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Abstract

The quality of prediction of a response surface model is measured by the size
of its mean squared error within the region of experimentation. The so-called
mean squared error of prediction (MSEP) consists of the prediction variance and
a measure of bias caused by model misspecification. The purpose of this article
is to present a new graphical technique for evaluating and comparing response
surface designs using the minimization of the MSEP as a design criterion. Four
MSEP-related criteria functions are introduced and plots of their quantile values
are obtained on concentric spheres within a region of interest. These plots pro-
vide complete information concerning the distribution of each criterion function
over the selected spheres. Such information readily depicts the performance of
a given design under model misspecification. Furthermore, the proposed criteria
are free of any unknown parameters that pertain to the unfitted true model and
error variance. Several examples are presented to illustrate the application of the
proposed graphical approach and its potential in design augmentation.
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1 Introduction

One of the objectives of response surface methodology (RSM) is the
choice of a design for fitting a hypothesized model. In a typical re-
sponse surface investigation, such a model is represented by a low-
degree polynomial, usually chosen to be of the first degree or the
second degree. As a result, designs for fitting models having such a
representation are of considerable interest. Given the fact that any
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fitted model may not adequately represent the unknown functional
relationship that depicts the true mean response in a given experi-
mental situation, one should always be concerned about model bias
and the possibility of fitting the wrong model (that is, model mis-
specification). For this reason, researchers in RSM have introduced
several criteria for the choice of design in a manner that protects
against a sizeable model bias, that is, when the fitted model differs
markedly from what the experimenter fears as the “true” model. Box
and Draper (1959, 1963) emphasized the importance of bias contribu-
tion in the choice of design. They introduced the so-called integrated

mean squared error (IMSE) criterion which incorporates prediction
variance and model bias. They advocated choosing designs that re-
duce the bias component of the IMSE unless the prediction variance
contribution is considerably larger than that of the bias. This can
be accomplished by imposing certain conditions on the moments of
the chosen design [see, for example, Chapter 6 in Khuri and Cor-
nell (1996)]. By contrast, Kiefer and several of his co-workers paid
less attention to bias, promoting instead the reduction of the pre-
diction variance through the use of the D-optimality criterion. The
well-known Equivalence Theorem of Kiefer and Wolfowitz (1960) led
to the development of a practical algorithm for the construction of a
D-optimal design through the use of the G-optimality criterion. Other
related variance criteria are A-optimality and E-optimality. All such
criteria are usually referred to as alphabetic optimality criteria.

Whether the design is chosen on the basis of bias, by requiring it
to satisfy certain conditions on its design moments, or on the basis of
an alphabetic optimality criterion, design construction is traditionally
done using single-valued criteria functions. This, however, does not
give adequate information about the quality of prediction afforded by
the design throughout the experimental region. More recently, several
authors in RSM addressed such concerns by proposing certain graph-
ical techniques for comparing response surface designs. Giovannitti-
Jensen and Myers (1989) introduced the so-called variance dispersion

graphs (VDGs), which consist of two-dimensional plots that display
the maximum, minimum, and average of the prediction variance on
concentric spheres, chosen within the experimental region, against
their radii. Khuri, Kim, and Um (1996) proposed the use of quan-

tile plots (QPs) of the prediction variance values on the surfaces of
concentric spheres of varying radii within the experimental region.
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The QPs provide complete information about the distribution of the
prediction variance through its quantiles on a given sphere. It is ob-
viously true that having knowledge of the entire distribution of the
prediction variance can be more informative than knowing only its ex-
tremes (maximum and minimum), or its average, as is the case with
the VDGs. More recently, Zahran, Anderson-Cook, and Myers (2003)
developed the fraction of design space plots where the prediction vari-
ance is plotted against the fraction of design space that has prediction
variance at or below a certain value.

The aforementioned graphical techniques were concerned only with
the prediction variance. Vining and Myers (1991) proposed a graph-
ical approach for evaluating and comparing response surface designs
on the basis of the mean squared error of prediction (MSEP), which
incorporates prediction variance and bias contributions. As in the
VDGs approach, Vining and Myers considered plots of the maximum,
minimum, and average of the MSEP over the surfaces of concentric
spheres against their radii. Their approach, however, requires the
specification of the value of an unknown index, denoted by wB, which
measures the relative contribution of the bias. Furthermore, having
knowledge of only the maximum, minimum, or average of the MSEP
values on a given sphere is not sufficient to give adequate information
about the actual distribution of the MSEP on the sphere.

In this article, we present an alternative approach to the graphical
technique by Vining and Myers (1991). The proposed approach in-
troduces four criteria functions derived from the MSEP which do not
require the specification of the value of the unknown index, wB. Quan-
tile plots of the values of each of these functions on concentric spheres
within the experimental region are obtained. Such plots provide com-
plete descriptions of the distributions of the criteria functions over
the spheres. This makes it possible to evaluate and compare several
response surface designs on the basis of the size of MSEP throughout
the experimental region. Several examples are presented to illustrate
the application of the proposed methodology. One of these examples
demonstrates how this approach can be utilized to augment a given
design with added design points that can lead to a reduction in the
size of the MSEP.
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2 The mean squared error of prediction

Suppose that the true underlying relationship, y = g(x) + ǫ, between
the response y and the vector of k control variables x = (x1, . . . , xk)

′ is
unknown, where ǫ is a random error. The experimenter believes that
the function g can be approximated by fitting a polynomial model of
degree d1 in the control variables over a region of interest, R, using
an n-point design D. The fitted model is then

y(x) = f ′
1
(x)β̂1, (1)

where f ′

1
(x)β̂

1
is a polynomial of degree d1 in x1, . . . , xk and

β̂1 = (X′
1X1)

−1X′
1y.

Here, X1 is the n × p1 matrix whose uth row is of the form f ′
1
(xu),

xu is the value of x at the uth experimental run and y is the n × 1
vector of observed responses.

The true relationship g over the entire region R is assumed to be
a polynomial of degree d2(> d1) in x, that is,

y = f ′
1
(x)β1 + f ′

2
(x)β2 + ǫ, (2)

where β2 is a p2 × 1 vector of parameters. Corresponding to the n-
point design D there exists an n× p2 matrix X2 whose uth row is of
the form f ′

2
(xu).

The mean squared error of prediction (MSEP) at a point x in the
region R, denoted by MSE(x), is then [see Vining and Myers (1991,
p. 316)]

MSE[ŷ(x)] = σ2f ′
1(x)(X′

1X1)
−1f1(x) + β′

2A
∗(x)β2, (3)

where A∗(x) = [f ′

1
(x)A − f ′

2
(x)]′[f ′

1
(x)A − f ′

2
(x)] and A =

(X′
1X1)

−1X′
1X2. Note that A∗(x) is a positive semidefinite matrix

of rank 1.

3 Design comparison criteria

An important criterion for the choice of design is the minimization
of MSE(x), given in formula (3), over the region R. Since MSE(x)
depends on β2 and σ2, which are unknown, we propose instead three
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other criteria functions, namely, ∆, L1 and L2 (defined below). We
show that small values of ∆, L1 and L2 indicate small mean-squared
error of prediction (MSEP) values.

Using the Cauchy-Schwartz inequality we can write

MSE[ŷ(x)] = σ2f ′
1
(x)(X′

1X1)
−1f

1
(x) + β′

2A
∗(x)β2

≤ σ2f ′
1
(x)(X′

1X1)
−1f

1
(x) + β′

2β2Tr[A
∗(x)]

≤ [σ4 + (β′
2β2)

2]1/2[{f ′
1
(x)(X′

1X1)
−1f

1
(x)}2 + {Tr(A∗(x))}2]1/2.

(4)

Small values of ∆(x, D) = {f ′
1
(x)(X′

1X1)
−1f

1
(x)}2+{Tr(A∗(x))}2

indicate small MSEP values for design D.
To define L1 and L2, we consider next the maximum of the MSEP

over a sphere of radius r in the β2 space. Using formula (1.2) in
Vining and Myers (1991), we have

max
|β2|=r

MSE[ŷ(x)] = σ2f ′
1
(x)(X′

1X1)
−1f

1
(x) + r2Tr[A∗(x)] (5)

scaling the above equation by σ2 + r2 we get

L(x, D, w) = (1 − w)f ′
1
(x)(X′

1X1)
−1f

1
(x) + wTr[A∗(x)], (6)

where L(x, D, w) =
max|β2|=r

MSE[ŷ(x)]

σ2+r2 and w = r2

σ2+r2 .
Therefore, since 0 ≤ w ≤ 1, we have

L1(x, D) ≤ L(x, D, w) ≤ L2(x, D), (7)

where

L1(x, D) = min{f ′
1
(x)(X′

1X1)
−1f

1
(x), T r[A∗(x)]}, and

L2(x, D) = max{f ′
1
(x)(X′

1X1)
−1f

1
(x), T r[A∗(x)]}.

Small values of the upper bound (L2) indicate small MSEP values for
design D. The closeness of the L1 and L2 values indicate robustness of
L(x, D, w), as induced by the design D, to changes in the values of w.
So, it will be desirable for both L1 and L2 to be small. Thus instead of
studying MSE[ŷ(x)] directly, we shall compare designs on the basis
of their ∆(x, D), L1(x, D) and L2(x, D) values over the entire region
R. It is to be noted that all three of these criteria functions do not
depend on w, which is unknown.
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4 Quantile plots

In this section, we show how to obtain estimated quantiles of the
chosen criterion on a sphere S(ρ) of radius ρ centered at the origin
inside R. Any point x = (x1, . . . , xk)

′ on S(ρ) can be represented by
using independent k−1 spherical coordinates ψ1, . . . , ψk−1 [see Khuri,
Kim and Um (1996)] such that

x1 = ρ cosψ1

x2 = ρ sinψ1 cosψ2

...

xk−1 = ρ sinψ1 . . . sinψk−2 cosψk−1

xk = ρ sinψ1 . . . sinψk−2 sinψk−1,

where 0 ≤ ψ1 ≤ π, . . . , 0 ≤ ψk−2 ≤ π and 0 ≤ ψk−1 ≤ 2π. To
generate points on S(ρ), ψ1, . . . , ψk−1 are randomly chosen from inde-
pendent uniform distributions, namely ψi ∼ U(0, π), i = 1, . . . , k − 2
and ψk−1 ∼ U(0, 2π).

4.1 Quantile plots of ∆(x, D) values

For a given design D and a set of generated values of x on S(ρ), we
obtain a sample, denoted by τρ,∆(D), consisting of ∆(x, D) values
on S(ρ). Let Qρ,∆(D, p) denote the p-th quantile of τρ,∆(D). These
quantiles provide a description of the distribution of ∆(x, D) for values
of x on S(ρ).

Plotting these values against p results in the quantile plots of
∆(x, D) over the surface of S(ρ). By repeating the same process
for several selected values of ρ, we obtain plots that portray the pre-
diction capability associated with the design D throughout the region
R. Such plots can be constructed for each of several candidate designs
for the model.

It should be noted that for a given ρ, a desirable feature of a design
is to have small values of Qρ,∆(D, p) over the range of p (0 ≤ p ≤ 1).
The smallness of Qρ,∆(D, p) indicates small MSEP values.

There are several advantages to this approach, namely, the perfor-
mance of a design can be evaluated throughout the region R, and de-
tailed information can be extracted about the distribution of ∆(x, D)
on S(ρ), including, but not limited to, the median (p = 0.50), the first
quartile (p = 0.25), and the third quartile (p = 0.75).
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4.2 Quantile plots for L1(x, D) and L2(x, D)

For a given design D and a set of generated values of x on S(ρ), we ob-
tain samples τρ,L1

(D) and τρ,L2
(D) consisting of L1(x, D) and L2(x, D)

values on S(ρ). Let Qρ,L1
(D, p) and Qρ,L2

(D, p) denote the p-th quan-
tiles of τρ,L1

(D) and τρ,L2
(D), respectively. Plotting Qρ,L1

(D, p) and
Qρ,L2

(D, p) against p results in the quantile plots of L1(x, D) and
L2(x, D), respectively, over the region R.

5 Examples

In this section, we present several examples to illustrate the applica-
tion of the quantile plots approach. All the designs considered in this
section are three-variable designs.

5.1 Example 1: Choice of center runs

The following first-degree model in k control variables x1, . . . , xk is
fitted using a design D with n runs,

y = β0 +
k∑

i=1

βixi + ǫ. (8)

Now suppose that the analyst wishes to protect against the full second-
degree model

y = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix
2
i +

∑

i<j

∑
βijxixj + ǫ. (9)

For k = 3 control variables we consider: a 23-factorial design with
no center runs (D1), a 23-factorial design with one center run (D2),
a 23-factorial design with two center runs (D3), and a 23-factorial
design with five center runs (D4). These designs were also considered
in Vining and Myers (1991) and were scaled so that all the design
points fall within a sphere of radius 1.

For each radius ρ (= 0.3, 0.6, 0.9, 1), 10,000 points are generated
at random on S(ρ) = {x : x2

1 + x2
2 + x2

3 = ρ2} by using the following
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equations,

x1 = ρ cosψ1

x2 = ρ sinψ1 cosψ2 (10)

x3 = ρ sinψ1 sinψ2,

where ψ1 ∼ U(0, π) and ψ2 ∼ U(0, 2π). The resulting value of x =
(x1, x2, x3)

′ is used to evaluate ∆, L1 and L2 on S(ρ).
Quantile plots of Qρ,∆(D, p) for designs D1 and D4 for selected

values of ρ (= 0.3, 0.6, 0.9, 1) and p = 0(0.5)1 are given in Figure 1.
While, plots of Qρ,L1

(D, p) and Qρ,L2
(D, p) for designs D1, D2, D3

and D4 for selected values of ρ (= 0.3, 0.6, 0.9, 1) and p = 0(0.5)1 are
shown in Figures 2 and 3.

From Figure 1 we note that quantiles of ∆ for designD4 are smaller
than those of design D1 for values of ρ (= 0.3, 0.6, 0.9) and all values
of p. Increasing ρ from 0.3 to 0.9 decreases the distance between the
quantiles for designs D1 and D4. For ρ = 1 and p > 0.8, the quantiles
of design D4 are slightly larger than those of design D1.

From the quantile plot of Qρ,L1
(D, p) in Figure 2, we note that for

ρ = 0.3,Qρ,L1
(D1, p) > Qρ,L1

(Di, p) for i (= 2, 3, 4), whileQρ,L1
(D4, p) <

Qρ,L1
(Di, p) for i (= 1, 2, 3). When ρ is 0.6, the quantiles of L1 for de-

sign D1 increase slightly and are higher than the other three designs,
while D4 has the lowest Qρ,L1

(D, p) values among all four designs.
Thus for values of ρ (= 0.3, 0.6), we can say that adding center runs
helps the design’s performance. As we approach the perimeter of the
experimental region (i.e. for ρ = 0.9, 1) the Qρ,L1

(D, p) values for each
of the four designs increase and almost overlap one another. When ρ

is 1, the Qρ,L1
(D4, p) values are higher than all the other three designs

for p < 0.4, and lower than all the other three designs for p > 0.4.
Figure 3 shows that when ρ is 0.3, Qρ,L2

(D1, p) > Qρ,L2
(Di, p) for

i (= 2, 3, 4), while Qρ,L2
(D4, p) < Qρ,L2

(Di, p) for i (= 1, 2, 3). For
ρ = 0.6, the quantiles of L2 for designs D2, D3 and D4 increase, and
the Qρ,L2

(D, p) values of all four designs come close to one another.
As the value of ρ increases to 0.9, there is a general increase in the
quantiles of L2. Thus, we note from Figure 3 that for ρ (= 0.3, 0.6, 0.9),
D1 is the worst design while D4 is the best, but when ρ = 1 and
p > 0.5, D4 is the worst design.

From Figures 1-3 we can then conclude that adding center runs
helps the design’s performance near the center, but does not improve
its performance near the perimeter. Comparing the above results
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with Figure 5 of Vining and Myers’ (1991) paper, we come to the
same conclusion that adding center runs appear to offer some benefit,
but this benefit is not uniform over the entire experimental region.

5.2 Example 2: 23-factorial and orthogonal
simplex designs

Here, we again consider the same models as in (8) and (9). For k = 3
control variables, the designs used are a 23-factorial design with no
center runs (D1) and an orthogonal simplex design with replicated
points (D2). The designs (shown in Tables 1 and 2) were scaled so
that all the design points fall within a sphere of radius 1.

For each radius ρ, 10,000 points are generated at random on S(ρ)
using formula (10). Quantile plots of Qρ,∆(D, p), Qρ,L1

(D, p) and
Qρ,L2

(D, p) for designs D1 and D2 and for selected values of ρ (=
0.3, 0.6, 0.9, 1) and p = 0(0.5)1 are shown in Figures 4, 5 and 6.

From the quantile plots of Qρ,∆(D, p) in Figure 4, we note that
for ρ (= 0.3, 0.6) and almost all values of p, the Qρ,∆(D, p) values for
designs D1 and D2 overlap with each other. As ρ increases (i.e. for
ρ = 0.9, 1.0), the quantiles of ∆ for design D2 increase sharply and
are higher than those of design D1. We can then conclude that the
performance of the orthogonal simplex design (D2) deteriorates as we
approach the perimeter of the experimental region.

From Figure 5 we note that when ρ is 0.3, the Qρ,L1
(D, p) val-

ues for both designs D1 and D2 overlap each other. For ρ = 0.6,
the quantiles of L1 for design D2 increase and are higher than those
for design D1. As we increase ρ to 0.9, there is an increase in the
Qρ,L1

(D, p) values. For ρ = 0.9 and values of p (0.2 < p < 0.8),
Qρ,L1

(D2, p) > Qρ,L1
(D1, p); for p < 0.2, Qρ,L1

(D2, p) < Qρ,L1
(D1, p);

and for p > 0.8, Qρ,L1
(D2, p) overlaps with Qρ,L1

(D1, p). As we ap-
proach the perimeter of the experimental region (i.e. ρ = 1) and for
p > 0.6, the Qρ,L1

(D, p) values for each of the two designs increase fur-
ther and overlap each other; for p < 0.2, Qρ,L1,(D2, p) < Qρ,L1

(D1, p);
and for 0.2 < p < 0.6, Qρ,L1

(D2, p) > Qρ,L1
(D1, p). Thus we can say

that the performance of both designs deteriorates as we approach the
perimeter of the experimental region.

Figure 6 shows that for ρ = 0.3, Qρ,L2
(D, p) values for both designs

are small and overlap each other. As we increase ρ (ρ = 0.6, 0.9, 1),
Qρ,L2

(D1, p) < Qρ,L2
(D2, p). Thus, the performance of D1 is better
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than D2 near the perimeter of the experimental region.

5.3 Example 3: Central-composite and

Box-Behnken designs

In this example, we fit the full second-degree model (9) in k control
variables while protecting against a cubic model of the form

y = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix
2
i +

∑

i<j

∑
βijxixj +

k∑

i=1

k∑

j=1

βijjxix
2
j + ǫ.

(11)
For k = 3 control variables the designs used are a central composite

design (CCD) consisting of a 23 design plus 6 axial points and one
center point (D1), and a 15-point Box-Behnken design (D2) [Khuri
and Cornell (1996, p. 119)]. The designs (given in Tables 3 and 4)
were scaled so that all the design points fall within a sphere of radius
1.

For each radius ρ, 10,000 points are generated at random on S(ρ)
using formula (10). Quantile plots of Qρ,∆(D, p), Qρ,L1

(D, p) and
Qρ,L2

(D, p) for designs D1 and D2 and selected values of
ρ (= 0.3, 0.6, 0.9, 1) and p = 0(0.5)1 are given in Figures 7, 8 and
9.

From Figure 7 we note that for ρ (= 0.3, 0.6), the values of
Qρ,∆(D1, p) are much higher thanQρ,∆(D2, p). Increasing ρ, Qρ,∆(D1, p)
values remain stable, while Qρ,∆(D2, p) values increase. For ρ (=
0.9, 1), Qρ,∆(D1, p) are lower than Qρ,∆(D2, p).

The quantile plots in Figure 8 show that for ρ = 0.3, the values
of Qρ,L1

(D, p) for both designs are small and are also very close to
each other. As we approach the perimeter of the experimental region,
the Qρ,L1

(D, p) values for both designs increase and Qρ,L1
(D2, p) >

Qρ,L1
(D1, p) for almost all values of p.

From Figure 9 it is seen that for ρ (= 0.3, 0.6), the values of
Qρ,L2

(D1, p) are much higher than Qρ,L2
(D2, p). As we increase ρ,

Qρ,L2
(D1, p) values remain stable, while Qρ,L2

(D2, p) values increase.
For ρ = 0.9, 1, Qρ,L2

(D1, p) are lower than Qρ,L2
(D2, p).

Thus we can conclude from Figures 7-9 that the 15-point Box
Behnken design (D2) tends to perform worse than the CCD (D1)
near the perimeter of the experimental region, but D2 is better than
D1 near the center.
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5.4 Example 4: Design augmentation

In this example, we fit the first-degree model (8) in k control variables
while protecting against a full second-degree model (9). The purpose
of this example is to show how the MSEP is affected by the addition of
one single point to the original design. By choosing several candidate
points to augment the design, we can utilize the quantile plots for
each augmented design to select the “best” point that gives the lowest
quantile values.

For k = 3 control variables, we start with a 23-factorial design
with no center runs (D1). Design D1 is our original design. Next, we
augment D1 with the center point (0, 0, 0) and denote this new design
by D2 (Table 5). Design D3 is the original design D1 augmented with
the point (0.5, 0, 0), and D4 is design D1 augmented with the point
(0.75, 0, 0). Augmenting D1 with the point (1, 0, 0) gives D5. The
designs were scaled so that all the design points fall within a sphere
of radius 1.

For ρ = 1, 10,000 points are generated at random on S(ρ) using
formula (10). Quantile plots of Qρ,L2

(D, p) for designs D1, D2, D3, D4

and D5 for p = 0(0.5)1 are given in Figure 10. We can also generate
similar quantile plots for the five designs D1 −D5 for other values of
ρ.

From Figure 10 we note that design D2 has Qρ,L2
(D, p) values very

close to the original design D1. For values of p < 0.5, the Qρ,L2
(D2, p)

values are slightly lower than Qρ,L2
(D1, p).

DesignD3 hasQρ,L2
(D, p) values lower than the original designD1.

For values of p < 0.4, there is a substantial gap between Qρ,L2
(D3, p)

and Qρ,L2
(D1, p), but this gap decreases and the quantiles of L2 for

both designs D1 and D3 come closer together for p > 0.6.
Augmenting the original design by the point (0.75, 0, 0) we note

that values of Qρ,L2
(D4, p) are lower than Qρ,L2

(D1, p) for p < 0.8.
For values of p < 0.5, Qρ,L2

(D5, p) are lower than Qρ,L2
(D1, p).

But as p increases, we see that D1 is better than D5.
Thus, from Figure 10 we can conclude that augmenting the origi-

nal design D1 by the extra point, (0.5, 0, 0), causes a decrease in the
quantiles of L2 for almost all values of p. Augmenting the original
design by (0, 0, 0) fails to make a noticeable change in the quantiles
of L2. While, augmenting D1 by (0.75, 0, 0) or (1, 0, 0) increases the
values of the quantiles of L2 for p > 0.8 and p > 0.5, respectively.
Thus, the point (0.5, 0, 0) gives the lowest quantile values among the
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four chosen points for almost all values of p. The above process can be
continued in a sequential manner by augmenting D1 with additional
points beyond the point (0.5, 0, 0).

6 Comparison based on the quantiles of

L(x, D, w)

When comparing designs using the upper bound L2(x, D), we have to
be careful about forming our conclusions since the value of this upper
bound may sometimes be large while the actual value of L(x, D, w) in
formula (6) is small. To avoid such a situation, it is recommended to
work directly with the actual expression of L(x, D, w) itself. The only
problem here is that of the unknown w. To overcome this problem, we
suggest generating points on the sphere S(ρ) for a given ρ as before.
Then we select several values of w from the interval [0, 1]. Let T
denote the set consisting of such selected values. For each design D,
we compute L(x, D, w) for all values of w in T and the generated
points on S(ρ). Quantiles of the resulting values of L can then be
obtained and plotted against p. For illustration, let us now consider
two examples. In both examples we fit a first-degree model (8) in
three control variables while protecting against a full second-degree
model (9). The designs are scaled so that all the points fall within a
sphere of radius 1.

6.1 Example 5: Comparison of 23 factorial and or-
thogonal simplex designs based on L(x, D, w)
values

We compare the same designs, a 23 factorial design with no center
points (D1) and an orthogonal simplex design (D2), as in Example 2,
using the quantile plots of L(x, D, w) for all x on S(ρ) and w in T .

For each radius ρ, we generated 10,000 points on S(ρ) at ran-
dom. For each of these 10,000 values of x and w = 0(0.1)1, values
of L(x, D, w) were obtained for both designs D1 and D2. These were
respectively denoted by τρ,L(D1) and τρ,L(D2). Let Qρ,L(D, p) de-
note the quantiles of τρ,L(D). Figure 11 shows the quantile plots
of Qρ,L(D, p) for designs D1 and D2 and selected values of ρ (=
0.3, 0.6, 0.9, 1). From Figure 11 we note that for ρ = 0.3, the quantile
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values for both designs are small, but close to each other. Near the
perimeter of the experimental region, Qρ,L(D2, p) > Qρ,L(D1, p) for
almost all values of p. Thus, D1 and D2 are similar in performance
near the center, but as we go towards the perimeter of the region, D1

has a better prediction capability than D2. From Figures 6 and 11
we note that the quantile plots of L and L2 are very similar for both
designs.

6.2 Example 6: Comparison of 23 factorial and a

non-standard design based on L(x, D, w) val-
ues

Next, we compare a 23 factorial design with no center runs (D1) with
a non-standard design D2 given in Table 6. Following the same steps
as in Section 6.1, we obtain the quantile plots of L and L2 (Figures
12 and 13, respectively) for selected values of ρ (= 0.3, 0.6, 0.8, 1) and
w = 0(0.1)1. From Figure 12 we observe that both designs D1 and D2

have similar prediction capabilities near the center of the experimental
region, i.e., ρ = 0.3, 0.6 and for almost all values of p. As we increase
ρ to 0.8, 1, D2 has higher Qρ,L(D, p) values than D1 for p ≥ 0.4. From
Figure 13 we note that for ρ = 0.6, 0.8, 1 and almost all values of p,
the Qρ,L2

(D2, p) values are higher than the Qρ,L2
(D1, p) values.

Figure 14 provides a comparison of Qρ,L(D2, p) with Qρ,L2
(D2, p).

From Figure 14 we note that the gap between the quantiles of L and
L2 for design D2 increases with an increase in ρ. This indicates that
near the perimeter of the experimental region, the actual value of L
for design D2 is much smaller than the value of the upper bound L2.
Thus, conclusions drawn using quantile plots of L2 suggest a bigger
difference in the prediction capabilities of D1 and D2 than if we had
used L.

7 Concluding remarks

In this article, we propose four criterion functions for comparing de-
signs, ∆, L, L1 and L2. Small values of all four criteria indicate that
the designs being compared have small MSE values. In situations
where the values of L2 are large, it is advisable to make a comparison
between L and L2. A big difference between L and L2 suggest that
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the actual value of L is much smaller than the upper bound L2, and
design comparisons should be based on the L values.

The examples presented in Sections 5 and 6 demonstrate that the
proposed approach of quantile plots is an effective tool for evaluating
and comparing several response surface designs over the entire exper-
imental region. These plots provide more information concerning the
distribution of the MSEP for a given design than the graphical ap-
proach of Vining and Myers (1991). The plots reveal which parts of
the experimental region are more sensitive to model misspecification.
Example 4 shows how the proposed approach can be utilized to aug-
ment a given design with a single point in order to select the “best”
point that gives the lowest quantile values.

It should be noted that, thus far, the technique of using quan-
tile plots has traditionally been used only to compare several given
designs, but not to find a design prior to the experiment. However,
using design augmentation we can start with a given design and aug-
ment it with points in order to obtain a new design with lower quantile
values. This new design can then be used for experimentation as it
has better prediction capabilities than the original design. Finally, It
is important to point out that the design comparison criteria proposed
in Section 3 do not require the specification of an unknown index, as
was the case in Vining and Myers (1991).
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Table 1: Design D1, 23-factorial design on a radius of 1 with no center
runs. (Examples 1 and 2)

x1 x2 x3

1√
3

1√
3

1√
3

1√
3

1√
3

- 1√
3

1√
3

- 1√
3

1√
3

- 1√
3

1√
3

1√
3

1√
3

- 1√
3

- 1√
3

- 1√
3

1√
3

- 1√
3

- 1√
3

- 1√
3

1√
3

- 1√
3

- 1√
3

- 1√
3

Table 2: Design D2, orthogonal simplex design with replicated points
on a radius of 1 (Example 2).

x1 x2 x3

−
q

2

3
−

√
2

3
− 1

3

−
q

2

3
−

√
2

3
− 1

3
q

2

3
−

√
2

3
− 1

3
q

2

3
−

√
2

3
− 1

3

0 2
3/2

3
− 1

3

0 2
3/2

3
− 1

3

0 0 1
0 0 1
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Table 3: Design D1, a CCD on a radius of 1 (Example 3).

x1 x2 x3

1√
3

1√
3

1√
3

1√
3

1√
3

- 1√
3

1√
3

- 1√
3

1√
3

- 1√
3

1√
3

1√
3

1√
3

- 1√
3

- 1√
3

- 1√
3

1√
3

- 1√
3

- 1√
3

- 1√
3

1√
3

- 1√
3

- 1√
3

- 1√
3

1 0 0
-1 0 0
0 1 0
0 -1 0
0 0 1
0 0 -1
0 0 0

Table 4: Design D2, a 15-point Box Behnken design on a radius of 1
(Example 3).

x1 x2 x3

− 1
√

2
0 − 1

√

2

0 0 0

0 − 1
√

2
− 1

√

2
1

√

2
− 1

√

2
0

− 1
√

2
0

1
√

2

0
1

√

2
− 1

√

2
1

√

2
0 − 1

√

2

0 0 0

− 1
√

2
− 1

√

2
0

− 1
√

2

1
√

2
0

0 − 1
√

2

1
√

2

0
1

√

2

1
√

2

0 0 0

1
√

2

1
√

2
0

1
√

2
0

1
√

2
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Table 5: Design D2, original design D1 augmented with one center
run (Example 4).

x1 x2 x3

1
√

3

1
√

3

1
√

3
1
√

3

1
√

3
- 1
√

3
1
√

3
- 1
√

3

1
√

3

- 1
√

3

1
√

3

1
√

3
1
√

3
- 1
√

3
- 1
√

3

- 1
√

3

1
√

3
- 1
√

3

- 1
√

3
- 1
√

3

1
√

3

- 1
√

3
- 1
√

3
- 1
√

3

0 0 0

Table 6: Design D2, a non-standard design on a radius of 1 with no
center runs. (Example 6)

x1 x2 x3

2
3

2
3

1
3

2
3

2
3

1
3

2
3

2
3

−1
3

2
3

2
3

−1
3

1
3

2
3

2
3

1
3

2
3

2
3

1
2

1√
2

1
2

1
2

1√
2

1
2
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Figure 1: Quantile plots of ∆ for designs D1 (a 23-factorial design
with no center runs) and D4 (a 23-factorial design with five center
runs) (Example 1).
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Figure 2: Quantile plots of L1 for designs D1 (a 23-factorial design
with no center runs), D2 (a 23-factorial design with one center run),
D3 (a 23-factorial design with two center runs) and D4 (a 23-factorial
design with five center runs) (Example 1).
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Figure 3: Quantile plots of L2 for designs D1 (a 23-factorial design
with no center runs), D2 (a 23-factorial design with one center run),
D3 (a 23-factorial design with two center runs) and D4 (a 23-factorial
design with five center runs) (Example 1).
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Figure 4: Quantile plots of ∆ for designs D1 (23-factorial design on a
radius of 1 with no center runs) and D2 (orthogonal simplex design
with replicated points on a radius of 1) (Example 2).
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Figure 5: Quantile plots of L1 for designs D1 (23-factorial design on
a radius of 1 with no center runs) and D2 (orthogonal simplex design
with replicated points on a radius of 1) (Example 2).
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Figure 6: Quantile plots of L2 for designs D1 (23-factorial design on
a radius of 1 with no center runs) and D2 (orthogonal simplex design
with replicated points on a radius of 1) (Example 2).
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Figure 7: Quantile plots of ∆ for designs D1 (CCD) and D2 (Box-
Behnken) (Example 3).
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Figure 8: Quantile plots of L1 for designs D1 (CCD) and D2 (Box-
Behnken) (Example 3).
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Figure 9: Quantile plots of L2 for designs D1 (CCD) and D2 (Box-
Behnken) (Example 3).
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Figure 10: Quantile plots of L2 for designs D1 (23-factorial design
with no center runs), D2 (D1 augmented with (0, 0, 0)), D3 (D1 aug-
mented with (0.5, 0, 0)), D4 (D1 augmented with (0.75, 0, 0)) and D5

(D1 augmented with (1, 0, 0)) for ρ = 1 (Example 4).
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Figure 11: Quantile plots of L for designs D1 (23-factorial design with
no center runs) and D2 (orthogonal simplex design) (Example 5).
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Figure 12: Quantile plots of L for D1 (23 factorial design with no
center runs) and the non-standard design D2 (Example 6)
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Figure 13: Quantile plots of L2 for D1 (23 factorial design with no
center runs) and the non-standard design D2 (Example 6)
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Figure 14: Quantile plots of L versus L2 for D2 (non-standard design)
(Example 6)


