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Abstract

Scheffé (1958, 1963) first introduced models and designs suitable for a mixture
experiment where the mean response is assumed to depend only on the relative
proportions of the ingredients or components. Extensive literature on optimum
designs for the estimation of parameters of different mixture models is available.
The specific problem of characterization of optimal designs for estimating the op-
timum proportion of mixture components has been recently considered by Pal and
Mandal (2006, 2008) as also by Mandal and Pal (2008) using different optimality
criteria. Generalizing the work of Pal and Mandal (2006), who had dealt with the
trace criterion and adopted a pseudo-Bayesian approach with invariance property
of the second order moments of the optimum mixing proportions, Mandal et al.
(2008) relaxed the invariance property of the second order moments of the op-
timum mixing proportions. In this paper, optimum designs are derived for the
problem of estimating the optimum proportion of mixture components when the
factor space is constrained.
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1 Introduction

In a mixture experiment, the response depends on the proportions
x1, T2, ...,T, of ¢ ingredients present in the mixture satisfying z; >

q
0,> x; = 1. Scheffé (1958, 1963) introduced canonical models of
=1
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different degrees to represent the response function (,. He also in-
troduced Simplex Lattice Designs and Simplex Centroid Designs for
mixture experiments. Optimality of mixture designs for the estima-
tion of parameters of the response function was considered by Kiefer
(1961), Galil and Kiefer (1977), Liu and Neudecker (1995), and others.
Draper and Pukelsheim (1999) established the optimality of Weighted
Centroid Designs with respect to Partial Loewner Ordering(PLO) for
two and three component mixtures.

The problem of estimating the optimum mixture combination in a
mixture experiment is of great practical importance. Pal and Mandal
(2006) probably first attempted to find optimum designs for the es-
timation of optimum mixture combination. They solved the problem
under the assumption that the response function can be approximated
by a second degree concave function in the mixture components. The
optimum mixture combination v came out to be a non-linear func-
tion of the unknown parameters in the response function. A pseudo-
Bayesian approach was pursued where a prior distribution of v was
considered with the rather restrictive assumption of invariance prop-
erty of the second order moments in respect of the mixing components.
The criterion used to get the optimum design was minimization of the
expected trace of MSE(%). Some further work in this direction, using
other criteria, can be found in Pal and Mandal (2008) and Mandal
and Pal (2008). Since assumption of invariance on the second order
moments of the components of the optimum mixture seems very re-
strictive, Mandal et al. (2008) solved the problem with a more general
assumption on the second order moments of the prior distribution of
.

In many practical situations, the experimenter is faced with the
problem of determining the optimum mixing proportions, when cer-
tain restrictions are placed on one or more of the components. When
a lower bound is specified for at least one component, the problem
can be solved by introducing pseudo components (cf. Cornell,2002,
pp.134). However, when an upper bound, or both lower and up-
per bounds, is indicated for one or more components, the problem
becomes too difficult to tackle. In this case, for estimation of the
parameters of the assumed model, or linear functions of the parame-
ters, some algorithms have been proposed to find the optimum design.
However, estimation of non-linear functions of parameters poses much
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difficulty. In this paper, we derive optimum designs for the problem
with constrained factor space in cases of two and three components.

The paper is organized as follows. In Section 2, we formulate
and investigate the problem. In Section 3, the optimal designs are
obtained for mixtures involving two or three components.

2 Problem and the perspectives
As in Pal and Mandal (2006), we assume the response function to be
quadratic concave in the components x1, z, ...z, in the factor space

= = {(z1,29,...,21)|x; > 0,i = 1(1)g,>_2; = 1} and to have the
form

EYX)=C = Y Bar?+ Y Biju

1<j
= f(2)8, (2.1)
where
x = (r1,29,...,2)
f(a:) = ([E%, I‘g, I‘g, T1,T2,T1T3, ... ,I'q_ll'q)/
= (ﬁlbﬂQ?a"'7ﬂqqaﬁ127ﬂl3--'aﬂqfl,q)/
q+1

f(x) and B3 being p x 1 vectors with p = 5

Let, =* C = denote the constrained factor space. The explicit
form of Z* will depend on the type of constraint imposed.
The response function (2.1) can also be expressed in the form

Ce = a:’Ba:,
with
Bin (1/2)Br2 (1/2)Brs ... (1/2)5,
B— P22 (1/2)Ba3 - - (1/2)Bay
............................. .ﬂqq

q
We assume that B is negative definite and that, subject to > x; =
i=1
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1, (, is maximized in an interior point & = ~ of =Z*, where - is given
by
~=6"'B'1, (2.2)

with d = 1’B711. We are interested in estimating the non-linear func-
tion -« given by (2.2) as accurately as possible by a proper choice
of a design in =*. In this paper, we shall work in the framework of
approximate or continuous designs.

Let £ be an arbitrary continuous design in = and M (§,3) =
Jz f(x) f'(x)dé(x), the information matrix. For a given design &, we
can estimate B by B , the least squares estimator of B, and hence ¢
by 6. Then, replacing § and B by 6 and B respectively in (2.2), we
get an estimate of v as

4=46"1B"1. (2.3)

Under suitable regularity assumptions on error distribution, the stan-
dard d-method gives, for large n, an adequate approximation of the
dispersion matrix of 4 as

E[f -7 -7)]=AMM (£ B8)A(7) (2.4)
where A(7y) is a ¢ X p matrix given by
A()_((‘?'y Oy Oy Oy Oy Oy )
0P 0Ba’ 0By OPr2’ 0Pz’ 0B414)

M (&, 3) is the information matrix of the design £ for the model (2.1),
and M~ (&, B) is its generalized inverse. Here we restrict our study to
the class of non-singular information matrices, as in Pal and Mandal
(2006).

It has been shown in Pal and Mandal (2006) that A(y) can be
expressed as

—2(¢ —m 272 e 27vq v —(@g—1v2 ... Yg—1 + g
271 —2((q = vz ... 27vq Y2 —(@—=1Dvm ... Yg—1 + Vg
271 272 B 2vq Y1 + V2 S Yg—1 + Vq
Ay —dl
™) 27 272 ce 27¢ Y1+ 72 S Yg—1 + g
271 272 e 27q 71+ 72 oo Yg—1 — (@ —1)g
271 272 oo —2(g = 1)vg 71+ 72 oo g — (@ = 1)vg—1

(2.5)
where d = [672|B|]7"/(=Y) | B| being the determinant of the matrix
B.
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Design optimality aims at minimizing some function of
A(y)M (& B)A/ (7). Since A'()1 =0, A(y)M (&, B)A’ () is sin-
gular. Hence, for comparing different designs, we consider the trace
criterion

o(y, M(E,8)) = tr(A(y)M (&, B)A/ (7). (2.6)

It should be noted that the mixture model, in its canonical form, is
linear in the parameters and, hence, the information matrix M (£, 3)
is independent of the parameters. This means that the expression in
(2.6) depends on ~ only through the elements of the matrix A(«).
Of course, this is built upon the consideration that in our search for
optimal design, we may and willdisregard the common multiplying
factor d in the expression (2.5) for the matrix A(-). Note that with-
out this factor, the elements of the matrix A(«) are linear in the
~-components and, consequently, the expression in (2.6) is quadratic
in the «-components. Therefore, assuming a prior on the first two
moments of the -components is adequate. This is precisely what was
done in Pal and Mandal (2006). We now continue along similar lines.

Pal and Mandal (2006), assumed a prior distribution of ~ with
E(2) =wv,i=1,2,....,¢ and E(vy;) = w, 4,7 = 1,2,...,1;4 < j
and minimized E[¢(y, M (£))], expectation being taken with respect
to the prior distribution of 7. Afterwards, Mandal et al. (2008) made
a more general assumption on the prior moments viz.

E(v)=vi,i=1,2,....q E(yvy) =wiji,j=1,2,...,¢i<].
(2.7)

Since Y7 v = 1,, v;, wy;s must satisfy

Zvi—i-QZwij =1.

i i<j
Our criterion for optimal choice of design is to minimize

$(€) = E¢(v, M (€, B)) = tr(M (&, B)E(A' (1) A(7))).  (2.8)

3 Optimum designs

Here we find optimum designs for ¢ = 2, 3.
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3.1 Case of two components

Let us consider =Z* = {x|zry, 29 > 0,27 < ¢, 21 + 29 = 1}.

Since x1 + x5 = 1, invoking the result of Liski et al. (2002) , and
arguing as in Mandal et al. (2008), for finding the optimum design we
may restrict ourselves to the class of three-point designs with support
points (0,1),(¢c,1 — ¢) and (di,1 — dy), di € (0,c). Let n denote a
three-point design with masses ay,as and 1 — a1 — as, respectively,
at the support points (0, 1), (¢,1 —¢) and (dy,1 — dy), d; € (0,¢).

The moment matrix of the design is

aq b C1
M(n) = az ¢ (3.1)
b
where
a, = ctap+di(l—oa; —ay)

as (1—c)'ay+ (1 —d)*(1 — a1 — ay)
e = Al-c)ay+d(1—d)(1—a; —a)
s c(l1—c)ag +di(1—dy)*(1 — a1 — ay)
b = (1 —c) o +di(1 —dy)*(1 —a; — ay). (3.2)

An alternative representation of model (2.1) in the two component
case 1s

Cx = 6111'1 (Il —dl) +¢922(.T2 — (1 —C))(Ig — (1 —dl)) +¢912(.T1 —C)(Ig — 1)

where 0 = (61, 622, 612) and 3 = (P11, P2, F12) are related by 3
g = L0
with
1—dy (1—-0c)(1—dy) —(1—¢)
L= 0 cdy

0
—dl —dl(l—C) —C(l—dl) C
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Then,

asc®(c — dy)? 0 0
M(,0) = a *d? 0 (3.4)
(1 —a)di(c—dy)?

where o = ay + «p.
Hence,

M7UEB) = LMTU(E0)L (3.5)

Therefore, we get

¢(§) = tr M1(&,0)G,

where G = ((¢955)) = L'E(A'(v)A(7))L

g1 = 8(1 — d1)21}1 + 2d%(’U1 + Vg — 2’LU12) — 8d1(1 — dl)(wlg — Ul)

922 = 8(1—0¢)*(1 —di)?v1 +8c%dTva + 2(di (1 — ¢) + (1 — d1))?(v1 + v2 — 2w12)
—166(1 — C)dl(]. — dl)wlg — 8(1 — C)(]. — dl)(dl(l - C) + C(]. — dl))(wlg — 1)1)
—SCdl(dl(l — C) =+ C(l — dl))(wlg — 'UQ)

g3z = 8(1—c)%v1 +2c%(v) + vy — 2wia) — 8¢(1 — ¢)(wiz — v1).

Thus, for given d,

2
g 9o gss
- > (> Vo
¢(§) 06202(0 - d1)2 * OélCQd% * (1 - Oé)d%(C — d1)2 - ( i gzz) )

(3.6)
where
x _ Y22 x gJ11 * 333
g1 = ng%a 922 C2(C . d1)27 933 d%(c _ d1)27 (37)
with equality in (3.6) holding for
. V%

777/ b
22 V95

2
Suppose dj is the value of d; minimizing (Z \/922) . Then the op-
timal design assigns masses o} (d}), aj(d?) and 1 < of(dt) — ab(d}),
respectively, at the support points (0,1),(c,1 — ¢) and (df, 1 — d).



196

NRIPES K. MANDAL ET AL.

[VoL.6, Nos.1 & 2

Table 3.1: Showing optimum designs and the minimum trace for
different combinations of vy, vy, w19 and ¢

v, vy | W | € d; ol o Min. Trace
026 1026|024 | 1 0.5 0.3646 | 0.3646 17.4530
0.8 | 0.3501 | 0.4127 | 0.1950 41.9121
0.6 | 0.2934 | 0.3894 | 0.1256 210.158
0.4 ] 0.1998 | 0.3248 | 0.1765 2010.959
0.26 | 0.30 | 0.22 | 1 |0.5092 | 0.3029 | 0.3337 29.0988
0.8 | 0.3824 | 0.3514 | 0.2338 65.6210
0.6 | 0.2942 | 0.3520 | 0.1710 269.3375
0.4 ] 0.1996 | 0.3148 | 0.1886 2189.214
03010281021 | 1 |0.4967 | 0.3144 | 0.3010 34.6172
0.8 | 0.3856 | 0.3470 | 0.2151 84.9551
0.6 | 0.2963 | 0.3403 | 0.1765 355.406
0.4 ] 0.1998 | 0.3071 | 0.1956 2750.812
0.30 ] 0.30 | 0.20 | 1 0.5 0.3000 | 0.3000 40.0000
0.8 | 0.3895 | 0.3326 | 0.2250 95.9710
0.6 | 0.2966 | 0.3311 | 0.1866 389.2969
0.4 | 0.1997 | 0.3038 | 0.1998 2837.252
0.30]0.40 | 0.15 | 1 | 0.5048 | 0.2435 | 0.3008 66.0020
0.8 | 0.3976 | 0.2694 | 0.2636 148.5268
0.6 | 0.2982 | 0.2835 | 0.2334 510.6013
0.4 | 0.1997 | 0.2900 | 0.2148 3262.091
0.30 1 0481 0.11 | 1 | 0.5052 | 0.2435 | 0.3008 86.3329
0.8 1 0.3997 | 0.2694 | 0.2636 189.1602
0.6 | 0.2990 | 0.2835 | 0.2334 609.3615
0.4 | 0.1998 | 0.2812 | 0.2240 3595.568
0.40 1] 0.30 | 0.15 | 1 | 0.4950 | 0.2997 | 0.2598 66.0020
0.8 |1 0.3949 | 0.3146 | 0.2165 170.6315
0.6 | 0.2986 | 0.3092 | 0.2016 660.2805
0.5 ] 0.2494 | 0.3006 | 0.2049 1570.399
0.40 | 0.40 | 0.10 | 1 | 0.5000 | 0.2717 | 0.2717 92.1051
0.8 | 0.3978 | 0.2887 | 0.2378 223.0933
0.6 | 0.2990 | 0.2918 | 0.2196 786.0946
0.5 ] 0.2496 | 0.2882 | 0.2183 1786.614
048 1 0.30 | 0.11 | 1 |0.4948 | 0.3008 | 0.2435 86.3329
0.8 | 0.3965 | 0.3086 | 0.2136 230.0149
0.6 | 0.2991 | 0.3012 | 0.2068 881.3037
0.5 ] 0.2496 | 0.2936 | 0.2106 2062.470
048 | 0.48 1 0.02 | 1 | 0.5000 | 0.2650 | 0.2650 133.2798
0.8 1 0.3989 | 0.2773 | 0.2413 323.6493
0.6 | 0.2994 | 0.2803 | 0.2284 1104.629
0.5 ] 0.2498 | 0.2782 | 0.2270 2446.772
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Remark 3.1 From Table 3.1, the following observations have been
made:

(a) For fized vy, vy and wis, (i) min. trace | ¢; (i) dv T ¢; (iii)
1—a; —ay (mass at dy) | c. (b) For fized vy(vy) and ¢, min trace

7 01(02)-

3.2 Case of three components

Here the model is

3 3
EY|z)=( = Z B} + Z Bijxix;. (3.9)
i=1 ij=1
i<j

We shall assume that
V1 = Uy, W13 = Was. (3.10)
For simplicity, we write model (3.9) as
Co = Bua} + Ba2a5 + Bra1xs + P33l + Prawrxg + Poswaws.

s . Oy Oy Oy Oy Oy Oy
Then, ertlng A(’}/) = <m, %, %, m, m, %) , We have

E(A' (MA(®))
24vy —12wi2  —6(vi — 2wi2) —12wig —6(v1 — 2w13) —6(wi2 + w13)
24vy —6(vy —2wi2) —12wi3 —6(wi2 + w13) —6(v1 — 2w13)
- 42 6(2v1 —wiz)  —12wiz  —3(v1i + wiz — wig) —3(v1 + w1z — wig)
24vg —6(v3 — 2w13) —6(v3 — 2w13)
6(v1 + vz — wi3) —3(v3 + 2w13 — 2wi2)

6(v1 + vz — w13)

where d = (36| B|]~/2.

It may be noted that in many practical situations the mixing pro-
portions are constrained, like say, a particular ingredient may be es-
sential to be present in the mixture in at least or at most a certain
proportion. In our study, let us assume that 0 < z3 < ¢, where
0 < ¢ < 1. To obtain the optimum design in such a situation, we
proceed as follows.
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3.2.1 A Heuristic Search for Optimum Design

We note that under the assumption (3.10), the problem is invariant
with respect to the first two components and hence the optimum de-
sign must also have the same invariance property with respect to the
first two components. Now arguing as in Mandal et al. (2008), the
response function can be represented as a quadratic in x3 so that for
the optimum design x5 will take the three distinct values 0, ¢ and some
a € (0,¢). In view of the invariant case considered in Pal and Mandal
(2006) or the non-invariant case of Mandal et al. (2008), we restrict
to the following class of designs with support points as below:

T To weight | x3 | weight
1 0 o
0 1 o 0 Wi
1/2 1/2 1 -2«
(1—-¢)/2|(1—¢)/2 1 c Wy
1—a 0 1/2
0 l—a 1/2 | a Wy

where 0 < a < 1,a € (0,¢), W; >0,i=1,2,3, Wy + Wy + W3 = 1.
Here Wy, W5 and W3 denote the weights attached to x3 = 0,c¢ and
a, respectively, while the third column gives the weights for different
(21, z2) combinations when z3 is given.

Let us denote such a design as £(a,a, W). Then, after a little
algebra, the information matrix for the design comes out to be

M(¢) = DAD',
where

i (1-0? (1-a)? ]

Ja 0 b N (10)2

0 va b =0 R

p_ | 0 0 b5 0 0
B 0 0 0 Ll @ |

c(1—c) ad/?a) V2

O gV <1O—>

00 0 0 =

A = Diag(WlIg, WQ, WgIg), b= V 1 -2«

L
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Therefore, for the design £, the criterion function (2.8) reduces to

O(0sa, W) = AT DT E(A()A()D]

* * *

_9n + 922 i 933

Wy Wy Wi

where
DT BA' (MAMD' T = ((9:5))
911 = 911 + 922 + 933,950 = 944,933 = 955 + 966>
1 1—

g = g22=_ [24711 + 6(4v1 — 5wiz) +6(vi — w12 — 3wi3) =

—a 2 C —a 2
+6(v1 + vs — wi3) (1 " ) { ((cl_ a)):|
2
6(1*@ (1-0¢)

a? 4(c — a)?

—(vg + 2w13 — 2wi2)a(2c — a — ac)}]

+

{avs(1 = )’ (1 = ) + 2(vs — 2w13)(1 = @)e(2 — a)

*

= —, say
2a

_ 96 (1 —c2)?(1 —a) a
933 = T [(21)1—Unz)-‘rm{wls—(v1+w12—w13)m}

(1 - e —a)? a

2
Z(ca —a) {v?, + (v — 2w13) P + (2v1 — vz — 4wiz + 2w12) (m) H

n*
= , sa;

1 -2« v

6(1—a)2 a a 2
944 = S |4v3 +4(vz — 2wi3) + (2v1 + vz — 4wy + 2wi2)

c5(c —a) 1—a 1—a

3 [( " )(20—a—ac)2

gs55 = geg = ——— |(v1 +v3 —wq _
55 66 a2(cfa)2 3 3 1_

(1—(:)2{41/3+2(U3—2w13) - +(”1+”3_“’13)(1i )2}

1—a a
+(1— C)W {2(1,3 — 2w13) = (vs + 2ws — 2wi2) E a}] .
For given a and W, ¢(&(a, a, W)) is minimized at « = o = WL\/W‘
Then, at a = «p,
* * * 2
gi10 Y220 Y330
) 7W = ) W = . . . > *
é(E(ao, @, W) = (¢(a, W) = 22 + 52 + = > Z V%
(3.11)
where g7, = g;ki|a:a0 ,i=1,2,3.

Equality holds in (3.11) at W; = W;(a) = Zivgg‘) i=1,2,3.
- 17,0
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Hence, given a,

o(E(a,a, W) > 6(E(a, W(a)) = Z\/?O for all o, W.

(3.12)
We now find optimal a which minimizes the R.H.S. of (3.12). As al-
gebraic deduction of optimal a is intractable, we have indicated the
optimal value a* of a and hence those of & and W for some com-
binations (v; = vy, v3, W12, W13 = Wy3) between wiy and wys in Table
3.2. It may be noted that this design is optimal within the class of
designs.

Dy ={(a,a,W); 0<a<1l,0<a<l, W;>0,i=1,2,3, Wi +Wo+ W3 =1}
(3.13)

Table 3.2 Showing optimal values of a, & and W for different
combinations of (v; = vy, v3, Wi, W13 = we3) and c.

Parameters Optimal Trace

c V] = vg v3 w1 w13 = wag a a Wo

0.99 0.20 0.1 0.150 0.0500 0.4833 0.2520 0.1095 491.4126

0.20 0.1 0.120 0.0650 0.4866 0.2512 0.0967 488.6627

0.20 0.1 0.100 0.0750 0.4905 0.2506 0.0872 484.5852

0.15 0.2 0.120 0.0650 0.4960 0.2508 0.1424 483.7883

0.10 0.2 0.065 0.1175 0.5082 0.2210 0.1263 287.8529

0.9 0.20 0.1 0.150 0.0500 0.4526 0.2586 0.1267 559.3978

0.20 0.1 0.120 0.0650 0.4579 0.2558 0.1146 543.4693

0.20 0.1 0.100 0.0750 0.4636 0.2541 0.1054 530.1226

0.15 0.2 0.120 0.0650 0.4668 0.2594 0.1671 567.9032

0.10 0.2 0.065 0.1175 0.4920 0.2213 0.1617 316.4064

0.85 0.20 0.1 0.150 0.0500 0.4334 0.2640 0.1373 612.0382

0.20 0.1 0.120 0.0650 0.4394 0.2595 0.1260 586.1483

0.20 0.1 0.100 0.0750 0.4459 0.2568 0.1172 565.8259

0.15 0.2 0.120 0.0650 0.4669 0.2666 0.1812 637.7346

0.10 0.2 0.065 0.1175 0.4714 0.2220 0.1854 343.3944
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In the following subsection we examine the optimality of the design
¢(a*, W (a*)) within the entire class.

3.2.2 Optimality or Non-optimality of {(a*, W (a*))

To verify the optimality of £(a*, W (a*)) in the entire class, we use the
equivalence theorem of Kiefer (1974) which, for the given problem, can
be stated as follows ( cf. Pal and Mandal (2007)):

Theorem 3.1 A necessary and sufficient condition for a mizture de-
signc € to be optimum is that

f@) M (E)(B(A'(v)A() M (&) f(x) < ter(&)(E(A’(V)A((;)l)i)
holds for all z in the factor space =Z*. .

Equality in (3.14) holds at the support points of .

We have checked the above condition by taking several combina-
tions of ¢, v;, w;;54,7 = 1,2,3. It has been seen that when ¢ = 1,
condition (3.14) is satisfied for all = in =Z*, so that the design is opti-
mum, as was observed by Mandal et al (2008). However, when ¢ takes
some value les than one, condition (3.14) is satisfied at all points ex-
cept for a very small area in Z*. Hence the design £(a*, W (a*)) is not
optimum in the entire class. A closer look at the following table shows
that the condition (3.14) is violated at some of the support points of
¢(a*, W(a*)) which indicates that more weights are to be attached at
those support points.

Table 3.3: Showing the upper bound ¢* of x5 so that the equivalence theorem is satisfied

at all points on the plane 1 = 0 or o = 0 for the design £(a™, W (a™)) for given
(vi = v, v3, w1z, w13 = wag, ).

vy =wvz | wiz | wiz = wa3 v3 c*
c=0.9 c=0.8 c=0.7 c=0.5
0.2 0.15 0.05 0.1 0.8947 0.7844 0.6743 0.4602
0.15 0.2 0.12 0.065 0.8913 0.7759 0.6642 0.4565
0.1 0.2 0.065 0.1175 0.8742 0.7263 0.6104 0.4399

The above table shows that for given (v; = vy, v3, wig, W13 = wWa3) as
¢ decreases, ¢* deviates more from it. This indicates increase in the
region of violation of the Equivalence Theorem with decrease in c.
To find optimum design sequentially one can start with this de-
sign £(a*, W(a*)) and use any of the standard algorithms, like V
algorithm of Federov(1972), to reach the optimum. Since, however,
we are interested in determining /recommending single-step design, we
have considered some competitors of £(a*, W (a*)) and compared their
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performances for different combinations of the given parameters of the
design in the next section.

4 A competitive design

In the last section we have observed that the design {(a*, W (a*)) is
not optimum in the entire class of competing designs. In this section
we propose another competitive design & (ay, W (ay)), which seems to
be a strong contender for the target design:

x, X weight | x3 | weight
1 0 o
0 1 « 0 W1
1/2 1/2 | 1- 2«
l1—c 0 1/2 c Wy
0 1—c 1/2
1—a 0 1/2 | a Wiy
0 l—a | 1/2

where 0 < a<1,a, € (0,¢), W; 20,1 =123 Wy + Wy + W3 =1
and W; s are defined as before.

For the design &;(a;, W(a;)), we use the same weights o, Wy, Ws
and W3 as in the optimum design for the unconstrained factor space,
considered by Mandal et al (2008), with the mass W5, assigned to
the point (0,0, 1), divided equally among the two points (1 — ¢, 0, ¢)
and (0,1 — ¢,¢). The optimum a;, denoted by af is determined by
minimizing the criterion function. The relative performance of the
two designs is given in Table 4.1.

Table 4.1: Showing the constrained design & (af, W (a})) and

its comparison with the constrained design &(a*, W (a"))

Parameters Values of
€1 (a%, W (a})) Trace of
vl = vg v3 w19 w13 = wag [+ Wy ay Trace &(a*, W (a™))
Wo
W3
0.1 0.2 0.065 0.1175 0.2210 0.3818 0.99 0.5082 287.8265 287.8529
0.9 0.4855 315.8616 316.4064
0.1229 0.85 0.4609 344.8327 343.3944
0.7 0.3506 578.6438 554.3565
0.4953 0.5 0.2274 2395.1697 2438.563
0.15 0.2 0.12 0.065 0.2501 0.4897 0.99 0.4954 483.7396 483.7883
0.9 0.4577 564.5837 567.9032
0.0863 0.85 0.4319 631.9667 637.7346
0.7 0.3465 1054.5752 1066.964
0.4240 0.5 0.2379 3639.1909 3836.257
0.2 0.1 0.15 0.05 0.2514 0.4473 0.99 0.4827 491.3899 491.4126
0.9 0.4448 558.0290 559.3978
0.1077 0.85 0.4211 610.2784 612.0382
0.7 0.3424 904.2737 955.737
0.4450 0.5 0.2346 2464.5404 2429.956
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5 Conclusion

In this paper we have attempted to obtain the optimum design for the
estimation of optimum proportion v in a mixture experiment, when
the factor space is constrained. For the case of two components, the
design obtained is found to be optimum in the entire class. For the
case of three components, the optimum design within a class of six-
point designs, defined in subsection 3.2.1, has been derived. However,
using Equivalence Theorem, it is observed that the design is not op-
timum in the entire class of competing designs. Numerically, it is
seen that the Equivalence Theorem is particularly violated at the two
boundary points (1 —¢, 0, ¢) and (0,1 — ¢, ¢). This indicates that some
mass should be allotted to these points. In view of that, in Section
4, we have introduced another class of seven-point designs, where the
mass at the point (0,0,1) in the optimum unconstrained design has
been distributed equally to the two boundary points (1 — ¢, 0, ¢) and
(0, 1—c¢, ¢). By taking several combinations of the parameters, we have
compared the performance of the two designs. It is observed that, in
terms of the criterion function, the two are very close to one other. So,
starting with any one of these designs, one may now use a standard
numerical algorithm to reach the optimum design.

Acknowledgements: The authors thank the anonymous referee for
carefully reading the manuscript and making fruitful suggestions, which
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