly affect the 
analysis and generate distorted results. In the present study, a robust method is proposed to 
analyse the semi-parametric regression model in the presence of outliers. The proposed 
method is useful when the data contains extreme values or outliers and there is no advance 
information about the relationship between the response variable and covariate.   
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Appendix 
 

Table 1:  Optimum bandwidth ad AMSE of the estimates in the simulation study 
 Outliers 

(%) 
n h AMSE	(	𝛃5)	 AMSE	(	𝛟5)	 AMSE	(𝐦D)	 AMSE	(	𝜎p)	

SP Robust 
SP 

SP Robust 
SP 

SP Robust 
SP 

SP Robust 
SP 

1 0 100 0.30 0.1486 0.1471 0.0796 0.0541 0.0731 0.0664 0.0064 0.0182 
200 0.20 0.0720 0.0740 0.0309 0.0256 0.0398 0.0389 0.0030 0.0078 
400 0.15 0.0315 0.0341 0.0167 0.0148 0.0215 0.0218 0.0011 0.0033 

4 100 0.30 0.3712 0.1741 0.0946 0.0608 0.1835 0.0810 0.3194 0.0143 
200 0.25 0.1656 0.0849 0.0522 0.0308 0.1041 0.0408 0.3089 0.0080 
400 0.15 0.0774 0.0384 0.0459 0.0162 0.0944 0.0241 0.2948 0.0038 

8 100 0.25 0.5138 0.1793 0.2440 0.0594 0.4018 0.0846 0.8825 0.0180 
200 0.25 0.2285 0.0985 0.1704 0.0285 0.2723 0.0439 0.8511 0.0133 
400 0.25 0.1250 0.0548 0.1440 0.0179 0.2222 0.0231 0.8331 0.0121 

2 0 100 0.30 0.5399 0.5672 0.1913 0.1591 0.2631 0.2588 0.0188 0.0644 
200 0.30 0.3009 0.3142 0.1144 0.0887 0.1451 0.1452 0.0101 0.0415 
400 0.25 0.1463 0.1530 0.0543 0.0401 0.0689 0.0674 0.0043 0.0125 

4 100 0.30 1.4690 0.6348 0.3745 0.1797 0.7428 0.2981 1.2803 0.0432 
200 0.30 0.5670 0.2865 0.2134 0.0931 0.3958 0.1386 1.2292 0.0281 
400 0.20 0.3239 0.1418 0.2455 0.0509 0.3576 0.0810 1.1912 0.0224 

8 100 0.30 1.7699 0.6486 1.0668 0.1936 1.6062 0.3138 3.3692 0.0716 
200 0.30 0.9476 0.3266 0.6910 0.0900 1.0818 0.1394 3.3647 0.0584 
400 0.25 0.4338 0.1461 0.7617 0.0442 0.9799 0.0709 3.3693 0.0576 

SP: Semi- parametric 
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Table 2: Bias of the robust point estimates in the simulation study 
 Outliers 

(%) 
n h Bias of   

𝛽«> 𝛽«k 𝛽«� 𝛽«ª 𝜎p 

1 0 100 0.30 –0.0184 –0.0187 0.0201 0.0169 –0.0610 
200 0.20 –0.0182 –0.0157 0.0155 0.0185 –0.0282 
400 0.15 0.0026 –0.0053 0.0127 –0.0100 –0.0187 

4 100 0.30 –0.0232 0.0100 –0.0010 0.0143 0.0440 
200 0.25 –0.0161 0.0112 –0.0002 0.0051 0.0346 
400 0.15 0.0033 0.0019 –0.0004 –0.0048 0.0294 

8 100 0.30 –0.0002 0.0166 –0.0077 –0.0088 0.0851 
200 0.25 –0.0008 0.0093 –0.0084 0.0000 0.0789 
400 0.20 0.0010 0.0039 –0.0058 0.0010 0.0745 

2 0 100 0.30 –0.0060 –0.0079 0.0055 0.0085 –0.1037 
200 0.25 –0.0090 0.0234 –0.0156 0.0013 –0.0586 
400 0.20 –0.0030 0.0040 –0.0060 0.0051 –0.0398 

4 100 0.30 0.0222 –0.0271 –0.0120 0.0168 –0.0558 
200 0.25 0.0131 –0.0135 –0.0110 0.0114 0.0490 
400 0.20 –0.0060 0.0184 –0.0088 –0.0037 0.0445 

8 100 0.30 –0.0132 0.0294 –0.0131 –0.0031 0.1248 
200 0.30 –0.0143 0.0292 –0.0061 –0.0089 0.1160 
400 0.25 –0.0117 0.0202 –0.0106 0.0020 0.1119 

 
Table 3: Estimated values with standard errors (weight of nuts) of the field data 

Parameter Linear  Semi-parametric Robust Semi-parametric 
Estimate SE Estimate SE Estimate SE 

µ + β1 9.969 0.683 9.924 0.622 9.925 0.548 
µ + β2 9.414 0.683 9.570 0.626 9.573 0.552 
µ + β3 10.029 0.638 9.949 0.594 9.950 0.524 
µ + β4 9.883 0.675 9.994 0.617 9.991 0.543 
µ + β5 9.922 0.691 9.918 0.636 9.916 0.560 
µ + β6 10.767 0.630 10.758 0.587 10.758 0.517 

 4.317  4.312 - 3.803 - 
µ: Overall mean 
 
 
Table 4:  Estimated values with standard errors (number of nuts) of the field data 

Parameter Linear Semi-parametric Robust Semi-parametric 
Estimate SE Estimate SE Estimate SE 

µ + β1 328.80 22.71 331.96 20.71 330.80 16.83 
µ + β2 307.84 22. 70 308.87 20.70 308.85 16.83 
µ + β3 331.13 21.12 334.87 19.62 336.45 15.95 
µ + β4 332.86 22.40 336.57 20.45 337.32 16.63 
µ + β5 324.32 22.91 315.21 21.27 313.69 17.29 
µ + β6 370.57 20.87 374.34 19.35 374.71 15.72 

 143.06  142.96  116.16  
µ: Overall mean 
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Abstract 
 

A survey regarding sensitive or stigmatizing issues often bears a challenge as most 
respondents either deny answering direct queries or hide true response. Warner (1965) 
designed an ingenious device by a dint of a probabilistic procedure for estimating qualitative 
sensitive population proportion, called randomized response (RR) device and the novel 
technique is well known as randomized response technique (RRT). Greenberg et al. (1971) 
used the RR technique in quantitative attributes. An issue often raised with RRT is that some 
are more willing to answer directly rather than compulsory RR as the perception of sensitivity 
may not be same for all. Considering this fact, Chaudhuri and Mukerjee (1985) developed the 
optional randomized response technique (ORRT) which was restricted to Simple Random 
Sampling (SRS) design only. Later Chaudhuri and Saha (2005), Pal (2008) extended their 
work for unequal probability sampling. We discuss here about the privacy protection measure 
dealing with quantitative sensitive issues like alcohol consumption, earning through 
gambling, income etc. The literature is an extension of Chaudhuri and Christofides (2013) 
aiming at to develop how privacy is protected while applying ORRT into quantitative 
sensitive issues. In this paper we theoretically develop few well known RRTs for quantitative 
case in ORRT context first and unbiased estimators with its variance estimators are obtained. 
Protections of privacy of the proposed techniques are measured theoretically.  
 
Key words: Protection of privacy, randomized response, sensitive issues, quantitative 
characteristics, unequal probability. 
 
1. Introduction 
 

Enumeration related to sensitive issues like alcohol consumption, drug addiction etc is 
usually impossible by direct survey method because the respondents may fear oppression if 
they disclose their actual status.  Randomized response technique (RRT) refers to a widely 
used method for estimating population proportion or others which is related to a sensitive 
characteristic avoiding the direct queries. Warner (1965) developed the novel RRT technique. 
Erikson (1973) presented the estimation of total stigmatizing real variable like amount earns 
through gambling, alcohol consumption etc. Chaudhuri and Mukherjee (1985, 1988) 
illustrated optional randomized response technique (ORRT) while respondents were selected 
by SRS with replacement only.  Later Arnab (2004) and Chaudhuri and Saha (2005) extended 
the theory in unequal probability design. Chaudhuri (2011), Chaudhuri and Christofides 
(2013) provide extensive developments in RRT, also in ORRT along with protection of 
privacy measures. For further references and recent developments, please refer to a 
monograph edited by Chaudhuri, Christofides, Rao (2016). Full ORRT and partial ORRT are 
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two classifications in ORRT. In the first one, overall sample of respondents are classified into 
two parts to gather direct response (DR)’s from one part and randomized response (RR) from 
another part. The final estimator was constructed by combining two linear unbiased 
estimators based on DR and RR separately. Arnab (2018) and many others had contributed in 
this full ORRT approach. In partial ORRT, DR option is offered along with a RR device to 
the respondents and respondents are requested to report the response directly if he/she does 
not feel the survey question sensitive otherwise it will be answered by using RR device 
without divulging the option so exercised. 
 

The purpose of this paper is to extend some well-known quantitative RR technique in 
partial ORRT along with the study of their privacy protection capacity as the motivation of 
RRT is to gather information maintaining the respondents’ confidentiality. Section 2 is 
designed for the extension of Chaudhuri’s device I and device II (2011) and Eichhorn and 
Hayre (1983) in partial ORRT. In section 3, we briefly discuss the protection of privacy for 
different partial ORRT. In section 4, we provide the measures of jeopardy related to the 
proposed ORR models as discussed in section 2. 
 
2. Proposed ORR Models for Quantitative Characteristics 
 

Initially the basic purpose of RR was to gather reliable information on qualitative 
sensitive variables. Greenberg et al. (1971) first developed the RR technique for quantitative 
stigmatizing characteristics. Eriksson (1973) also extended the well-known unrelated 
question model in quantitative response concept. Taking the initial idea of masking true 
sensitive values by a random number from known distribution, Eichhorn and Hayre (1983) 
developed scrambled response model. Chaudhuri (2011) and Chaudhuri and Mukerjee (1988) 
in their books have mentioned two different randomized devices (Device I and Device II) 
along with the estimation of total amount and the variance relating to such sensitive issues. 
Following the idea of the above, we try to develop ORRT in quantitative measures which are 
as well as sensitive also. 
 

Consider a finite population of units and let be the quantitative 
stigmatizing variable having the values . A sample of size  is chosen from 
the population according to a general sampling scheme . The sampled persons are 
approached with a request to provide ORR responses for estimating the population total 

based on the sample . 

 
2.1. ORR using Eichhorn and Hayre (1983) 

 
Pollock and Bek (1976) envisaged the data masking procedure to answer the sensitive 

question hiding his/her actual value by adding a random value from known distribution with 
the true value. The development of Eichhorn and Hayre (1983) method known as 
“Scrambled Response method” is actually in-depth analysis of Pollock and Bek (1976). In 
this part of this literature, we use the scramble response method to develop optional 
randomized response (ORR) model. Pal (2008) already worked on this by capturing two 
responses for each respondent giving an opportunity to report the second response as the 
earlier one with known probability  or by using other random variables with known 
probability . Our proposed ORR method is a modification on Pal (2008). 
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Let  be the true sensitive value of the respondent . Let  denote 
a discrete random variable with known mean and variance . Also, let be another 
discrete random variate independent to , with known mean 0 and variance . 
Considering the fact that someone may wish to answer directly of the sensitive question, we 
give them a choice of direct response or by randomized value  instead of 
compulsory RR. The procedure is known as ORRT as discussed in the introduction section. 

Here  while  and  are the values of the random variable  and 

respectively for  individual and . 

Mathematically the response of  person may be written as, 

        

Denoting   as expectation due to RR device and  as variance due to RR device, 

we get       and 

 

So, to estimate the variance, the whole process is repeated independently one more 
time to get another response . Technique of interpenetrating network of subsampling 
pioneered by Mahalanobis (1946) is used here to provide the final RR based estimator of ,	

which	becomes  with variance estimator . 

2.2. ORR using Chaudhuri’ s device I 
 
In device I, the person labeled “ ” is directed to give out his/her true response 

regarding the sensitive issues directly or by the offered two randomized devices. That process 
is repeated two times independently with the same RR device but with different RR 
parameters. In one RR device, first box contains  cards identical in shape, size, color 

and height bearing real numbers with mean  and the second 

box contains  identical cards with real numbers . In another RR device, 
 cards bearing real numbers with mean 1 are placed in first box and cards 

bearing real numbers but the mean  are placed in 

the second box. The sampled person  is instructed to draw independently one card from each 
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box for both the RR devices and report the number 
and without disclosing the numbers drawn from the 
boxes and is defined for the amount related to the sensitive quantitative variable . 

 
In our proposed method, the optional randomized response for person is 

 with unknown probability                                
         with unknown probability  

 with unknown probability                                
          with unknown probability  
 
Writing,  and  . It follows 

such that . 

 
To estimate the variance, the process is repeated independently one more time (as 

described in 2.1.) and the responses for the  person are with corresponding 

estimator of  is . So the final RR based estimator of  is 

 with the variance estimator  such that . 

 
2.3.  ORR using Chaudhuri’s device II 
 

In device II, a box with full of different kind of cards is given to the sampled person. 
The cards are marked as “corrected” with proportion k and others bearing with numbers 

 in proportion such that . The sampled person is directed 

to draw a card randomly and report the true sensitive value  if he gets a card marked 
as “corrected” otherwise report the number  printed over the cards. The 
procedure is extended to ORRT by giving a choice of direct response or RR device II to the 
sampled person whichever he is willing too. 
 
So the optional randomized response of person is:- 

 

It follows that, . The whole process is repeated 

independently one more time with different set of cards in different proportion and the 

response is recorded as . Clearly, . 
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So, . 

The sensitive attribute is estimable if  . 

i.e.   if .  

The final RR based estimator with the variance estimator can be obtained similarly as 
discussed in sections 2.1. and 2.2. in this article.  

 
3. Privacy Protection Measures 
 

The objective of performing RR survey is to produce a good estimator from statisticians’ 
point of view for sensitive traits. As the respondents’ actual state of nature is covered by RR device, it 
is necessary to know whether the procedure assures all the respondents that they could not definitely 
be classified in  or i.e. protection of privacy measure. Undoubtedly, greater the protection; 
increase the participation but it has to be noted that no universally accepted measure is mentioned 
there. Privacy measure have been studied earlier by many researchers like Lanke (1975, 1976), 
Leysieffer and Warner (1976), Anderson (1975 a, b, c). Leysieffer and Warner (1976) suggested a 
jeopardy measure by quantifying the probability of an observation belonging to the sensitive trait 
and its complement , while giving his/ her response as  , termed as revealing probabilities. 
Lanke (1976) considered the quantity for comparison implying 
smaller the value of is more protective than other. To evaluate how effectively the scrambling 
response model works, Eichhorn and Hayre (1983) proposed a privacy measure based on the ratio of 
the upper limit and lower limit of confidence interval for the mean of the scrambling 
variable . For a given , larger the ratio implies greater the protection.  
  

In order to evaluate how privacy is protected for quantitative sensitive variable is also 
investigated by Chaudhuri and Christofides (2013). Considering the prior unknown probability for the 
value of person as , by Bayes’ theorem the posterior probability of  for the given 
value of turns out to be, 

                                                                                 (1) 

where  denotes the conditional probability of reported RR value for the person while true 
response is . The degree of privacy protection measure is maximum, if the value of the measure 
approaches to one.  
 

Taking a cue from the above approach, the idea of measuring protection of privacy for 
quantitative ORR model has been developed here. 
 
4. Measures of Jeopardy 

 
Suppose that be the real stigmatizing quantitative variable for a set of finite population 

having values  and the total be defined as . In order 
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to estimate , a sample  is selected with probability from the population and respective 
ORR technique is performed to record their responses for further analysis. 

4.1.   Using Eichhorn and Hayre (1983) method 
 
To check how well the response is protected in case of ORR survey while scrambled 

response method is used for RR value, responses are gathered by following the step by step 
guidance as described in the section 2.1. The conditional probability of the  person	can be 
calculated by the following function 

,          	

as the respondent disclose the true response with probability (at this point ) 
otherwise provide the randomized response with probability  following Eichhorn and 
Hayre (1983) suggestion (as described briefly in section 2.2) which is equal to  if the 
randomized value of the variate  is  along with another variate  value . 

Also, the probability that the respondent gives the response  is defined as

, this is exactly equal to the above given 

conditional probability. 

  So from equation (1), we get  i.e. posterior probability = prior 
probability.	Clearly privacy is well protected for each individual by this method. 
 
4.2.  Using Chaudhuri’s device I 
 

For this model, the conditional probability of the given response , while the actual 

response is , denoted by , is evaluated as . This 

indicates the posterior probability exactly equal to the prior probability , i.e. the  
respondent’s privacy are well protected, as well as all the respondents. 
 
4.3.   Using Chaudhuri’s device II 

 
To check whether their response is well protected or not while device II is suggested 

for ORR survey, we calculate the posterior probability  by Bayes’ theorem as 
defined in section 3 by following Chaudhuri and Christofides (2013). Here, 

 

considering .  

Thus,  approaches to  if and only if . We can’t say anything else 

as  is unknown to us. 
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5. Concluding Remarks 
 

Main purpose of this article is to demonstrate the accuracy level of privacy protection 
while studying quantitative and sensitive characteristics by optional RR survey. Few of the 
well-known quantitative RR models are illustrated in ORR context to investigate their degree 
of protection in privacy. Their performance levels are pointed out in Section 4. The posterior 
and prior coincide in our proposed quantitative ORR model if the randomized device is either 
Eichhorn and Hayre (1983) or Chaudhuri ’s device I.   

Acknowledgements 
 

The authors are grateful to the Editor and referees for their valuable comments and 
suggestions, which led to considerable improvement in this paper.  
 
References 
Anderson, H. (1975a). Efficiency versus Protection in the RR for Estimating Proportions. 

Technical Report 9, University of Lund, Lund, Sweden. 
Anderson, H. (1975b). Efficiency versus Protection in a General RR model. Technical Report 

10, University of Lund, Lund, Sweden. 
Anderson, H. (1975c). Efficiency versus Protection in RR Designs. Mimeo notes, University 

of Lund, Lund, Sweden. 
Arnab, R. (2004). Optional randomized response techniques for complex designs. 

Biometrical Journal, 46(1), 114-124. 
Arnab, R. (2018). Optional randomized response techniques for quantitative characteristics. 

Communications in Statistics: Theory and Methods, 48(16), 4154-4170. 
Chaudhuri, A. (2011). Randomized Response and Indirect Questioning Techniques in 

Surveys. Boca Raton: CRC Press (ISBN : 978-1-1381-1542-2). 
Chaudhuri, A. and Christofides, T.C. (2013). Indirect Questioning in Sample Surveys. Berlin, 

Germany: Springer Verlag (ISBN : 978-3-6423-6275-0). 
Chaudhuri, A. and Mukerjee, R. (1985). Optionally randomized responses techniques. 

Calcutta Statististical Association Bulletin, 34(3-4), 225-229. 
Chaudhuri, A. and Mukerjee, R. (1988). Randomized Responses: Theory and Techniques. 

New York: Marcel Dekker. 
Chaudhuri, A. and Saha, A. (2005). Optional versus compulsory randomized response 

techniques in complex surveys. Journal of Statistical Planning and Inference, 135(2), 
516-527. 

Chaudhuri, A., Christofides, T.C. and Rao, C.R. (2016). Handbook of Statistics, Data 
Gathering, Aanlysis and Protection of Privacy Through Randomized Response 
Techniques: Qualitative and Quantitative Human Traits (Vol. 34). NL: Elsevier 
(ISBN : 978-0-4446-3570-9). 

Chaudhuri, A., Christofides, T.C. and Saha, A. (2009). Protection of privacy in efficient 
application of randomized response techniques. Statistical Methods and Applications, 
18(3), 389-418. 

Eichhorn, B. and Hayre, L.S. (1983). Scrambled randomized response methods for obtaining 
sensitive quantitative data. Journal of Statistical Planning and Inference, 7(4), 307-
316. 



54 DIPIKA PATRA AND SANGHAMITRA PAL [Vol. 17, No.2 

Eriksson, S.A. (1973). A new model for randomized response. International Statistical 
Review, 41(1), 101-113. 

Greenberg, B.G., Kuebler, R.R., Abernathy, J.R. and Horvitz, D.G. (1971). Application of the 
randomized response technique in obtaining quantitative data. Journal of American 
Statistical Association, 66(334), 243-250. 

Lanke, J. (1975). On the choice of the unrelated question in Simmons' version of randomized 
response. Journal of American Statistical Association, 70(349), 80-83. 

Lanke, J. (1976). On the degree of protection in randomized interviews. International 
staistical Review, 44(2), 197-203. 

Leysieffer, R.W. and Warner, S.L. (1976). Respondent jeopardy and optimal designs in 
randomized response models. Journal of American Statistical Association, 71(355), 
649-656. 

Mahalanobis, P.C. (1946). Recent experiments in statistical sampling in the Indian Statistical 
Institute. Journal of the Royal Statistical Society, 109, 325-378. 

Pal, S. (2008). Unbiasedly estimating the total of a stigmatizing variable from a complex 
survey on permitting options for direct or randomized responses. Statistical Papers, 
49(2), 157-164. 

Pollock, K.H. and Bek, Y. (1976). A comparison of three randomized response models for 
quantitative data. Journal of American Statistical Association, 71(356), 884-886. 

Warner, S.L. (1965). Randomized response: a survey technique for eliminating evasive 
answer bias. Journal of American Statistical Association, 60(309), 63-69. 

 



Statistics and Applications {ISSN 2452-7395 (online)}
Volume 17 No. 2, 2019 (New Series), pp 55-64

Construction of Optimal Foldover Designs with the General Minimum
Lower-Order Confounding

Faisal Atakora and Po Yang

Department of Statistics
University of Manitoba

Winnipeg, MB R3T 2N2 Canada

Received: December 26, 2018; Revised: July 16, 2019; Accepted: August 24, 2019

Abstract

Fractional factorial designs are widely used in industry and agriculture. Foldover fractional
factorial designs can de-alias effects of interest so that the effects can be estimated without ambi-
guities. We consider optimal foldover designs using general minimum lower-order confounding
criterion. A catalogue of 16- and 32-run optimal foldover designs is constructed and tabulated
for practical use. A comparison is made between the general minimum lower-order confounding
optimal foldover designs and other optimal foldover designs obtained using minimum aberration
and clear effect criteria.

Key words: Foldover; Alias; Optimal designs; Aliased effect number pattern.

1. Introduction

Fractional factorial designs have been widely used in industry and agriculture. One problem
an experimenter is likely to face by employing a fractional factorial design is that some effects may
be aliased with others. This creates ambiguities about the analysis and estimation of the factors.
Hence, sometimes there is the need for additional runs to clarify these ambiguities. Foldover is a
follow-up method that is often used to solve the problem.

Foldover designs have been in the literature for many years. Some textbook, such as, Box
et al. (2005) and Wu and Hamada (2009) studied foldover techniques. Montgomery and Runger
(1996) considered the foldover plans that reverse the signs of one or two factors. They pointed
out that for a resolution IV initial design, when changing the signs of a factor of interest, the
combined foldover design can de-alias all the two-factor interactions that contain the factor; Li
and Lin (2003) searched optimal foldover plans using minimum aberration optimality criterion
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and provided catalogues of optimal foldover designs. However, Wang et al. (2010) pointed out
that some optimal foldover designs in Li and Lin (2003) may not be optimal under the clear effect
optimality criterion. Uniformity criteria were also used to construct optimal foldover designs.
Ou et al. (2011) provided some lower bounds of centered L2-discrepancy, the symmetric L2-
discrepancy and the wrap-around L2-discrepancy on combined foldover designs that can be used
to evaluate the optimal foldover plans for two-level fractional factorial designs. The lower bounds
were further improved by Ou et al. (2017). Qin et al. (2013) extended the results in Ou et al.
(2011) to a set of asymmetric fractional factorials and obtained a new lower bound of centred
L2-discrepancy of combined designs, which can be used as a benchmark for searching optimal
foldover plans. Recently, Li and Lin (2016) proposed to further improve foldover designs by
allowing column permutations. Yang and Li (2019) investigated under what circumstances can a
foldover design be improved by doing column permutations and provided some theoretical results.
For more work related to optimal foldover designs, see Li and Mee (2002), Li and Jacroux (2007),
and Ai et al. (2010).

Optimal designs have been studied extensively in the literature recently. The most popular
optimality criterion for fractional factorial designs is minimum aberration (MA). However, Min-
imum aberration criterion is used to choose designs in cases where there is very small or lack of
knowledge about the likely important effects. Recently, Zhang et al. (2008) proposed the general
minimum lower-order confounding (GMC) criterion to select optimal designs. This criterion re-
veals the basic information of all effects aliased with other effects at varying severity degrees in a
design. In particular, when an experimenter has a prior knowledge about which factors are more
important, the GMC optimal designs are better than other optimal designs. It has been proved
that the GMC criterion chooses optimal designs in a more elaborate and explicit manner than the
existing ones, such as minimum aberration, clear effects, and maximum capacity criteria. A lot
of research has been done for constructing general minimum lower-order confounding designs.
In particular, Zhang and Cheng (2010), Cheng and Zhang (2010), and Li et al. (2011) provided
construction theory for two-level unblocked GMC designs, and Zhang and Mukerjee (2009) and
Zhao et al. (2013) constructed two-level blocked GMC designs.

Some optimality criteria, such as minimum aberration and clear effects criteria, have been
used to finding optimal foldover designs. Most of the optimal foldover designs in the literature
are obtained from the minimum aberration designs tabulated in Chen et al. (1993). Zhang et al.
(2008) obtained a catalogue of optimal GMC designs which are more useful comparing to MA de-
signs when experimenters have prior knowledge about the important factors. The objective of this
research is to find the optimal foldover plans using the general minimum lower-order confounding
criterion from the GMC designs tabulated in Zhang et al. (2008). We then compare our results to
the optimal foldover designs under the minimum aberration and clear effects criteria.

In section 2, we introduce aliased effect number pattern and general minimum lower-order
confounding criterion. Minimum aberration and clear effects criteria will also be introduced. Some
relationships between these criteria are mentioned as well as their limitations and drawbacks. The
relationships of aliased effect number patterns between initial designs and combined foldover de-
signs are presented in section 3. In section 4, we present optimal foldover designs obtained using
general minimum lower-order confounding criterion, minimum aberration, and clear effects crite-
ria. The comparison between those optimal foldover designs are made.
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2. GMC Criterion, Foldover Designs and Other Optimality Criteria

Let n be the number of factors of a design and p be the number of generators. For a given
2n−p design, we can find how ith-order effects and jth-order effects of the design are aliased with
each other. When ith-order effects is aliased with k jth-order effects, we say that the degree of
ith-order effects being aliased with jth-order effects is k. The number of ith-order effects that are
aliased with jth-order effects at degree k is denoted by #

i C
(k)
j , which tells us how severe ith-order

effects are aliased with jth-order effects. At the same time, it also tells how many ith-order effects
are aliased with jth-order effects. It reveals the general aliasing that exists among effects. All the
#
i C

(k)
j ’s in a design forms a set

{#i C
(k)
j , i = 0, 1, 2, ..., n, j = 0, 1, 2, ...n, k = 0, 1, 2, ...,

(
n

j

)
}.

The smaller the degree at which an ith-order effect is aliased with other effects, the less
difficult it becomes in estimating the effect. Moreover, since the total number of i-th order effects
of a design is

(
n
i

)
, the smaller the #

i C
(0)
j , that is, the smaller the number of i-th order effects that are

not aliased j-th order effects, the more the severity of the confounding between ith-order effects
and jth-order effects. On the other way, when the value of #

i C
(0)
j is greater, the less severity of

ith-order effects are aliased with jth-order effects.

Since for different k, #i C
(k)
j s are not equally important. As the degree k increases, the severity

of aliasing increases. Thus Zhang et al. (2008) arranged #
i C

(k)
j s as

#
i Cj = (#i C

(0)
j , #

i C
(1)
j , ..., #

i C
(v)
j ), (1)

where v =
(
n
j

)
. Equation (1) gives the total number of ith-order effects aliased with jth-order

effects at various degrees starting from the least to the greatest in terms of severity.

Example 1. Consider the design with generators 4 = 12 and 5 = 13. The defining relation is
I=124=135=2345. Since all the main effects are aliased with two-factor interactions, #

1C
0
2=0. Note

that the number of main effects that are aliased with one and two two-factor interactions are 4 and
1, respectively, hence #

1C
1
2=4 and #

1C
2
2=1. Moreover, there are no main effects that are aliased with

three or more two-factor interactions, hence #
1C

k
2 =0 for k ≥ 3. Therefore #

1C2 = (0, 4, 1)

Similarly, there are four two-factor interactions that are not aliased with other two-factor
interactions, we get #

2C
0
2=4; there are six two-factor interactions that are aliased with only one two-

factor interactions, hence #
2C

1
2=6; there are no two-factor interactions that are aliased with other

two or more two-factor interactions, hence #
2C

k
2=0 for k ≥ 2. Therefore #

2C2 = (4, 6). One can
find other #

i Cjs similarly.

Zhang et al. (2008) defined the aliased effect number pattern (AENP) as
#C = (#1C1,

#
0C2,

#
1C2,

#
2C1,

#
2 C2,

#
0C3,

#
1C3,

#
2C3,

#
3C1,

#
3C2,

#
3C3,

#
0C4,

#
1C4, ...) (2)

The elements in #C are placed in using a rule: If max(i, j) < max(q, r), then #
i Cj is placed before

#
qCr; if max(i, j) = max(q, r) and i < q, then #

i Cj is placed before #
qCr; if max(i, j) = max(q, r),

i = q and j < r, then #
i Cj is placed before #

qCr.
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Suppose #C(d1) and #C(d2) are the aliased effect number patterns of two designs d1 and d2,
respectively, and #Cm is the mth component of #C. Let #Cm be the first component for which
#Cm(d1) and #Cm(d2) differ. If #Cm(d1) > #Cm(d2) we say that d1 has less general lower order
confounding relative to d2. A design is said to be a general minimum lower-order confounding
(GMLOC or GMC) design, if it has minimum general lower order confounding relative to other
designs.

A foldover design is obtained by reversing the signs of one or more factors of the initial
design. The combination of the initial design and the foldover design is called a combined foldover
design. The set of factors whose signs are revised in a foldover design is referred to as a foldover
plan. For each initial design, there are many foldover plans. Li and Lin (2003) showed that any
foldover plan is equivalent to a core foldover plan, which contains only generated factors. Thus,
we only need to consider core foldover plans when studying combined foldover designs.

Eexample 2. Consider the combined foldover designs obtained from the initial design discussed
in Example 1. The generated factors are 4 and 5. Thus, there are three core foldover plans 4,
5 and 45, where 45 indicates that the signs of both factors 4 and 5 are switched. The resulting
three combined foldover designs are denoted as d1, d2 and d3, respectively. The defining relations
of d1, d2 and d3 are I = 135, I = 124, and I = 2345, respectively. The AENPs of the three
combined foldover designs first differ at #

1C
1
2(d1) =

#
1C

1
2(d2) = 2 and #

1C
1
2(d3) = 5. Since #

1C
1
2(d3)

is larger than both #
1C

1
2(d1) and #

1C
1
2(d2), we obtain that 45 is the optimal foldover plan and the

corresponding combined foldover design is the optimal combined foldover design.

Zhang et al. (2008) discussed the relationships between the GMC criterion and other criteria,
such as minimum aberration and clear effects criteria. The minimum aberration criterion was
introduced by Fries and Hunter (1980) and it has remained one of the popular criteria in choosing
optimal designs when experimenters do not have information about the important effects. Define
the length of a word as the number of factors in the word. The minimum aberration criterion
depends on the word length pattern which is defined as (A1, A2, A3...), where Ai, i = 1, 2, ...,
represent the number of length-i words in the defining relation of the design. For instance, for the
design in Example 1, the word length pattern is (0, 0, 2, 1, 0...). The minimum aberration design
can be obtained by sequentially minimizing the component of the word length pattern. Zhang et al.
(2008) pointed out that the WLP is only related to #

i C
1
0 , i = 1, 2, ..., and AENP is a more refined

pattern than the WLP for judging designs.

Clear effects are effects that are not aliased with main effects and two-factor interactions.
One of the drawbacks of the minimum aberration criterion is that, sometimes it is unable to max-
imize the number of some clear lower-order effects especially two-factor interactions. One of the
criteria that takes care of this situation is the clear effects criterion. The optimal designs sequen-
tially maximizes the number of clear main effects and the number of clear two-factor interactions.
Zhang et al. (2008) pointed out that #

2C
0
2 is the number of clear main effects and #

2C
0
2 −

#
1 C

1
2 is the

number of clear two-factor interactions. For more details about the relationship between the GMC
criterion and MA and clear effects criteria, see Zhang et al. (2008).
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3. Relationships Between AENPs

It is well known that when the signs of all the factors of an initial design are reversed, all
the words containing odd number of factors disappear in the combined foldover design and all the
words that contain even number of factors in the initial design are still in the combined foldover
design. Let #

i C
(k)
j (d) and #

i C
(k)
j (c) denote the number of ith-order effects that is aliased with k

jth-order effects in the initial design d and the combind foldover design c, respectively. Note that
#
l C

(0)
0 =

(
n
l

)
− Al or #

l C
(1)
0 = Al by Theorem 2 in Zhang et al. (2008). From the well known

result, we obtain some relationships between the AENPs of initial designs and combined foldover
designs as shown in Result 1.

Result 1, Assume that a combined foldover design is obtained by reversing the signs of all the
factors in the initial design. Then,

(1) if l is odd, then #
l C

(0)
0 (c) =

(
n
l

)
or #

l C
(1)
0 (c) = 0.

(2) if i + j is odd, then #
i C

(0)
j (c) = r, where r is the number of i-th order effects of the design d

and #
i C

(k)
j (c) = 0 for k = 1, 2, ....

(3) if i+ j is even, then #
i C

(k)
j (d) =#

i C
(k)
j (c) for k = 0, 1, 2, ....

Since some effects are de-aliased after folding an initial design, the number of i-order effects
that are not aliased with any j-th order effects in a combined foldover design is always greater than
or equal to that of its corresponding initial design. Therefore, we have Result 2.

Result 2. #
i C

(0)
j (c) ≥#

i C
(0)
j (d) for any i, j = 1, 2, ....

The resolution of a design is defined as the length of the shortest word of the design. Note
that the results 1 and 2 are true for designs with any resolution.

4. Optimal Foldover Designs

Zhang et al. (2008) presented a catalogue of 16- and 32-run GMC designs. We search opti-
mal foldover designs from the designs in Zhang et al. (2008) using GMC criterion, and compare
them with the optimal foldover designs obtained using MA and clear effects criteria. For each ini-
tial design, we consider all core foldover plans and calculate the AENP for each combined foldover
design. Then the AENPs are compared and the optimal combined foldover designs are obtained.
Similarly, the optimal MA foldover designs and the optimal clear effects foldover designs are also
obtained. Tables 1 and 2 present the optimal foldover designs obtained from the 16- (6 ≤ n ≤ 12)
and 32-run (7 ≤ n ≤ 15) designs, respectively, in Zhang et al. (2008).

In Tables 1 and 2, the first column lists the initial designs in Zhang et al. (2008); the second
column lists additional columns, which represent the generators of each design, from the design
matrix (Table 1 in Chen et al. Chen et al. (1993)); the third column lists AENP of the initial
design. To save space, we list only (#1C2 ,

#
2C2). The fourth and fifth columns represent the optimal
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foldover plans based on GMC criterion and AENP of the corresponding optimal combined foldover
designs, respectively. The sixth column shows the word length pattern (A4, A5, A6) of the optimal
foldover designs chosen based on MA criterion. We do not show A3 since it is zero for any
optimal foldover designs in the table. To save space, the corresponding optimal foldover plans are
not listed. The last column presents the number of clear main effects c1 and the number of clear
two-factor interactions c2 of the optimal foldover designs based on clear effects criterion. Again,
to save space, the corresponding optimal foldover plans are not listed.

For example, for 16-run design 7.3.1, the AENP of the initial design is (#1C2;
#
2C2) =

(7; 0, 0, 21). To save space, we write it as (7; 02, 21). The optimal foldover plans based on GMC
criterion are 5, 6, 7, 56, 57, 67, 567 and the AENP of the corresponding optimal foldover designs
is (7; 6, 12, 3). The word length pattern of the optimal foldover designs based on MA criterion is
(A4, A5, A6) = (3, 0, 0). For the optimal foldover designs obtained using clear effects criterion,
the number clear main effects is c1 = 7 and the number of clear two-factor interactions is c2 = 6.

For the optimal GMC foldover designs, we find that most of the 16-run designs considered
have only one optimal foldover plan except for designs 6.2.1, 7.3.1 and 8.4.1; for 32-run designs,
most of them have more than one optimal foldover plans. One can see that #

i C
(0)
j of all the optimal

foldover designs are the same or larger than that of the corresponding initial designs.

Although the optimal foldover plans of MA foldover designs are not listed, MA and GMC
criteria choose the same foldover plans as optimal for all the designs considered except for the 16-
run design 8.4.1 and 32-run designs 9.4.3, 11.6.1, 12.7.1, 12.7.2, 13.8.1 and 15.10.1, for which, the
two criteria choose completely different optimal foldover plans. This shows that the GMC criterion
can choose completely different foldover plans as the optimal from MA criterion. For example,
for design 8.4.1, eight foldover plans 5, 6, 7, 8, 567, 568, 578, and 678 are chosen as optimal
according to GMC criterion while six foldover plans 56, 57, 58, 67, 68, and 78 are selected as
optimal according to MA criterion. The AENP ′s of the optimal foldover designs chosen by GMC
and MA criteria are (8; 7, 0, 21) and (8; 0, 24, 0, 4), respectively. Clearly, the foldover designs
chosen by GMC criterion has seven clear two-factor interactions and the optimal foldover designs
selected by MA criterion has no clear two-factor interactions. Therefore, GMC criterion chooses
better designs than MA criterion in terms of estimation of effects. For 32-run designs, we search
optimal designs for 13 designs. The two criteria choose complete different optimal foldover plans
for six designs 9.4.3, 11.6.1, 12.7.1, 12.7.2, 13.8.1 and 15.10.1. For each of the six designs, there
are more than one optimal MA foldover plans. We present only one for each design here, they
are 67, 6910, 6710 12, 6712, 6711 13, and 6711 14 15, respectively. The results show that when the
number of runs becomes larger, the two criteria tends to choose different optimal foldover plans.

For the optimal foldover designs chosen by the clear effects criterion, their optimal foldover
plans always include the ones chosen by the GMC criterion. In fact, the two criteria choose the
same optimal foldover plans for all the designs except for the 16-run design 9.5.1 and 32-run
designs 9.4.1, 11.6.2, 12.7.2, and 13.8.1. For instance, for design 9.5.1, the GMC criterion chooses
589 as the optimal foldover plan while the clear effect criterion chooses 5 and 589 as the optimal
foldover plans. The AENP ′s of the optimal foldover designs obtained by foldover plans 5 and
589 are (9; 8, 0, 0, 28) and (9; 8, 24, 0, 4), respectively. Even though both foldover designs have
the same number of clear main effects and two-factor interactions, the former have 24 two-factor
interactions aliased with only 1 two-factor interaction whiles the latter have 28 two-factor
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interactions aliased with 3 two-factor interactions. The alias structure in latter is more severe
than in the former, thereby making it less preferable. In general, when the run size of a design is
large, the GMC criterion tends to choose less optimal foldover plans than the clear effects criterion.
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Abstract

The optimality of fractional factorial designs for N ≡ p mod 9 runs, p = 1, 2, 3, is studied,
when an experiment involves m factors each at three levels. The optimality criterion used here,
is the Φ-optimality employing the notion of majorization. Unlike what happens with orthogonal
array plus one run plans, the behavior of plans obtained via augmentation of an orthogonal array
by two or three runs depends on the particular runs added.

Key words: Fractional factorial; Orthogonal array; Majorization; Φ-, E-, A-, D-optimality.

1. Introduction

The problem of finding optimal experimental designs for any number N of runs and under
different optimality criteria, preoccupies researchers working in this area, almost six decades. Al-
though there are hundreds of papers on 2m fractional factorial designs (f.f.d. for short), there are
few papers on 3m f.f.d. The extension of theorems concerning 2m f.f.d. to the 3m f.f.d. is not
evident, since the elements of the design matrix of a 2m f.f.d. are ±1, fact which is not valid for
the case of 3m f.f.d. and generally for sm f.f.d. It is well known that in general sm setup, when the
number of runs is N ≡ 0 mod s2 the corresponding information matrix is diagonal and the optimal
designs are constructed via orthogonal arrays (OA for short), Hedayat et al. (1999), Raghavarao
(1971). For N 6≡ 0 mod s2, s > 2, the problem of finding optimal f.f.d. is partially solved in Chai
et al. (2002), Chatzopoulos et al. (2011), Kolyva-Machera (1989a), Kolyva-Machera (1989b),
Mukerjee et al. (1999), Pericleous et al. (2017) where the authors found the type 1 optimal designs
for sm f.f.d. in the class of O.A. plus p runs. A wide list of optimal f.f.d. can be found in Dey and
Mukerjee (1999). In this paper we give Φ-optimal designs for N ≡ p mod 9 runs, p = 1, 2, 3 using
the notion of majorization.

The paper is organized as follows. The notations and preliminaries are presented in section 2,
while section 3 deals with the main results of this paper. Our findings are illustrated with examples
in section 4.

Corresponding Author: Fotini Kolyva-Machera
E-mail: fkolyva@math.auth.gr
Invited paper: Part of the special issue on Designs for Factorial Experiments and their Applications, guest edited by
Rajender Parsad, Sudhir Gupta and Kashinath Chatterjee
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2. Notations and Preliminaries

Consider a factorial experiment involvingm (≥ 2) factors F1, . . . , Fm each at 3 levels, coded
0, 1, 2. A typical level combination of the factors is denoted as `1`2 · · · `m, where `j = 0, 1, 2,
j = 1, 2, . . . ,m. Let DN be the class of designs with N ≡ p mod 9 runs, p = 1, 2, 3, consisting
of the treatment combinations `i1`i2 · · · `im, where i = 1, 2, . . . , N , j = 1, 2, . . . ,m, `ij = 0, 1, 2.
For any positive integer t, let 1t be the t × 1 vector with all elements unity and It (or simply I if
there is no risk for confusion) be the identity matrix of order t and P =

(
p(0) p(1) p(2)

)
be

a 2× 3 matrix satisfying

PP′ = 3I2, P13 = 0, p′(k)p(l) = 3δk` − 1, k, ` = 0, 1, 2, (2.1)

where 0 is a null vector of an appropriate order, P′ denotes the transpose of matrix P and δk` is the
Kronecker delta. So, the 2× 3 matrix P satisfying (2.1) is

P =
 −√3

2 0
√

3
2√

1
2 −2

√
1
2

√
1
2

 . (2.2)

Let zj (or zjN , if needed), 1 ≤ j ≤ m be an N × 2 matrix with rows p′(0) or p′(1) or p′(2)
and θj be the vector of main effect parameters of factor Fj . Then under the assumption of the
absence of interaction effects involving two or more factors, we have the following linear model

E(Y) = 1Nµ+∑m
j=1 zjθj,

V ar(Y) = σ2IN ,

}
(2.3)

where Y is the N × 1 vector of observations (response).

Define the design matrix R = [1N , z1, · · · , zm]. The information matrix of a design d ∈ DN
will then be

MN = R′R. (2.4)

2.1 Properties of the Information Matrix

Consider two subsets of a design d ∈ DN withN1 < N andN2 = N−N1 runs, respectively.
For ` = 1, 2 let zjN`

be the N` × 2 matrix with rows p(aij)p′(aij), 1 ≤ i ≤ N`, 1 ≤ j ≤ m and
N1 +N2 = N . Then:

R =
(

R1
R2

)
=
(

1N1 z1N1 z2N1 . . . zmN1

1N2 z1N2 z2N2 . . . zmN2

)
(2.5)

and the information matrix of any design d ∈ DN can be written as:

MN = R′1R1 + R′2R2 = M1 + M2, (2.6)

that is MN can be decomposed in two (or more) information matrices with N1 and N2 = N −N1
runs, respectively.
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Remark 2.1. If M1 = N1I, then N1 ≡ 0 mod 9 and the off-diagonal elements of the information
matrix M2 are equal to the off-diagonal elements of the information matrix MN , while the diagonal
elements of M2 are equal to the diagonal elements of MN minus N1.

Definition 2.1. For i 6= j = 1, 2, . . . ,m, `, k = 0, 1, 2, let ni(`) be the number of runs where the
ith factor enters the experiment at level ` and nij(`k) be the number of runs where the i-th factor
enters the experiment at level ` and j-th factor enters the experiment at level k. It holds that

N = ∑2
`=0 ni(`), N = ∑2

`=0
∑2
k=0 nij(`k),

ni(`) = ∑2
k=0 nij(`k), nj(k) = ∑2

`=0 nij(`k). (2.7)

The information matrix of a design d ∈ DN , for the model (2.3), after some simple matrix
manipulations, using the parametrization (2.2) can be written as:

MN =


N

√
3
2a′

√
1
2b′√

3
2a 3

2A
√

3
2 C√

1
2b

√
3

2 C′ 1
2B

 , (2.8)

where a, b are m× 1 vectors , A and B are m×m symmetric matrices and C is an m×m matrix.
For i 6= j = 1, 2, . . . ,m the elements of the above vectors and matrices are given by the following
relations:

ai = ni(2)− ni(0), bi = N − 3ni(1),
aii = N − ni(1), aij = nij(00) + nij(22)− nij(02)− nij(20),
bii = N + 3ni(1), bij = N − 3ni(1)− 3nj(1) + 9nij(11),
cii = ni(2)− ni(0), cij = ni(2)− ni(0) + 3[nij(01)− nij(21)].

(2.9)

Remark 2.2. From relationships (2.9) it is obvious that trace(MN) = N + ∑m
i=1(3

2aii + 1
2bii) =

(2m+ 1)N .

Lemma 2.1. Let U1 = {ai, bi, aii, bii, cii} and U2 = {aij, bij, cij, cji}, i 6= j = 1, 2, . . . ,m. The
elements of these two sets are all even or all odd.

Proof. After a simple algebra, using (2.7) and (2.9), for i 6= j = 1, 2, . . . ,m, one can easily verify
the following relationships:

ai + bi = 2(ni(2)− ni(1)) = 2ãi. (2.10)

aii + bii + 2cii = 4(N − ni(0)) = 4ãii. (2.11)

aij + cij = 2[nij(01) + nij(22)− nij(02)− nij(21)]. (2.12)

aij + bij = 2[−ni(1)− nj(1) + nij(00) + nij(22) + 4nij(11)]. (2.13)

cji + bij = 2[nj(2)− nj(1) + 3nij(11)− 3nij(12)] = 2c̃ji. (2.14)

aij + cij + cji + bij = 4[nij(11) + nij(22)− nij(12)− nij(21)] = 4ãij. (2.15)

cii + bii = 2[2ni(1) + ni(2)] = 2c̃ii. (2.16)

From (2.10)-(2.16) the proof of lemma is obvious. �
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Lemma 2.2. It holds that det(MN) = 33mz, z ∈ Z.

Proof. Let us denote:

M̃N =

 N a′ b′
a A C
b C′ B

 . (2.17)

Then, from (2.8) we have:

det(MN) = 3m
22mdet(M̃N). (2.18)

By adding the (m+1+j)-th rows and columns to the (j+1)-th rows and columns, j = 1, 2, . . . ,m,
respectively, from (2.17), we get that:

det(M̃N) = det

 N a′ + b′ b′
a + b A + C + C′ + B C + B

b C′ + B B

 ,
that is from (2.10), (2.11), (2.13)-(2.16), we have:

det(M̃N) = 22mdet


N ã′ b′

ã Ã C̃
b C̃

′
B

 ,
where for i 6= j = 1, 2, . . . ,m the elements of m × m matrices Ã = (ãij) and C̃ = (c̃ij) are as
defined in (2.11), (2.15) and (2.14), (2.16), respectively, while the elements of them×1 vector ã are
given in (2.10). By subtracting the first row and column from the (m+ 1 + j)-th, j = 1, 2, . . . ,m,
rows and columns, respectively, we have:

det(M̃N) = 22mdet


N ã′ b′ −N1′m
ã Ã C̃− ã1′m

b−N1m C̃
′ − 1mã′ B− b1′m − 1mb′ +N1m1′m

 .
It can be easily seen that:

bi −N = −3ni(1). (2.19)

c̃ii − ãi = 3ni(1). (2.20)

c̃ji − ãj = 3(nij(11)− nij(12). (2.21)

b̃ii − 2b̃i +N = 9ni(1). (2.22)

b̃ji − b̃i − b̃j +N = 9nji(11). (2.23)

Using (2.19)-(2.23), we get

det(M̃N) = 32m22mdet

 N ã′ b̃
′

ã Ã Ẽ
b̃ Ẽ

′
B̃

 , (2.24)
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where b̃ is a m × 1 vector, B̃ is a m × m symmetric matrix and Ẽ is a m × m matrix. For
i 6= j = 1, 2, . . . ,m the elements of the above vectors and matrices are given by the following
relations:

b̃i = −ni(1),
b̃ii = ni(1), b̃ij = nij(11),
ẽii = ni(1), ẽij = nij(11)− nij(21).

From relations (2.18) and (2.24) the result follows. �

2.2 Optimality and Majorization

Definition 2.2. A design d∗ ∈ DN , with information matrix M∗
N , is said to be Φ-optimal if it

minimizes a functional Φ of the information matrix MN of any design d ∈ DN , that is, Φ(MN) ≥
Φ(M∗N). In other words, d∗ minimizes φ(λ1)+φ(λ2)+. . .+φ(λk) for all continuous, decreasing and
convex functions φ(λ) (Marshall et al. (1979), p.11), where λi, i = 1, 2, . . . , k are the latent roots
of the information matrix MN . Note that A-, E-, D-optimality are special cases of Φ-optimality.
Consideration of the functions φ(M) = log{det(M−1)}, φ(M) =trace(M−1) and φ(M) largest
eigenvalue of M−1, which are all members of Φ, shows that a Φ-optimal plan is also D-,A-, and
E-optimal.

The following definition 2.3 can be found in Marshall et al. (1979), p.7, p.11.

Definition 2.3. If x, y ∈ Rk, x = (x1, x2, . . . , xk)′, y = (y1, y2, . . . , yk)′, then x is majorized
by y (x ≺ y) if x(1) + x(2) + . . . + x(j) ≥ y(1) + y(2) + . . . + y(j), j = 1, 2, . . . , k − 1 and
x(1) + x(2) + . . .+ x(k) = y(1) + y(2) + . . .+ y(k).

Lemma 2.3. The following lemma can be found in (Marshall et al. (1979), p.11). For majorization
the following conditions are equivalent:

(a) x ≺ y.

(b)
∑k
i=1 φ(xi) ≤

∑k
i=1 φ(yi) for all continuous convex functions φ.

An immediate consequence of lemma 2.3 is the following lemma 2.4.

Lemma 2.4. A design d∗ with k × k information matrix M∗N and latent roots λ1, λ2, . . . , λk, is
Φ-optimal in the class DN of designs, if the latent roots of M∗N are majorized by the latent roots of
the information matrix MN of any design d ∈ DN .

Lemma 2.5. Let Q be a positive definite matrix of order k (pd(k), for short) and λ(Q) the vector
of the latent roots of Q. For the completely symmetric matrix Q∗ = (a∗ − b∗)Ik + b∗Jk, where a∗

is the mean of the diagonal elements of Q and b∗ is the mean of the off diagonal elements of Q, it
holds λ(Q∗) ≺ λ(Q).
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Proof. See Kiefer (1975). �

Lemma 2.6. If Q = (qij) is a pd(k) matrix with vector of diagonal elements δ(Q) =
(q11, q22, . . . , qkk)′ and vector of latent roots λ(Q) = (λ1, λ2, . . . , λk)′, then δ(Q) is majorized by
λ(Q). Equality holds only iff Q is diagonal.

Proof. See Pukelsheim (1993), p.146. �

Lemma 2.7. If s1: x1 = x2 = . . . = xk = x, s2: y1, y2, . . . , yk not all equal and y1+y2+. . .+yk =
kx, then (x1, x2, . . . , xk) is majorized by (y1, y2, . . . , yk) or s1 ≺ s2.

Proof. See Pericleous et al. (2017). �

Corollary 2.1. An immediate consequence of lemmas 2.2, 2.4 and 2.7 is that the design d∗ with
information matrix M∗N = NIk is Φ-optimal. However, M∗N = R′R = NIk, which means that the
columns of R are orthogonal. �

3. Main Results

Let us now consider a (2m+1)×(2m+1) information matrix MN with constant trace(MN) =
(2m + 1)N and latent roots λ1, λ2, . . . , λ2m+1. Without loss of generality we may assume that
λ1 ≤ λ2 ≤ . . . ≤ λ2m+1. If we denote

Sv = (1
v

v∑
i=1

λi, . . . ,
1
v

v∑
i=1

λi, λv+1, . . . , λ2m+1) (3.1)

then from definition 2.3 we have s1 � s2 � . . . � s2m+1. Moreover, let us denote

Svu = (1
v

v∑
i=1

λi, . . . ,
1
v

v∑
i=1

λi,
1
u

u∑
i=1

λv+i, . . . ,
1
u

u∑
i=1

λv+i, λv+u+1, . . . , λ2m+1) (3.2)

that is Svu has v components equal to 1
v

∑v
i=1 λi, u components equal to 1

u

∑u
i=1 λv+1 and the

(2m+1−v−u) components (λv+u+1, . . . , λ2m+1). Then, if Sv = Sv1, from definition 2.3 it holds
that Sv � Sv2 � . . . � Sv(2m+1−u). In what follows MSv is the information matrix with latent roots
as defined in (3.1) and MSvu is the information matrix with latent roots as defined in (3.2). Then
from lemma 2.3 it holds that:

Φ(MN) = Φ(MS1) ≥ Φ(MS2) ≥ . . . ≥ Φ(MS2m+1) (3.3)

and for v = 1, 2, . . . , 2m we have

Φ(MSv) ≥ Φ(MSv1) ≥ . . . ≥ Φ(MSv(2m+1−u)). (3.4)

The information matrix MS2m+1 has 2m+ 1 equal latent roots λi = N , i = 1, 2, . . . , 2m+ 1,
minimizes Φ(MN), so the design d∗ ∈ DN is Φ-optimal. From relations (2.9), the information
matrix MN , given in (2.8), is diagonal iff ni(0) = ni(1) = ni(2) = N/3, i = 1, 2, . . . ,m and
nij(`k) = N/9, i 6= j = 1, 2, . . . ,m, which is true iff N ≡ 0 mod 9, and d∗ is given by an
OA(N,m, 3, 2).
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Remark 3.1. For N 6≡ 0 mod 9, the information matrix of the Φ-optimal design d∗ ∈ DN , from
(3.3) and (3.4) will be MSv(2m+1−v) , v < 2m+1, with v, as close to 2m+1 as possible. Also, matrix
MSv(2m+1−v) has v latent roots equal to λ < N , and u latent roots equal to λ′i = (2m+ 1)N−λ

u
+ λ,

v + u = 2m+ 1.

Lemma 3.1. Consider an sm f.f.d. where s ≥ 3. Let 1 ≤ p ≤ s + 1 and DOA be the class of
designs obtained by adding p runs to an OA and MOA be the corresponding information matrix of
a design d ∈ DOA. This design is E-optimal in the class DOA.

Proof. See [Dey and Mukerjee (1999), p.111].

Lemma 3.2. The information matrix MOA has 2m+ 1− p latent roots equal to N − p and p latent
roots λi > N − p, i = 1, . . . , p.

Proof. See [Chatzopoulos et al. (2011), lemma 3].

From definition 2.2, design d ∈ DOA, with information matrix MOA, is E-optimal if d max-
imizes the smallest eignvalue of MOA. If λ(MOA) = (µ1, µ2, . . . , µ2m+1), then from lemmas 3.1
and 3.2, (µ1, µ2, . . . , µ2m+1) = (N−p, . . . , N−p, λ1, λ2, . . . , λp) with λi > N−p, i = 1, 2, . . . , p.
So, it holds that maxmin{µ1, µ2, . . . , µ2m+1} = N − p,

Theorem 3.1. Let d∗ ∈ DN be the Φ-optimal design with information matrix M∗. If N ≡ p mod
9, p 6= 0, then for the smallest latent root of M∗ it holds that λ = N − p.

Proof. As E-optimality is a special case of Φ-optimaity and DOA ⊂ DN , for the maximum of the
smallest latent root of the Φ-optimal design d∗ ∈ DN , it holds that N − p ≤ λ < N , where N ≡ p
mod 9. On the other hand, from lemma 2.2, for any information matrix MN of a 3m f.f.d, it holds
that det(MN) = 33mz, z ∈ Z, that is, if M∗N = MSv(2m+1−v) , then

det(M∗N) = λv(λ+ (2m+ 1))N − λ
u

))u = 33mz, (3.5)

where z ∈ Z, v + u = 2m+ 1 and v as close to 2m+ 1 as possible, or u as small as possible. For
N − λ ≤ p ≤ 3, relation 3.5 holds for λ = N − p.

Lemma 3.3. If a pd(q) matrix M has latent roots: λ with multiplicity q − k, q > k and
λ1, λ2, . . . , λk, where λ < λi, 1 ≤ i ≤ k, then this matrix can be written as M = λI + FF′, where
F is a q × k matrix.

Proof. For any pd(q) matrix M exists an orthogonal q × q matrix W, where WW′ = Iq, such
that W′MW = D, where D is a q × q diagonal matrix. If M has latent roots: λ with multiplicity

q − k, q > k and λ1, λ2, . . . , λk, where λ < λi, 1 ≤ i ≤ k, then D =
(

V 0
0 λIq−k

)
, where

V = diag(λ1, λ2, . . . , λk) or D = λIq +
(

V− λIk 0
0 0

)
. Then

M = WDW′ = λIq + W
(

V− λIk 0
0 0

)
W′,
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that is

M = λIq + (W1 W2)
(

V− λIk 0
0 0

)(
W′

1
W′

2

)
,

or

M = λIq + W1(V− λIk)W′
1 = λIq + FF′,

where F = W1(V1/2 −
√
λIk).�

As DOA ⊂ DN , we will try to find a design d∗ ∈ DN with information matrix M∗N , such that
λ(M∗N) ≺ λ(M∗OA).

Lemma 3.4. It holds that MSv = (N − p)I + Mp, where Mp is an information matrix such that
Mp = R′1R1 and R′1 is a (2m+ 1)× p design matrix.

Proof. From relation (3.1), theorem 3.1 and lemma 3.3 it holds that λ = N − p and MSv =
(N − p)Iq + FF′. Matrix FF′ has off-diagonal elements the off-diagonal elements of matrix MSv

and diagonal elements the diagonal elements of matrix MSv minus N −p. From remark 2.1 matrix
FF′ is an information matrix, say Mp of a design with p runs and the result follows. �

Lemma 3.5. For p = 1, 2, 3 and w = 1, 2, let x = (x(1), x(2), . . . , x(p)), where x(1) = g−w(p−1),
x(i) = g + w, i = 2, 3, . . . , p, z = (z(1), z(2), . . . , z(p)), where z(p) = g − (p − 1)(w − 3), z(i) =
g + w − 3, i = 1, 2, . . . , p− 1 and

∑p
i=1 z(i) = ∑p

i=1 x(i) = pg. Then:

(i) z ≺ x for w = 2.

(ii) x ≺ z for w = 1.

Proof. Since
∑p
i=1 z(i) = ∑p

i=1 x(i), from definition 2.2 we have that:

(i) If w = 2 then

z ≺ x⇔
j∑
i=1

z(i) ≥
j∑
i=1

x(i), j = 1, 2, . . . , p− 1⇔

⇔ j(g − 1) ≥ j(g + 2)− 2p, j = 1, 2, . . . , p− 1⇔
⇔ 2p ≥ 3j, j = 1, 2, . . . , p− 1,

which is true beacuse p = 1, 2, 3, that is 2p ≥ 3(p− 1) ≥ 3j, j = 1, . . . , p− 1.

(ii) If w = 1 then

x ≺ z⇔
j∑
i=1

z(i) ≤
j∑
i=1

x(i), j = 1, 2, . . . , p− 1⇔

⇔ (g − 2)j ≤ j(g + 1)− p, j = 1, 2, . . . , p− 1⇔
⇔ p ≤ 3j, j = 1, 2, . . . , p− 1.
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�

Theorem 3.2. Suppose that the OA(N − p,m, 3, 2) exists for some p, p = 1, 2, 3 and let DOA
be the class of designs obtained by adding p runs to an OA(N − p,m, 3, 2) . Let d∗ ∈ DOA be
the Φ-optimal design in this class and M∗OA ∈ M2m+1 is the corresponding information matrix.
The latent roots of M∗OA are N − p with multiplicity 2m + 1 − p, N − p + 2m + 1 − y with
multiplicity p − 1 and N − p + 2m + 1 + (p − 1)y with multiplicity 1, where y = 3m∗1 −m + 1
with m∗1 =round[(m− 1)/3], and round[t] is the nearest integer to t.

Proof. From relation (2.5) and (2.6) and remark 2.1 we have MOA = (N − p)I2m+1 + R′1R1, with
R1 = (1p, z1p, z2p, . . . , zmp), where zjp, 1 ≤ j ≤ m are p× 2 matrices as defined in section 2. The
latent roots of matrix MOA are N − p with multiplicity 2m+ 1− p and the latent roots of the p× p
matrix Q = (N−p)Ip+R1R′1 (say λ1, λ2, . . . , λp). From Chai et al. (2002) and Chatzopoulos et al.
(2011), the diagonal elements of R1R′1 are 2m+1 and the off-diagonal elements are 3mij−m+1,
1 ≤ i 6= j ≤ p, where mij is the number of coincidences between level combinations `i1`i2 · · · `im
and `j1`j2 · · · `jm. Then, Tr((N − p)Ip + R1R′1) = p(N − p + 2m+ 1), which is independent of
the design d.

Let us now consider the matrix Q∗ with diagonal elements the mean of the diagonal elements
of Q and off-diagonal elements the mean of the off-diagonal elements of Q. If we denote a =
N − p + 2m + 1 and b = 3m1 −m + 1, where m1 is the mean number of coincidences between
the level combinations `i1`i2 · · · `im and `j1`j2 · · · `jm, 1 ≤ i 6= j ≤ p, then Q∗ = (a− b)Ip + bJp.
The latent roots of Q∗ are a− b with multiplicity p− 1 and a− b+ pb with multiplicity one. From
lemma 2.5 we have λ(Q∗) ≺ λ(Q)) and from lemma 2.3 we get Φ(Q) ≥ Φ(Q∗).

It holds that:

Φ(MOA) = (2m+ 1− p)φ(N − p) +
p∑
i=1

φ(λi) =

= (2m+ 1− p)φ(N − p) + Φ(Q) ≥ (2m+ 1− p)φ(N − p) + Φ(Q∗) =

= (2m+ 1− p)φ(N − p) + (p− 1)φ(N − p+ 2m+ 1− (3m1 −m+ 1)) +
+φ(N − p+ 2m+ 1 + (p− 1)(3m1 −m+ 1)) ≥

≥ (2m+ 1− p)φ(N − p) + (p− 1)φ(N − p+ 2m+ 1− (3m∗1 −m+ 1)) +
+φ(N − p+ 2m+ 1 + (p− 1)(3m∗1 −m+ 1)) = φ(M∗OA),

where m∗1 is the mean value of coincidences minimizing g(m1) = (p − 1)φ((N − p + 2m + 1 −
(3m1 −m+ 1)) + φ(N − p+ 2m+ 1 + (p− 1)(3m1 −m+ 1)).

Indeed, if m − 1 ≡ 0mod3, then for m1 = (m − 1)/3, matrix Q∗ is diagonal and Q∗ =
(N − p+ 2m+ 1)Ip.

If (m − 1) = 3c + w, c ∈ Z, 1 ≤ w ≤ 2, then 3m1 − (m − 1) = 3(m1 − c) − w, that
is c < (m − 1)/3 < c + 1. Consequently, for m1 = c we have 3m1 − (m1 − 1) = −w, while
for m1 = c + 1 we have 3m1 − (m1 − 1) = 3 − w and the corresponding vectors of the latent
roots are x and z, respectively, as defined in lemmma 3.5 for g = N − p + 2m + 1. Moreover,
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from lemmma 3.5, if m 6≡ 1 mod 3, then m1 should be the nearest integer to (m − 1)/3, that is
m∗1 =round[(m− 1)/3] for p = 1, 2, 3. �

Theorem 3.3. Consider an 3m fractional factorial design and the class of designs DN with N ≡
p mod 9 runs, p = 1, 2, 3, and that OA(N − p,m, 3, 2) exists. Let also consider the p level
combinations `j1`j2 · · · `jm, j = 1, 2, . . . , p, such that any two level combinations have an equal
number m∗1 =round[(m − 1)/3] of coincidences. The design d∗ ∈ DN obtained by adding the
above p level combinations to an OA(N − p,m, 3, 2) is Φ-optimal

Proof. From relation (3.1) the Φ-optimal design is the one having information matrix Ms2m+1 =
NI2m+1 which implies that the design is orthogonal and N ≡ 0 mod 9. For N ≡ p mod 9, p 6= 0,
the optimal design, should have information matrix Msv , Msv ∈ M2m+1, with v ≤ 2m as great
as possible. Since Msv has v equal latent roots λ, from lemma 3.4, we have that matrix Msv is
decomposed in two information matrices, such that Msv = (N − p)I2m+1 + R′1R1. As mentioned
in theorem 3.2, the multiplicity of eigenvalue N − p is v = 2m+ 1− p (the greatest possible). So,
from theorem 3.1, we have Msv = MOA. Consequently, for any design d ∈ DN , with information
matrix MN , MN ∈M2m+1, from theorems 3.1 and 3.2, it holds:

Φ(MN) = Φ(Ms1) ≥ Φ(Msv) = Φ(MOA) ≥
≥ (2m+ 1− p)φ(N − p) + (p− 1)φ(N − p+ 2m+ 1− (3m∗1 −m+ 1)) +

+φ(N − p+ 2m+ 1 + (p− 1)(3m∗1 −m+ 1)) = Φ(Md∗),

where m∗1 =round[(m− 1)/3]. Hence, the design d∗ ∈ DN obtained as described in the statement
of theorem 3.3 is Φ-optimal.

The following examples clarify our main results.

4. Examples

For N ≡ 1 mod s2 and k = (s − 1)m + 1, we have from theorem 3.3 that Φ(MN) ≥
(k−1)φ(N−1)+φ(N−p+k). The information matrix of a design obtained by adding any run to
anOA(N−1,m, s, 2) is M∗OA = (N−1)Ik+ff′, where f′ is any row of matrix R as defined in (2.4).
The latent roots of M∗OA are, N−1 with multiplicity k−1 and 1+ f′((N−1)Ik)−1f = (N−1+k),
according to lemma 2.1. So, this design is Φ-optimal. Kolyva-Machera (1989a), Kolyva-Machera
(1989b) proved that the design obtained by adding any run to an OA(N − 1,m, 3, 2) is D- and
G-optimal. Also, Mukerjee et al. (1999) proved that the design obtained by adding any run to an
OA(N−1,m, s, 2) is type 1 optimal. Note that type 1 optimality includes D-, A- and E-optimality
(see Cheng (1978)).

For N ≡ p mod 9 runs, p = 2, 3, a Φ-optimal 3m f.f.d. can be founded by adding p of the
following level combinations: `11`12 . . . `1m, `21`22 . . . `2m, `31
`32 . . . `3m, where for h 6= i 6= k 6= h `hj 6= `ij 6= `kj 6= `hj , for j = 1, 2, . . . ,m − m∗1 and
`ij = `kj = `hj , for j = m−m∗1 + 1, . . . ,m to an OA(N − p,m, 3, 2).

Conclusion. The problem of finding optimal fractional factorial designs for any N 6≡ 0
mod s2, s > 2 has stuck for many years. Although this paper solves the problem, the existence
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of orthogonal arrays for any N ≡ 0 mod s2 and any m, is necessary and the problem of finding
optimal designs, remains open for futher research.
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Abstract

Following Sinha et al. (2014), we initiate a study in the context of 2n-factorial experiments
involving the question of optimal allocation of covariate values. There is one controllable quan-
titative covariate and it is assumed to ’cover’ two experimental units at a time. Earlier we dealt
with block design set-up [Sinha et al. (2014)]. Here we take up 2n-factorial set-up and address the
question of optimal allocation of the covariate values. Results are illustrated for 22- or 23-factorial
experiments.

Key words: Factorial experiments; Models with covariates; Optimal placement of covariate values.

1. Introduction

The key reference to this article is Sinha et al. (2014) dealing with a varietal design set-up.
Here we start with a factorial experiment with the level-combinations having standard representa-
tions such as [(0, 0), (0, 1), (1, 0), (1, 1)] for a 22 experiment. There is a controllable covariate x
attached to every experimental unit and x assumes values in the closed interval [−1, 1]. However,
every attempt towards choice and application of x necessarily ’covers’ a pair of experimental units
each time. Thus, for example, we may choose 2 units and apply the level combinations (0, 0)
and (0, 1) and attach a value x = x1 to each of these two units. The mean responses for the two
underlying outputs Y [(0, 0);x1] and Y [(0, 1);x1] are assumed to be of the form τ(00) + βx1 and
τ(01) + βx1 respectively. Naturally, the contrast τ(01)− τ(00) is readily estimated.

Based on the 22 = 4 level combinations, we may form 6 pairs of the above form and make
use of 6 × 2 = 12 experimental units in pairs and thereby use 6 covariate values. All ’level-
combination contrasts’ are trivially estimated and hence Main Effects and the 2-factor Interaction
are unbiasedly estimated. We wish to provide unbiased estimate of the β-coefficient with utmost
precision by suitable choice of the covariate values x’s.

Corresponding Author: Bikas Kumar Sinha
E-mail: bikassinha1946@gmail.com
Invited paper: Part of the special issue on Designs for Factorial Experiments and their Applications, guest edited by
Rajender Parsad, Sudhir Gupta and Kashinath Chatterjee
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Likewise, we may take up the case of 23-factorial experiment and study similar optimality
problem involving 28 x-values, all in the closed interval[−1, 1].

While we will develop the theory of optimization for the general case of 2n-factorial exper-
iment involving 2(n−1)(2n − 1) covariate-values, the cases of n = 2, 3 will serve as illustrative
examples.

2. Optimal Choice of Covariate Values for 2n-factorial Design Set-up

For n factors, each at 2-levels, let N = 2n denote the total number of level combinations.
Since the allocation of covariate-values is assumed to ’cover’ a pair of experimental units each
time, we let c = (N2 ) denote the number of covariates xi, i = 1, 2, · · · , c and X denote the (c× 1)
vector (x1x2 · · ·xc)′. Now, it follows that I(β) is a quadratic form in X and we denote it by a
constant times Q(X).

Construction of the matrix of quadratic form:
I(β) = 2X ′IX − [(c′1X)2 + · · ·+ (c′NX)2]/(N − 1)
= (1/(N − 1))X ′{2(N − 1)I − [(c1c

′
1 + · · ·+ cNc

′
N)]}X = (1/(N − 1))Q(X),

where ci is the coefficient vector of order (c × 1) of ith constraint having (N − 1) elements equal
to 1 and the rest equal to 0.
Therefore each cic

′
i is a symmetric matrix of order (c × c) with only (N − 1) nonnull rows

(columns) with each nonnull row (column) having (N − 1) elements equal to 1 and the rest of
(c−N + 1) elements equal to 0.
Thus Q(X) = X ′[2(N − 1)I −M ]X where M = Σcic

′
i.

Notice thatM is a symmetric matrix of order (c×c) wherein each row (column) has diagonal
element equal to 2, 2(N − 2) elements equal to 1 and the rest of (c− 2N + 3) elements equal to 0.

In order to maximize Q(X) for optimal choice of X i.e., of the xi’s, we argue, as in Sinha
et al. (2014), that Q(X) is maximized only when the x’s are each at the extremes i.e., +/− 1. We
skip the proof in general terms. However, we provide all the technical details below for the cases
of n = 2, 3.

3. Optimal Choice of Covariate Values for 22 Factorial Design Set-up

We start with the following Table 1 of x-values :

Standard representation in the form [Y,Aθ, σ2I] with

θ = (τ(00), τ(01), τ(10), τ(11), β)′

suggests a form of the matrix A of order 12× 5 and we partition it as usual to derive an expression
for Information on β i.e., I(β). For simplicity, we drop the multiplier σ−2. It follows that

I(β) = 2(
∑

x2i )− [(x1 + x2 + x3)
2 + (x1 + x4 + x5)

2 + (x2 + x4 + x6)
2 + (x3 + x5 + x6)

2]/3.
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Table 1

x− values level − combination(1) level − combination(2)
x1 (0, 0) (0, 1)
x2 (0, 0) (1, 0)
x3 (0, 0) (1, 1)
x4 (0, 1) (1, 0)
x5 (0, 1) (1, 1)
x6 (1, 0) (1, 1)

Optimality problem centers around optimal choice of the x’s so as to maximize I(β) when −1 ≤
xi, i = 1, 2, 3, 4, 5, 6 ≤ 1.

It follows that I(β) can be expressed as a constant times a quadratic form Q(X). I(β) =
X ′[6I−M ]X/3 = Q(X)/3 where the matrix M with ithcolumn mi is given in an explicit form as

M = Σcic
′
i =



m1 m2 m3 m4 m5 m6

2 1 1 1 1 0
1 2 1 1 0 1
1 1 2 0 1 1
1 1 0 2 1 1
1 0 1 1 2 1
0 1 1 1 1 2


It turns out that a choice of the X’s subject to the value of each of the expressions (x1 +x2 +

x3), (x1 + x4 + x5), (x2 + x4 + x6), (x3 + x5 + x6) is +/− 1;xi = +/− 1 serves the purpose and
we achieve I(β) = 32/3. Specifically, one choice is
x1 = −1, x2 = +1, x3 = −1, x4 = −1, x5 = +1, x6 = +1 which yields, for the partial sums,
(x1 + x2 + x3) = −1, (x1 + x4 + x5) = −1, (x2 + x4 + x6) = +1, (x3 + x5 + x6) = +1.

We give a proof of the above claim below.
Lemma 1 : Let X0 = (x1x2 · · ·xc)′ be the vector with elements in the interval [−1,+1] which
maximizes Q(X) = X ′(tI − M)X , where t ≥ max(mii) is a positive constant. Then each
component xi of X0 is +/− 1.

Proof: Write X0 = Ui + xiei where ei is the ith column of I. Then
Q(X0) = (Ui + xiei)

′(tI −M)(Ui + xiei) = U ′i(tI −M)Ui + x2i (t−mii) + 2xiU
′
i(tI −M)ei

= U ′i(tI −M)Ui + x2i (t−mii) + 2xiU
′
i(−M)ei = pi + (t−mii)x

2
i + 2xiqi,

where pi = U ′i(tI −M)Ui and qi = −U ′iMei = −U ′imi do not involve xi.
Now it is clear that for Q(X0) to be maximum the value of xi should be +/ − 1 with sign as that
of the constant qi. In case qi = 0, xi can be given any of +1 or −1.

Algorithm: Start with U0 = φ. For i = 1, 2, · · · , c, in ith step, calculate qi = −U ′i−1mi. Replace
ith element of Ui−1 with +/ − 1, the sign being that of qi and denote this new vector by Ui. If
qi = 0 then any sign can be chosen. Add |qi| to q. Increase i by 1 and repeat.
After c steps, check the vector X = Uc is a vector which maximizes Q(X) or not.
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The following lemma is useful for checking whether the vector computed using above algo-
rithm maximizes Q(X) or not.

Lemma 2 : Starting with U0 = φ, the final vector Uc obtained after c steps of above algorithm
maximizes Q(X) if and only if 2q=2Σ|qi| = Σmii −N .
Proof: Let Qi denote Q(Ui), for i = 1, 2, · · · , c. Notice that at ith step
Qi = Qi−1 + (t −mii)x

2
i + 2xiqi. Hence the increment at ith step is (t −mii)x

2
i + 2xiqi. Thus

Qc =
∑

((t −mii)x
2
i + 2xiqi) = t × c − Σmii + 2 × Σ|qi|. Comparing this with the maximum

value t× c−N of Q(X), we get the required result.

For n = 2, N = 4, c = 6, t = 6, each mii = 2 and Σ|qi| = 4 (from the table).Therefore,
2Σ|qi| = 8 = Σmii −N . Hence Q(Uc) maximizes Q(X).

In order to achieve the solution, it is now a matter of verification of the conditions

(u1 + u2 + u3) = (u1 + u4 + u5) = (u2 + u4 + u6) = (u3 + u5 + u6) = +/− 1;xi = +/− 1.

Example: For the case n = 2, the successive U vectors along with k2 values are as follows:

qi 0 −1 0 0 −1 2
U0 U1 U2 U3 U4 U5 U6

0 1 1 1 1 1 1
0 0 −1 −1 −1 −1 −1
0 0 0 1 1 1 1
0 0 0 0 −1 −1 −1
0 0 0 0 0 −1 −1
0 0 0 0 0 0 1

The first row gives the values of qi = −U ′i−1mi, for i = 1, 2, · · · , c, and the last column
displays the optimum choice of U since the conditions are readily verified to hold.
For the first step when q1 = 0, we chose the value +1 for the first element of U1. Next step q2 = −1
and we take the second element of U2 = −1. For the third step, q3 = 0 and we choose the third
element of U3 = 1 and so on. The solution is not unique though. For example, another choice of
the final vector is (1 − 1 1 1 − 1 1) which also maximizes Q(x).

4. Optimal Choice of Covariate Values in A 23 Factorial Experiment

We now discuss similar result for the case of 23 factorial experiment. A version of Table 1
would be Table 2 as shown below. This time the matrix A is of order 28× 9 and I(β) is given by
the expression [again ignoring σ−2]

I(β) = 2
∑

x2i − [(x1 + x2 + ... . . .+ x7)
2 + . . .+ (x7 + x13 + x18 + x22 + x25 + x27 + x28)

2]/7
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It turns out that I(β) attains its maximum value of 56− 8/7 = 384/7 for a choice of the x’s at the
extreme values +/− 1 subject to

(000) : x1 + x2 + x3 + x4 + x5 + x6 + x7 = +/− 1,
(001) : x1 + x8 + x9 + x10 + x11 + x12 + x13 = +/− 1,
(010) : x2 + x8 + x14 + x15 + x16 + x17 + x18 = +/− 1,
(011) : x3 + x9 + x14 + x19 + x20 + x21 + x22 = +/− 1,
(100) : x4 + x10 + x15 + x19 + x23 + x24 + x25 = +/− 1,
(101) : x5 + x11 + x16 + x20 + x23 + x26 + x27 = +/− 1,
(110) : x6 + x12 + x17 + x21 + x24 + x26 + x28 = +/− 1,
(111) : x7 + x13 + x18 + x22 + x25 + x27 + x28 = +/− 1.

One such (optimal) choice is given in the same Table 2.

The realized values of various partial sums of the x’s corresponding to the above solution to
the x’s are given below.

(000) : x1 + x2 + x3 + x4 + x5 + x6 + x7 = −1,
(001) : x1 + x8 + x9 + x10 + x11 + x12 + x13 = −1,
(010) : x2 + x8 + x14 + x15 + x16 + x17 + x18 = −1,
(011) : x3 + x9 + x14 + x19 + x20 + x21 + x22 = −1,
(100) : x4 + x10 + x15 + x19 + x23 + x24 + x25 = −1,
(101) : x5 + x11 + x16 + x20 + x23 + x26 + x27 = +1,
(110) : x6 + x12 + x17 + x21 + x24 + x26 + x28 = −1,
(111) : x7 + x13 + x18 + x22 + x25 + x27 + x28 = +1.

5. Proof of Claim for 23 Case

The expression for Q(x) given for 22 factorial set-up generalizes itself naturally to the case
of 23 factorial set-up and is given by I(β) = X ′[14I −M ]X/7 = Q(X)/7 where all the diagonal
elements of the matrix M are each equal to 2 while its off-diagonal elements are a known combi-
nation of 0s and 1s. The Lemma 1 and the algorithm stated above both work in this set-up as well.
In the above, we have given one solution and there are other solutions too.

Table 3 gives the matrix M along with the final vector Uc (obtained using the above algorithm with
initial vector as null vector), the values of qi and |qi|. Q(X) attains maximum at X = U .

For n = 3, N = 8, c = 6, t = 14, each mii = 2 and Σ|qi| = 24 (from the table).Therefore,
2Σ|qi| = 48 = Σmii −N . Hence Uc maximizes Q(X).

For the choice vector displayed above, various partial sums, as realized, are shown below.



82 BIKAS K. SINHA AND P S S N V P RAO [Vol. 17, No. 2

Table 2

generic x− values level − combination(1) level − combination(2) optimal x− values
x1 (0, 0, 0) (0, 0, 1) −1
x2 (0, 0, 0) (0, 1, 0) −1
x3 (0, 0, 0) (0, 1, 1) −1
x4 (0, 0, 0) (1, 0, 0) −1
x5 (0, 0, 0) (1, 0, 1) 1
x6 (0, 0, 0) (1, 1, 0) 1
x7 (0, 0, 0) (1, 1, 1) 1
x8 (0, 0, 1) (0, 1, 0) 1
x9 (0, 0, 1) (0, 1, 1) 1
x10 (0, 0, 1) (1, 0, 0) 1
x11 (0, 0, 1) (1, 0, 1) 1
x12 (0, 0, 1) (1, 1, 0) −1
x13 (0, 0, 1) (1, 1, 1) −1
x14 (0, 1, 0) (0, 1, 1) −1
x15 (0, 1, 0) (1, 0, 0) −1
x16 (0, 1, 0) (1, 0, 1) −1
x17 (0, 1, 0) (1, 1, 0) 1
x18 (0, 1, 0) (1, 1, 1) 1
x19 (0, 1, 1) (1, 0, 0) 1
x20 (0, 1, 1) (1, 0, 1) 1
x21 (0, 1, 1) (1, 1, 0) 1
x22 (0, 1, 1) (1, 1, 1) −1
x23 (1, 0, 0) (1, 0, 1) −1
x24 (1, 0, 0) (1, 1, 0) −1
x25 (1, 0, 0) (1, 1, 1) 1
x26 (1, 0, 1) (1, 1, 0) −1
x27 (1, 0, 1) (1, 1, 1) 1
x28 (1, 1, 0) (1, 1, 1) −1

(000) : x1 + x2 + x3 + x4 + x5 + x6 + x7 = 1,
(001) : x1 + x8 + x9 + x10 + x11 + x12 + x13 = 1,
(010) : x2 + x8 + x14 + x15 + x16 + x17 + x18 = 1,
(011) : x3 + x9 + x14 + x19 + x20 + x21 + x22 = 1,
(100) : x4 + x10 + x15 + x19 + x23 + x24 + x25 = 1,
(101) : x5 + x11 + x16 + x20 + x23 + x26 + x27 = 1,
(110) : x6 + x12 + x17 + x21 + x24 + x26 + x28 = 1,
(111) : x7 + x13 + x18 + x22 + x25 + x27 + x28 = 1.

It may be seen that this solution is different from the one shown earlier.
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Table 4

x− values level − combination(1) level − combination(2) level − combination(3)
x1 (0, 0) (0, 1) (1, 0)
x2 (0, 0) (0, 1) (1, 1)
x3 (0, 0) (1, 0) (1, 1)
x4 (0, 1) (1, 0) (1, 1)

6. Generalization to ‘triplets’

We now contemplate a situation when every single application of the covariate value x en-
compasses three experimental units i.e., ’covers the eu’s in triplets’. What would be the optimal
choice of covariate values for most efficient estimation of the β co-efficient ? We study the cases
of 22 and 23 factorials in this section.

(A) The case of 22 factorial

It follows that we need 4 covariate-values x1, x2, x3, x4 as are indicated in the Table 4 below.

It transpires that I(β) has the representation

I(β) = 3
∑

x2i − [(T − x1)2 + (T − x2)2 + (T − x3)2 + (T − x4)2]/3, T =
∑

xi

We readily find that I(β) = [8
∑
x2i − 2T 2]/3 ≤ 32/3 with ”=” if and only if T = 0;xi =

+/− 1; i = 1, 2, 3, 4. Any contrast of order 4× 1 involving +/− 1’s such as (1, 1,−1,−1) gives
a solution.

(B) The case of 23 factorial

It follows that we need 56 covariate-values x1, x2, . . . , x56 associated with the triplets of the
level-combinations as are partially indicated in the Table 5 below.

In the above, we have displayed the first set of 21 x-values corresponding to the triplets
starting with (0, 0, 0). Note that the second set of 15 x-values [x22 − x36] correspond to triplets
starting with (0, 0, 1). Likewise, third set of 10 [X37 − x46] start with (0, 1, 0); fourth set of 6
[x47− x52] start with (0, 1, 1); fifth set of 3 [x53− x55] start with (1, 0, 0) and the last [sixth] set of
a singleton starts with (1, 0, 1).

Next note that each triplet generates three observations and hence we have a total of 56 ×
3 = 168 observations in the vector representation Y . Moreover, every x-value will have three
replications. It transpires that I(β) has the representation

I(β) = 3
∑

x2i − [T 2
1 + T 2

2 + . . .+ T 2
8 ]/21.
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Table 5

x− values level − combination(1) level − combination(2) level − combination(3)
x1 (0, 0, 0) (0, 0, 1) (0, 1, 0)
x2 (0, 0, 0) (0, 0, 1) (0, 1, 1)
− − − −
x6 (0, 0, 0) (0, 0, 1) (1, 1, 1)
x7 (0, 0, 0) (0, 1, 0) (0, 1, 1)
− − − −
x11 (0, 0, 0) (0, 1, 0) (1, 1, 1)
x12 (0, 0, 0) (0, 1, 1) (1, 0, 0)
− − − −
x15 (0, 0, 0) (0, 1, 1) (1, 1, 1)
x16 (0, 0, 0) (1, 0, 0) (1, 0, 1)
x17 (0, 0, 0) (1, 0, 0) (1, 1, 0)
x18 (0, 0, 0) (1, 0, 0) (1, 1, 1)
x19 (0, 0, 0) (1, 0, 1) (1, 1, 0)
x20 (0, 0, 0) (1, 0, 1) (1, 1, 1)
x21 (0, 0, 0) (1, 1, 0) (1, 1, 1)

There are eight level-combinations and therefore, eight Ti’s. Every Ti contains 21 terms and we
demand it to assume the value +/ − 1. In the above expression, each Ti is a linear combination
of xis. The Lemma holds true once again. Each xi has to be necessarily +/ − 1. Now writing
Ti = c′ix for i = 1, 2, · · · , 8, the following table gives the 8 these coefficient vectors ci, along with
a solution vector X .
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Table 6

c1 c2 c3 c4 c5 c6 c7 c8 X
1 1 1 1 0 0 0 0 0 1
2 1 1 0 1 0 0 0 0 −1
3 1 1 0 0 1 0 0 0 1
4 1 1 0 0 0 1 0 0 −1
5 1 1 0 0 0 0 1 0 1
6 1 1 0 0 0 0 0 1 −1
7 1 0 1 1 0 0 0 0 1
8 1 0 1 0 1 0 0 0 −1
9 1 0 1 0 0 1 0 0 1
10 1 0 1 0 0 0 1 0 −1
11 1 0 1 0 0 0 0 1 1
12 1 0 0 1 1 0 0 0 −1
13 1 0 0 1 0 1 0 0 1
14 1 0 0 1 0 0 1 0 −1
15 1 0 0 1 0 0 0 1 1
16 1 0 0 0 1 1 0 0 −1
17 1 0 0 0 1 0 1 0 1
18 1 0 0 0 1 0 0 1 −1
19 1 0 0 0 0 1 1 0 1
20 1 0 0 0 0 1 0 1 −1
21 1 0 0 0 0 0 1 1 1
22 0 1 1 1 0 0 0 0 −1
23 0 1 1 0 1 0 0 0 1
24 0 1 1 0 0 1 0 0 −1
25 0 1 1 0 0 0 1 0 1
26 0 1 1 0 0 0 0 1 −1
27 0 1 0 1 1 0 0 0 1
28 0 1 0 1 0 1 0 0 −1
29 0 1 0 1 0 0 1 0 1
30 0 1 0 1 0 0 0 1 −1
31 0 1 0 0 1 1 0 0 1
32 0 1 0 0 1 0 1 0 −1
33 0 1 0 0 1 0 0 1 1
34 0 1 0 0 0 1 1 0 −1
35 0 1 0 0 0 1 0 1 1
36 0 1 0 0 0 0 1 1 −1
37 0 0 1 1 1 0 0 0 1
38 0 0 1 1 0 1 0 0 −1
39 0 0 1 1 0 0 1 0 1
40 0 0 1 1 0 0 0 1 −1
41 0 0 1 0 1 1 0 0 1
42 0 0 1 0 1 0 1 0 −1
43 0 0 1 0 1 0 0 1 1
44 0 0 1 0 0 1 1 0 −1
45 0 0 1 0 0 1 0 1 1
46 0 0 1 0 0 0 1 1 −1
47 0 0 0 1 1 1 0 0 −1
48 0 0 0 1 1 0 1 0 1
49 0 0 0 1 1 0 0 1 −1
50 0 0 0 1 0 1 1 0 1
51 0 0 0 1 0 1 0 1 −1
52 0 0 0 1 0 0 1 1 1
53 0 0 0 0 1 1 1 0 −1
54 0 0 0 0 1 1 0 1 1
55 0 0 0 0 1 0 1 1 −1
56 0 0 0 0 0 1 1 1 1
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Abstract

We propose using periodic binary sequences with optimal correlation energy (CE) to
generate nearE(s2)-optimal supersaturated designs (SSDs) and nearD-optimal 2-symbol frac-
tional factorial designs for the all main effects and the intercept model. We derive a lower
bound for the CE of odd length periodic sequences and provide previously unknown odd
length periodic sequences with optimal CE up to length 43.

Key words: Factorial designs; Supersaturated designs; Binary periodic sequences; Correlation
energy.

1. Introduction

In this section, we provide the background material on binary periodic sequences, their
periodic autocorrelations and correlation energy (CE). We also introduce the group ring no-
tation for investigating periodic sequences. Such sequences with optimal CE generate near
E(s2)-optimal 2-symbol supersaturated designs (SSDs) and near D-optimal 2-symbol frac-
tional factorial designs for the all main effects and the intercept model. In Section 2, we derive
a lower bound for the CE of odd length periodic sequences. In Section 3, we provide previ-
ously unknown odd length periodic sequences with optimal CE up to length 43.

1.1 Sequences and Their Periodic Autocorrelations

A sequence a = (ai), where i = 0, 1, ..., v − 1, is called periodic with period (length) v
if ai = ai+v for all i. Such a sequence is also called a Zv-sequence. In this paper, we consider
binary sequences consisting of entries in {−1, 1}. Let

Ca,b(t) =
v−1∑
i=0

a(i+t) mod v b̄i,

Corresponding Author: Dursun Bulutoglu
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where b̄i is the complex conjugate of bi. Then Ca,b(t) is called the periodic cross-correlation
function of a and b, where the special case Ca,a(t) is called the periodic autocorrelation func-
tion (ACF) of a. The sequence {Ca,a(t)}∞t=0 is again periodic with period (length) v. It is
also easy to verify that Ca,a(t) = Ca,a(−t). Hence, it suffices to find the autocorrelation co-
efficients Ca,a(t) for t ∈ {0, 1, . . . , bv/2c}. The ACF provides a measure of how much the
original sequence differs from its translates. Define D = {0 ≤ i ≤ v − 1 : ai = 1} and
dD(t) = |(t + D) ∩ D|. Then dD(t) = |(t + D) ∩ D| is called the difference function of
D ⊆ Zv. It is easy to show that

Ca,a(t) = v − 4(k − dD(t)), (1)

where k = |D|. From equation (1) we readily get Ca,a(t) ≡ v (mod 4). We call Ca,a(v),
Ca,a(2v), Ca,a(3v), . . . the main lobes, and the remaining Ca,a(i) side lobes. The value
maxg∈G |Ca,a(g)| is called the peak side lobe. A sequence a is said to have good matched
autocorrelation properties if the peak side lobes in the autocorrelation are small and the sum
of the squares of the side lobes in the autocorrelation is small.

Definition 1. The periodic merit factor (PMF) of a sequence a is defined to be

PMF =
C2

a,a(0)∑v−1
l=1 C

2
a,a(l)

.

It is desirable to have a large PMF . Hence, our goal is to find sequences with the
maximum PMF . Maximizing the PMF is analogous to maximizing the Golay merit factor,
where the only difference is that the Golay merit factor is based on a sequence’s aperiodic
autocorrelation function Green and Green (2002).

Definition 2. The correlation energy (CE) of a sequence a is defined by

CE(a) =
v−1∑
l=1

C2
a,a(l).

Maximizing the PMF of a {−1, 1} sequence is equivalent to minimizing its CE. A
sequence that minimizes the CE is called CE-optimal. We seek to identify what {−1, 1}
sequence(s) are CE-optimal. A {−1, 1} CE-optimal sequence with Ca,a(i) = 0 for i =
1, 2, . . . , v − 1 is called a perfect sequence. The only perfect sequence known is a row of the
circulant Hadamard matrix of order 4. For v ≡ 2 (mod 4) CE optimality is guaranteed to
occur when Ca,a(i) = ±2. For v ≡ 1 (mod 4) and v ≡ 3 (mod 4) CE optimality is likely to
occur if each Ca,a(i) for i = 1, 2, . . . , v − 1 is in {−3, 1} and {−1, 3}.

Next, we introduce the group ring notation that is needed in deriving our results.

Definition 3. Let G be a finite group and R a ring, where G = {g0, g1, . . . , gn−1}. Then the
group ring of G over R is the set denoted by R[G] defined as:

R[G] =

{∑
g∈G

agg | ag ∈ R

}
.
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When working with the group ring notation, multiplication and addition are defined in a
way similar to those of polynomials. We further define the power of a group ring element in
the following way.

Definition 4. If W =
∑

g∈G agg is an element of R[G], and t is some integer, then(∑
g∈G

agg

)(t)

=
∑
g∈G

agg
t.

When we refer to a binary Zv-sequence, we mean a Zv-sequence with entries from
{−1, 1} or {0, 1}. By abuse of notation, we identify a Zv-sequence a with the group ring
element S =

∑
g∈Zv

agg. Also, for a {0, 1} Zv-sequence, we identify the group ring element∑
g∈A g with the set A. In particular, Zv identifies

∑
g∈Zv

g. For a multiplicatively (additively)
written cyclic group we use 1 (0) as the identity element. The group ring elements that corre-
spond to Zv-sequences are used to calculate the autocorrelation of a Zv-sequence a, where

Ca,a(g) = coefficient of g in SS(−1).

Let A = {d0, d1, . . . , dk−1} ⊆ Zv. For each g ∈ Zv let ag be the number of times g
appears in A and S =

∑
g∈Zv

agg. Then A is a (v, k, λ) difference set DS(v, k, λ) if

SS(−1) = (k − λ)0 + λZv ∈ Z[Zv],

and A is a (v, k, λ, λ+ 1) almost difference set ADS(v, k, λ, λ+ 1) if

SS(−1) = k0 + λB + (λ+ 1)(Zv −B − 0) ∈ Z[Zv],

for some B ⊂ Zv \ {0}.

Remark 1. Difference sets and almost difference sets are studied in the more general group
theoretic context. The term “array” is used instead of the term “sequence” when the group in
question is non-cyclic.

For more on sequences, arrays, and their interplay with group developed combinatorial
designs see Arasu (2011) and Arasu et al. (2019).

1.2 Using CE-optimal Zv-sequences to Construct Near D-optimal Designs and Near
E(s2)-optimal SSDs

The Hadamard maximum determinant problem seeks an N ×N matrix of ±1s with the
largest possible determinant. Such matrices are called D-optimal matrices. An online source
for this problem can be found at Orrick and Solomon (2018). Multiplying a row or a column
of a matrix by−1 does not change its determinant. Hence, an N ×N D-optimal design whose
first column is the all 1s column always exists. The last N − 1 columns of an N × N D-
optimal matrix whose first column is the all 1s column can be used as an N row, N −1 column
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2-symbol factorial design for estimating the all main effects and the intercept model. In fact,
such a design minimizes the determinant of the variance-covariance matrix among all possible
N row, N − 1 column, 2-symbol factorial designs for the all main effects and the intercept
model.

An N row, k factor, 2-symbol factorial design is called a supersaturated design (SSD)
if N < k + 1, i.e., if it does not have enough rows to estimate the all main effects and the
intercept model. Most of the literature on SSDs assumes that each column in a 2-symbol
SSD is balanced, i.e. has an equal number for 1s and −1s. However, recently Bulutoglu et
al.Bulutoglu et al. (2019) considered {−1, 1} SSDs with a prespecified distribution of column
sums. Let X = [x1,x2, . . . ,xm] be an N row, m column, 2-symbol SSD with symbols from
{−1, 1}. Then the E(s2) value of X is defined as

E(s2) =

∑
i 6=j s

2
ij

m(m− 1)
,

where sij = xT
i xj for 1 ≤ i < j ≤ m. The E(s2) value criterion is used to compare

two 2-symbol SSDs with the same number of rows and columns, where the SSD with the
smaller E(s2) is more desirable Georgiou (2014). An SSD with the smallest possible E(s2) is
calledE(s2)-optimal. For the best knownE(s2)-lower bounds of balanced SSDs, see Georgiou
(2014) and Bulutoglu et al.Bulutoglu et al. (2019) for unbalanced SSDs.

A {−1, 1} Zv-sequence a of length v can be used to generate a v × v matrix of ±1s by
taking the sequence as the first column and obtaining the other columns as cyclic shifts. The
resulting v × v matrix A is called the corresponding design to a. Then a can either be used to
generate a fractional factorial design or as an SSD. In the first case, a subset of A’s rows are
multiplied by −1 so that its first column is the all 1s column. The remaining v − 1 columns of
A constitute a v row, v− 1 column factorial design that can be used for estimating the all main
effects and the intercept model. When A is used as an SSD, the matrix A is taken as the v row,
v column SSD, and the relation

CE(a)

v − 1
= E(s2)

connects the E(s2) of A to CE(a). Hence, a CE-optimal sequence a can be used to generate
an SSD that is near E(s2)-optimal.

It is well known that a v×v matrix A that has smallE(s2) tends to have large determinant
Bulutoglu et al. (2019). Hence, we expect that if A is used to generate a fractional factorial
design, then the resulting factorial design will be near D-optimal for estimating the all main
effects and the intercept model.

2. CE Lower Bounds

It is easy to see that x is a CE-optimal {0, 1} sequence if and only if 2x − 1 is a CE-
optimal {−1, 1} sequence, where 1 is the all 1s sequence. We say that a {0, 1} sequence x
corresponds to a {−1, 1} sequence y if y = 2x − 1. It is easy to see that the autocorrelation
function of a {0, 1} sequence is dD(t). We will use the notation Ca,a(t) for {−1, 1} sequences.
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If we refer to Ca,a(t) of a {0, 1} sequence, we mean the autocorrelation function of its corre-
sponding {−1, 1} sequence. To find CE-optimal {0, 1} sequences, we first investigate {0, 1}
sequences of odd length having at most three-valued dD(t)s (at most two distinct non-trivial λs
that differ by 1). For such a {0, 1} sequence a indexed by Zv we have

SS(−1) = k0 + λB + (λ+ 1)(Zv −B − 0) (2)

for some B ⊂ Zv \ {0} with |B| = t. Then, by applying the principal character to both sides
of equation (2), we get

χ0

(
SS(−1)) =χ0 (k0 + λB + (λ+ 1)(Zv −B − 0))

|A|2 =k + λ|B|+ (λ+ 1)(|Zv| − |B| − 1)

k2 =k + λt+ (λ+ 1)(v − t− 1). (3)

We refer to equation (3) as the group ring equation. By equation (1)

λ1 = λ =
4k − v + γ1

4
and λ2 = λ+ 1 =

4k − v + γ2
4

, (4)

where γj = Ca,a(ij) for some ij such that ij 6= v for j ∈ {1, 2}. Observe that γ2 = γ1 + 4.
Upon substituting the right hand side of (4) to the group ring equation we get

k2 = k +

(
4k − v + γ1

4

)
t+

(
4k − v + γ1

4
+ 1

)
(v − t− 1).

We solve for t(v, k, γ):

k2 = k +

(
4k − v + γ

4

)
t(v, k, γ) +

(
4k − v + γ

4
+ 1

)
(v − t(v, k, γ)− 1)

t(v, k, γ) = k − k2 +

(
4k − v + γ

4
+ 1

)
(v − 1)

t(v, k, γ) = k − k2 +

(
4k − v + γ + 4

4

)
(v − 1). (5)

Now, max(|γ1|, |γ2|) depends on v (mod 4).

Case 1: v ≡ 1 (mod 4), max(|γ1|, |γ2|) = max(|γ1|, |γ1 + 4|) = |γ1|, where γ1 = −3.
Then

t(v, k,−3) = k − k2 +

(
4k − v + 1

4

)
(v − 1).

In this case, minimizing the CE is equivalent to minimizing t(v, k,−3). Solving for k when
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t(v, k,−3) = 0, we get

0 = k − k2 +

(
4k − v + 1

4

)
(v − 1)

k2 − k =

(
4k − v + 1

4

)
(v − 1)

4k2 − 4k = (4k − v + 1)(v − 1)

4k2 − 4vk + (v − 1)2 = 0

k =
4v ±

√
16v2 − 16(v − 1)2

8

k =
v ±
√

2v − 1

2
. (6)

Hence, k should be rounded to the closest integer k∗ to

v ±
√

2v − 1

2

so that t(v, k∗,−3) is a nonnegative integer less than v.

Case 2: v ≡ 3 (mod 4), max(|γ1|, |γ2|) = max(|γ2 − 4|, |γ2|) = |γ2|, where γ2 = 3.
Thus, we have to minimize

t∗(v, k, 3) = v − t(v, k, 3)− 1 = v −
(
k − k2 +

(
4k − v + 3 + 4

4

)
(v − 1)

)
− 1

= v − k + k2 −
(

4k − v + 7

4

)
(v − 1)− 1

= k2 − k −
(

4k − v + 7

4

)
(v − 1)− 1.

Now t∗(v, k, 3) has a minimum at

k = −−1− (v − 1)

2
=
v

2
. (7)

In light of equations (6) and (7), we determine what number of elements are required to mini-
mize the CE for a given length. So, k should be rounded to the closest integer k∗ to v/2 such
that t(k∗) is a nonnegative integer less than v. Based on the knowledge gained thus far, we
provide the following table for the parameters of the odd length sequences up to length 49 that
are CE-optimal when they exist.

Theorem 1. When a sequence with the parameters in a row of Table 1 exists, then it is CE-
optimal.

Proof. The result is obvious for cases in which the correlation |γj| = 3 count is 0 or 2. For
all the remaining cases, v ≡ 1 (mod 4). So, for each of these cases the next best possibility
with Ca,a(t′) /∈ {−3, 1} for some t′ is when the frequency of Ca,a(t) = γ2 = 5 is 2 and the
frequency of Ca,a(t) = γ1 = 1 is v − 3. For each v such that the correlation |γj| = 3 count is
4 or larger, the CE of a sequence with the frequency of γ2 = 5 equal to 2 is larger or equal to
the corresponding CE in Table 1.
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Table 1: The optimal parameters for odd length sequences up to length 49

v k∗ Correlation |γj| = 3 count CE
5 1 0 4
7 4 0 6
9 3 2 24

11 6 0 10
13 4 0 12
15 8 0 14
17 6 2 32
19 10 0 18
21 8 4 52
23 12 0 22
25 9 0 24
27 14 0 26
29 11 2 44
31 16 0 30
33 13 4 64
35 18 0 34
37 15 6 84
39 20 0 38
41 16 0 40
43 22 0 42
45 18 2 60
47 24 0 46
49 20 4 80

3. CE-optimal Sequences

We present Table 2 containing sequences with minimum CE (maximum periodic merit
factor) by length, v. The remaining columns show the elements of the sequence that are 1, CE,
number of 1s k in the sequence, and a column indicating if the sequence is optimal and has the
parameters in Table 1. All lengths for which the column labeled “Conform?” is answered with
“Y” are optimal as each has a set of parameters that appears in Table 1. If the column contains
an “N”, then the sequence listed is still optimal, it just does not have the parameters in Table 1.
In other words, just because the equations indicate a particular parameter set as being optimal
does not mean that such a sequence exists.

The length v = 17 is the shortest length for in which the Table 1 hypothetical opti-
mal sequence fails to exist. The Table 1 hypothetical optimal sequence for this length should
have k = 6 and a CE of 32. The indices of the 1 entries of such a sequence constitutes an
ADS(17, 6, 1, 2). However, a computer search revealed that this sequence does not exist. To
search for a sequence with the next best possibleCE, we must add an element to a hypothetical
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ADS(17, 6, 1, 2). For k = 7 the group ring equation

49 = 7 + 2t+ 3(17− t− 1)

gives t = 6, and a sequence with the next best possible CE is an ADS(17, 7, 2, 3) with CE =
64. We found such a sequence by using a computer search.

For v = 39 and v = 41, the group ring equations and arguments for the CE-optimal
sequences indicate that each of DS(39, 20, 10) and DS(41, 16, 6) is CE-optimal if it exists.
Both of these are known not to exist by the Mann test Baumert and Gordon (2004). The
nonexistence of DS(39, 20, 10) requires that we look for a sequence with two different non-
trivial autocorrelation values. The group ring equations give that the next best possible case is
when k = 18, and from

182 = 18 + 8t+ 9(39− t− 1)

we get that t = 36. This particular sequence was not found by an exhaustive computer search.
The next best case can be found by removing another element from the set making k = 17.
Using the group ring equation,

172 = 17 + 7t+ 8(39− t− 1)

gives that t = 32. This sequence was found and is listed in Table 2.

A CE-optimal solution to the length v = 41 case has been open Luke and Schotten
(2003). An optimal solution based on a DS(41, 16, 6) is known not to exist Lander (1983). If
we decrease k by 1 to k = 15, then the group ring equation

152 = 15 + 4t+ 5(41− t− 1)

implies t = −10. This is not possible. Thus, we must increase k by 1 to k = 17. When k = 17,

172 = 17 + 6t+ 7(41− t− 1)

giving t = 8. Such a sequence was found and is listed in Table 2. The autocorrelation of
our length 41 {−1, 1} sequence contains 8 −3s and 32 +1s. There is another distribution of
autocorrelation values with 2 −3s, 2 +5s, 36 +1s, and CE = 104. A computer search proved
that such a sequence does not exist.

A DS(25, 9, 3) does not exist by the Mann test Baumert and Gordon (2004). A DS(27, 14,
7) does not exist Lander (1983). We proved that an ADS(29, 11, 3, 4) does not exist by an
exhaustive computer search. In fact, to check the correctness of our exhaustive search imple-
mentation, we proved the existence/non-existence of each of the corresponding hypothetical
difference set or almost difference set in each row of Table 1 by using our computer pro-
gram. Hence, none of the hypothetical CE-optimal sequences in Table 1 for v = 25, 27, 29
exists. The solutions in Table 2 for the v = 25, 27, 29 cases are constructed similar to the
v = 17, 39, 41 cases.

Theorem 2. Each sequence in Table 2 is CE-optimal.
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Table 2: Optimal sequences of odd length up to length 43

v Sequence elements CE k Conform?
5 {0} 4 1 Y
7 {1,2,4} 6 3 Y
9 {0,1,3} 24 3 Y

11 {1,3,4,5,9} 10 5 Y
13 {0,1,5,11} 12 4 Y
15 {0,1,2,7,9,12,13} 14 7 Y
17 {0,1,2,3,5,8,12} 64 7 N
19 {1,4,5,6,7,9,11,16,17} 18 9 Y
21 {7,9,12,13,16,18,19,20} 52 8 Y
23 {1,2,3,4,6,8,9,12,13,16,18} 22 11 Y
25 {0,9,10,12,15,16,18,20,23,24} 72 10 N
27 {0,9,11,12,13,16,18,19,22,24,26} 74 11 N
29 {0,9,10,13,15,18,21,22,23,25,27,28} 92 12 N
31 {1,2,4,7,8,14,15,16,19,23,25,27,28,29,30} 30 15 Y
33 {0,9,13,14,15,19,21,22,24,26,29,30,32} 64 13 Y
35 {0,1,3,4,7,9,11,12,13,14,16,17,21,27,28,29,33} 34 17 Y
37 {0,6,12,14,17,19,23,24,27,28,31,33,34,35,36} 84 15 Y
39 {2,4,5,7,9,10,11,14,15,16,23,24,25,27,31,35,38} 86 17 N
41 {0,9,11,14,15,21,22,24,27,29,31,32,33,35,36,39,40} 104 17 N
43 {1,4,6,9,10,11,13,14,15,16,17,21,23,24,25,31,35,36,38,40,41} 42 21 Y

The CE-optimal sequences constructed in this paper can be used to construct ±1 ma-
trices with large determinants. These matrices can be used to construct fractional factorial
designs that are near D-optimal for estimating the all main effects and the intercept model. In
particular, the largest known determinant for ±1 matrices of order 39 is given by Tamura in
Tamura (2006) using group divisible designs. Tamura’s record holding matrix has a determi-
nant of 243 × 336 × 5. While we can not beat this record, we come surprisingly close by using
our optimal sequence of length 39. By creating a matrix whose first row is the sequence itself
followed by each of the next 38 rows being a right-circulant shift of the previous, we generate
a circulant matrix of order 39. This matrix has a determinant of 236×36×5×7×293×33313.
This is 95.7% of Tamura’s determinant.
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Appendix

Proof of Theorem 2

The only cases that are not covered by Theorem 1 are when v = 17, 25, 27, 29, 39, 41. For
each of these cases no solution with parameters in Theorem 1 exists. For a {−1, 1} sequence
a it is easy to show that

v−1∑
t=0

Ca,a(t) = (2k − v)2.



2019] NEAR OPTIMAL 2-SYMBOL FACTORIAL DESIGNS 97

Let a be a CE-optimal sequence. We first consider the cases when Ca,a(t) ∈ {−3,−1, 1, 3}
for each nonnegative t(v, k, γ∗), where

γ∗ =

{
−3 if v ≡ 1 (mod 4),

3 if v ≡ 3 (mod 4).

Let
α(v, k, γ∗) = number of −3s in {Ca,a(t)}v−1t=0 .

Observe that α(v, k, γ∗) completely determines {Ca,a(t)}v−1t=0 . Then, for v ≡ 1 (mod 4)

α + β = v − 1

−3α + β = (2k − v)2 − v

and

α(v, k,−3) =
(2v − 1)− (2k − v)2

4
.

For fixed v > 0, α(v, k,−3) is a quadratic function of k with a maximum at k = v/2. Similarly,
for v ≡ 3 (mod 4)

α + β = v − 1

3α− β = (2k − v)2 − v

and

α(v, k, 3) =
(2k − v)2 − 1

4
.

For fixed v > 0, α(v, k,−3) is a quadratic function of k with a minimum at k = v/2.

In both v ≡ 1 (mod 4) and v ≡ 3 (mod 4) cases α(v, k, γ∗) must be a nonnegative integer
as small as possible. Moreover, t(v, k, γ∗) as in equation (5) must be a nonnegative integer.
Also, since Ca,a(t) = Ca,a(−t), α(v, k, γ∗) must be even. Then for each fixed v ∈ Z≥0, a
solution to the integer nonlinear program (INLP)

min
k

α(v, k, γ∗)

subject to: t(v, k, γ∗) = y,
v − 1 ≥ α(v, k, γ∗) = 2x ≥ 0, v − 1 ≥ k ≥ 2,
v − 1 ≥ y ≥ 0 x, y, k ∈ Z,
a sequence a with {Ca,a(t)}v−1t=0 determined by α(v, k, γ∗) exists

(8)

describes a CE-optimal sequence among all sequences with {Ca,a(t)}v−1t=0 ∈ {−3, 3, 1,−1} for
each t. Let k∗ be a solution of the INLP (8). Then,

k∗ =

{
an integer farthest to v/2 satisfying constraints of INLP (8) if v ≡ 1 (mod 4),
an integer closest to v/2 satisfying constraints of INLP (8) if v ≡ 3 (mod 4).

(9)

For v ∈ {17, 25, 27, 29, 39, 41}, each value of k in Table 2 satisfies condition (9), and the
corresponding sequence is CE-optimal among all sequences a of the same length such that
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Ca,a(t) ∈ {−3,−1, 1, 3} for t = 1, 2, . . . , v − 1. For cases v = 17, 25, 29, 41, the next best
possibility with Ca,a(t′) /∈ {−3, 1} for some t′ is when the frequency of Ca,a(t) = γ2 = 5 is
2 and the frequency of Ca,a(t) = γ1 = 1 is v − 3. The CE resulting from this distribution of
autocorrelations is smaller than the CE of the corresponding sequence in Table 2 only when
v = 41. Hence, the length 17, 25, 29 sequences listed in Table 2 are all CE-optimal. Then, for
v = 41 the distribution of autocorrelations of a sequence with a smaller CE is given by 38 +1s
and 2 +5s. However, by examining the group ring equation and using equations (4) we find
that

k2 = k + 38

(
4k − 41 + 1

4

)
+ 2

(
4k − 41 + 5

4

)
. (10)

Equation (10) has no integer solutions. Thus, the length 41 sequence listed in Table 2 is CE-
optimal with CE = 104.

For cases v = 27, 39, the next best possibility with Ca,a(t′) /∈ {−1, 3} for some t′ is
when the frequency of Ca,a(t) = γ2 = −1 is v − 3 and the frequency of Ca,a(t) = γ1 = −5
is 2. The CE resulting from this distribution of autocorrelations is equal to the CE of the
corresponding sequence listed in Table 2 for both v = 27 and v = 39 cases.
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